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ASYMPTOTIC PROPERTY OF SOLUTIONS ON NONAUTONOMOUS

LOTKA–VOLTERRA MODEL FOR N –COMPETING SPECIES

KUNIHIKO TANIGUCHI

(Communicated by M. Gyllenberg and J. Sugie)

Abstract. We consider nonautonomous N -dimensional generalized Lotka-Volterra competition
systems. Under certain conditions we show that the set of values of solutions starting from any
compact set tends to a set of measure zero. Our results give generalizations of previous ones.

1. Introduction and Statements of the main results

In this paper we consider the system of differential equations:

u′i = ui

[
ai(t)−

N

∑
j=1

bi j(t) fi j(ui,u j)

]
, i = 1, . . . ,N,N � 2, (GLV)

where the functions ai(t) , 1 � i � N , and bi j(t) , 1 � i, j � N , are assumed to be con-
tinuous and nonnegative on R . Furthermore, let the functions fi j(x,y) , 1 � i, j � N , be
continuously differentiable on R

2
+ = (0,∞)2 , and we impose the following conditions

on f ′i j :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fii(x,y) is continuously differentiable on [0,∞)× [0,∞), 1 � i � N;

fi j(x,y) > 0, (x,y) ∈ R
2
+,1 � i, j � N;

d
dx

( fii(x,x)) = (D1 fii +D2 fii)(x,x) > 0, x ∈ R+,1 � i � N;

D1 fi j(x,y) � 0, (x,y) ∈ R
2
+,1 � i � N;

D2 fi j(x,y) � 0, (x,y) ∈ R
2
+,1 � j � N;

fii(0,0) = 0, 1 � i � N;

lim
x→∞

fii(x,x) = ∞, 1 � i � N,

(1.1)

where Di , i = 1,2, denotes the differentiation with respect to the i-th variable.
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System (GLV ) is a generalization of the following nonautonomous N -dimens-
ional Lotka-Volterra competition system which S. Ahmad and A. C. Lazer [1] consid-
ered:

u′i = ui

[
ai(t)−

N

∑
j=1

bi j(t)u j

]
, i = 1, . . . ,N,N � 2. (LV)

An prototype of system (LV ) , as well as (GLV ) , is the classical Lotka-Volterra com-
petition model for two species:{

u′1 = u1(a1−b11u1−b12u2),
u′2 = u2(a2−b21u1−b22u2),

(1.2)

where ai , i = 1,2, and bi j , i, j = 1,2, are positive constants. When the growth rates
ai , i = 1,2, and the interaction coefficients bi j , i, j = 1,2, satisfy

a1−b12

(
a2

b22

)
> 0, (1.3)

a2−b21

(
a1

b11

)
> 0, (1.4)

there exists a unique equilibrium point (u∗1,u
∗
2) ∈ R

2
+ that attracts any solution curve

(u1(t),u2(t)) of system (1.2) with (u1(t0),u2(t0)) ∈ R
2
+ , i.e.

u1(t) → u∗1 and u2(t) → u∗2 as t → ∞.

In [1]-[6] it is shown that analogous results still hold for the nonautonomous equa-
tion (LV ) , as seen below. In this paper we intend to generalize such results further.

We introduce notation. Put cM := supt∈R c(t) for bounded functions c(t) on R .
For i = 1, . . . ,N , we put

f̃ii(x) = fii(x,x), x ∈ R+.

By assumption (1.1) f̃ii , i = 1, . . . ,N , have the inverse function f̃−1
ii : R+ → R+ . The

assumptions employed in the paper will be sellected from the following list:

(A1) bii(t) > 0, t ∈ R,1 � i � N ;

(A2)
∫ ∞

0
bii(s)ds = ∞, 1 � i � N ;

(A3)

(
ai

bii

)
M

< ∞, 1 � i � N ;

(A4) inf
t∈R

ai(t)−∑ j �=i bi j(t)(a j/b j j)M

bii(t)
> 0, 1 � i � N ;

(A5) inf
t∈R

ai(t)−∑ j �=i bi j(t) fi j( f̃−1
ii ((ai/bii)M), f̃−1

j j ((a j/b j j)M))
bii(t)

> 0, 1 � i � N ;
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(A6) fi j(x,y) � f̃ j j(y), (x,y) ∈ R
2
+,1 � i, j � N, i �= j ;

(A7) for any s > 1 sufficiently close to 1,

fi j( f̃−1
ii (sx), f̃−1

j j (sy)) � s fi j( f̃−1
ii (x), f̃−1

j j (y)), (x,y) ∈ R
2
+,1 � i, j � N.

REMARK 1.1. As in the case of (LV ) and (1.2), if fi j(x,y) , 1 � i, j � N , are
independent of x , (A6) is satisfied. In fact, for (LV ) we can take fi j(x,y) = y , 1 �
i, j � N , which satisfy (A6) and (A7).

REMARK 1.2. Let

fi j(x,y) =

⎧⎪⎨
⎪⎩

xαi j

1+ xαi j
yβi j , i �= j,

xαi j yβi j , i = j,

where αi j , βi j ∈ R+ . If for i �= j , βi j = α j j +β j j , then the functions fi j , 1 � i, j � N ,
satisfy (A6).

REMARK 1.3. Let

fi j(x,y) = xαi j yβi j , (x,y) ∈ R
2,1 � i, j � N,

where αi j , βi j ∈ R+ . If αi j +βi j � min{αii +βii,α j j +β j j} , then the functions fi j ,
1 � i, j � N , satisfy (A7).

S. Ahmad and A. C. Lazer [1] supposed that the functions ai(t) , 1 � i � N and
bi j(t) , 1 � i, j � N , satisfy conditions (A1)-(A3) and (A4). Under these conditions
they have shown the following [1]:

(I) If u = (ui, . . . ,uN) is a solution of (LV ) with ui(t0) > 0, 1 � i � N , t0 ∈ R , then

0 < inf
t�t0

ui(t) � sup
t�t0

ui(t) < ∞ for 1 � i � N.

(II) If A is a compact subset of R
N
+ , then the Lebesgue measure of the set {u(t) | u

is a solution of (LV ) satisfying u(t0) ∈ A} tends to 0 as t → ∞ .

Our main aim is to show that (I) and (II) are still valid for (GLV ) . To state the
results we introduce the following. For compact subset A of R

N
+ and t0 ∈ R we set

u(t, t0,A) = {u(t) | u is a solution of (GLV ) satisfying u(t0) ∈ A}.
By μ(·) we denote the Lebesgue measure of measurable sets in R

N
+ . We can show the

following:

THEOREM 1.4. Let conditions (A1)-(A3) , (A4) , and (A6) hold. Let A be a
compact subset of R

N
+ and let t0 ∈ R . Then,

μ(u(t,t0,A)) → 0 as t → ∞.



450 KUNIHIKO TANIGUCHI

THEOREM 1.5. Let conditions (A1)-(A3) , (A5) , and (A7) hold. Let A be a
compact subset of R

N
+ and let t0 ∈ R . Then,

μ(u(t,t0,A)) → 0 as t → ∞.

We give examples of systems (GLV ) for which above conditions hold.

EXAMPLE 1.6. We consider system (GLV ) for two species

u′1 = u1

[
(cost +7)− (sint +7) ·u2

1− (sint +1) ·
(

u3
1

1+u3
1

·u2
2

)]
,

u′2 = u2

[
(cost +9)− (sint +2) ·

(
u4

2

1+u4
2

·u3
1

)
− (sint +9) ·u3

2

]
.

Obviously (A6) holds. We have

a1(t)−b12(t)
(

a2

b22

)
M

> cost +7− (sint +1) · 10
8

> 2,

a2(t)−b21(t)
(

a1

b11

)
M

> cost +9− (sint +2) · 8
6

> 2.

So conditions (A1)-(A3) and (A4) hold. Of course condition (1.1) hold.

EXAMPLE 1.7. We consider system (GLV ) for two-species

u′1 = u1[(cost +7)− (sint +7) ·u4
1− (sin t +1) ·u1u

2
2],

u′2 = u2

[
(cost +9)− (sint +2) ·u2

2u
2
1− (sin t +9) ·u6

2

]
.

Obviously (A7) holds. We have

a1(t)−b12(t) f12

(
f̃−1
11

((
a1

b11

)
M

)
, f̃−1

22

((
a2

b22

)
M

))

> cost +7− (sint +1) ·
(

8
6

)1/4

·
(

10
8

)2/6

> 2,

a2(t)−b21(t) f21

(
f̃−1
22

((
a2

b22

)
M

)
, f̃−1

11

((
a1

b11

)
M

))

> cost +9− (sint +2) ·
(

10
8

)2/6

·
(

4
3

)2/4

> 2.

So conditions (A1)-(A3), (A5) hold. Of course condition (1.1) hold.

The rest of this paper is organized as follows. In Section 2 we give an important
proposition which are employed in proving Theorems 1.4 and 1.5. The proof of The-
orems 1.4 and 1.5 are given in Sections 3 and 4, separately. Related results are found,
for example, in [2]-[5].
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2. Squeezing theorem

In this section we consider system (GLV ) on which we impose the following
conditions:

bi j(t) � 0, t ∈ R,1 � i, j � N, (2.1)

bii(t) > 0, t ∈ R,1 � i � N, (2.2)(
ai

bii

)
M

< ∞, 1 � i � N, (2.3)

∫ ∞

0

N

∑
i=1

bii(s)ds = ∞. (2.4)

We note that these conditions are weaker than conditions (A1)-(A3) for system (GLV ) .
Then we can generalize the results due to S. Ahmad and A. C. Lazer [1, Theorem 2.1]
as seen below:

PROPOSITION 2.1. Let conditions (2.1)-(2.4) hold. Let A be a bounded mea-
surable subset of R

N
+ and let t0 ∈ R . Let u = (u1, . . . ,uN) be a solution of (GLV ) with

u(t0) ∈ A. If there exists a number δA > 0 such that

ui(t) � δA, t � t0, u(t0) ∈ A, 1 � i � N, (2.5)

then

μ(u(t,t0,A)) → 0 as t → ∞.

REMARK 2.2. By Proposition 2.1, in order to prove Theorems 1.4 and 1.5, it is
sufficient to prove the existence of δA satisfying (2.5). In Sections 3 and 4 we shall
prove the existence of such a δA (Lemmas 3.1 and 4.1).

2.1. Preliminary lemmas for Proposition 2.1

In this subsection we prove lemmas needed later. As a first step, we show that
every solutions u of (GLV ) with u(t0) ∈ R

N
+ remains here as long as it exists. To see

this we rewrite system (GLV ) in the form

u′i(t) = pi(t)ui(t), i = 1,2, . . . ,N,

where the functions pi(t) , 1 � i � N , are given by

pi(t) = ai(t)−
N

∑
j=1

bi j(t) fi j(ui(t),u j(t)).

Since pi , 1 � i � N , is continuous on the domain of u , for t in the domain of u we
obtain

ui(t) = ui(t0)exp
∫ t

t0
pi(s)ds > 0.
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Hence u(t) ∈ R
N
+ .

LEMMA 2.3. Let conditions (2.1)-(2.4) hold. Let t0 ∈ R and u a local solution
of (GLV ) with u(t0) ∈ R

N
+ . Then the following statements hold:

(i) Let ri > 0 be a number such that(
ai

bii

)
M

< ri.

Then
f̃ii(ui(t)) � max{ f̃ii(ui(t0)),ri}. (2.6)

(ii) Let A ⊂ R
N
+ be a bounded subset. Then there exists a number MA > 0 such that

ui(t) � MA, 1 � i � N, (2.7)

for any solution of (GLV ) with u(t0) ∈ A.

Proof. (i) Step 1. First, we prove the following claim.
Claim. If there exists some T � t0 and some number i ∈ {1, . . . ,N} such that

f̃ii(ui(T )) � ri >

(
ai

bii

)
M

> 0,

then u′i(T ) � 0 .

In fact, from the assumption of the above claim, (2.2) and (2.3), we have

u′i(T ) = ui(T )

[
ai(T )−∑

j �=i

bi j(T ) fi j(ui(T ),u j(T ))−bii(T ) f̃ii(ui(T ))

]

� ui(T )[ai(T )−bii(T ) f̃ii(ui(T ))]

� ui(T )[ai(T )− ribii(T )] = ui(T )bii(T )
[

ai(T )
bii(T )

− ri

]
� 0.

Step2. We will prove Lemma 2.3. The proof is divided into two cases.
Case 1. Let

f̃ii(ui(t0)) � ri.

It suffices to show that for t � t0 , f̃ii(ui(t)) � f̃ii(ui(t0)) .
Case 2. Let

f̃ii(ui(t0)) < ri.

It suffices to show that for t � t0 , f̃ii(ui(t)) � ri .
In Case 1, we assume to the contrary that there exists some t̃ > t0 such that β :=

f̃ii(ui(t̃)) > f̃ii(ui(t0)) =: γ . We take t1 satisfying:

t1 := inf{t ∈ R | t > t0, f̃ii(ui(t)) = β}.
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Next we take t2 satisfying:

t2 := sup{t ∈ R | t0 � t < t1, f̃ii(ui(t)) = γ}.
Then f̃ii(ui(t1)) > f̃ii(ui(t2)) and f̃ii(ui(t)) � ri on [t2, t1] . From Step 1, we have u′i � 0
on [t2, t1] . Consequently, we obtain ui(t1) � ui(t2) . This gives f̃ii(ui(t1)) � f̃ii(ui(t2))
by condition (1.1), which is a contradiction.

In Case 2, we assume that there exists some number ť > t1 such that

η := f̃ii(ui(ť)) > ri.

We take t3 satifying:

t3 := inf{t ∈ R | t > t0, f̃ii(ui(t)) = η}.
Next we take t4 satisfying:

t4 := sup{t ∈ R | t0 � t < t3, f̃ii(ui(t)) = ri}.
Then f̃ii(ui(t3)) > f̃ii(ui(t4)) and f̃ii(ui(t)) � ri on [t4,t3] . Similarly to Case 1, we get
ui(t3) � ui(t4) . This gives f̃ii(ui(t3)) � f̃ii(ui(t4)) , a contradiction. The proof is then
completed.

(ii) From (i), it follows that for all t � t0

f̃−1
ii ( f̃ii(ui(t))) � f̃−1

ii (max{ f̃ii(ui(t0)),ri}).
That is

ui(t) � max{ui(t0), f̃−1
ii (ri)}.

Therefore if we let MA be

MA = max

{
sup

1�k�N
{xk | x ∈ A}, f̃−1

ii (ri)

}
,

where x = (x1, . . . ,xN) ∈ A , then for t � t0 , ui(t) � MA . The proof is then completed.

REMARK 2.4. By (i) of Lemma 2.3, we see that every solution u of (GLV ) with
u(t0) ∈ R

N
+ exists on [t0,∞) under conditions (2.1)-(2.4). So in this case (2.6) and (2.7)

hold on [t0,∞) .

Now we rewrite system (GLV ) in the form

u′ = g(u,t),

where u(t) = (u1(t), . . . ,uN(t)) ∈ R
N , and g(u,t) = (g1(u,t), . . . ,gN(u,t)) is given by

gi(x,t) = xi

[
ai(t)−

N

∑
j=1

bi j(t) fi j(xi,x j)

]
, 1 � i � N,
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for x = (x1, . . . ,xN) ∈ R
N . Since the functions ai , 1 � i � N , and bi j , 1 � i, j � N , are

continuous on R and the functions fi j , 1 � i, j � N , are continuousuly differentiable
on R

2
+ , for every ξ = (ξi) ∈ R

N
+ and τ ∈ R , there exists a unique solution u(t) of

(GLV ) with u(τ) = ξ . We denote it by u(t,τ,ξ ) = (ui(t,τ,ξ )) . Recall that we have
introduced the notation:

u(t,t0,A) = {u(t,t0,ξ ) | ξ ∈ A}

for A ⊂ R
N
+ . Furthermore, since the functions gi(x,t) , 1 � i � N , are continuously

differentiable with respect to the components of x ∈ R
N , u(t,τ,ξ ) are continuously

differentiable with respect to the components of ξ ∈ R
N . Therefore we can introduce

the following notations. We denote by Dξ (u(t,τ,ξ )) the N ×N matrix with (i, j) th
entry equal to ∂ui(t,τ,ξ )/∂ξ j :

Dξu(t,τ,ξ ) =
[
∂ui(t,τ,ξ )

∂ξ j

]
,

where ξ ∈ R
N
+ . Similarly we define N×N matrix Dxg(x,t) by

Dxg(x,t) =
[
∂gi(x,t)
∂x j

]
,

where x ∈ R
N
+ .

Now for t � t0 and ξ0 ∈ R
N
+ , we set u0(t) = u(t,t0,ξ0) . Then it is well known [4]

that
X ′(t) = A(t)X(t), X(t0) = I,

where

X(t) = Dξ u(t,t0,ξ0), A(t) = Dxg(u0(t),t),

and I is the N×N identity matrix. Furthermore we know that

detX(t) = exp
∫ t

t0
trA(s)ds.

Therefore, we have

detDξu(t,t0,ξ0) = exp
∫ t

t0

N

∑
i=1

∂gi

∂xi
(u0(s),s)ds. (2.8)

2.2. Proof of Proposition 2.1

In this section we prove Proposition 2.1.

PROOF OF PROPOSITION 2.1. First, from assumptions of Proposition 2.1 and
Lemma 2.3, we note that there exist some numbers MA and δA such that

0 < δA � ui(t) � MA, t � t0,1 � i � N. (2.9)
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For t ∈ R , i = 1, . . . ,N , we have

∂gi

∂xi
(u(t),t) = ai(t)−

N

∑
j=1

bi j(t) fi j(ui(t),u j(t))

−ui(t)∑
j �=i

bi j(t)D1 fi j(ui(t),u j(t))

−ui(t)bii(t)(D1 fii +D2 fii)(ui(t),ui(t))

� u′i(t)
ui(t)

−ui(t)bii(t)(D1 fii +D2 fii)(ui(t),ui(t)).

Therefore

∫ t

t0

N

∑
i=1

∂gi

∂xi
(u(s),s)ds �

∫ t

t0

N

∑
i=1

[
u′i(s)
ui(s)

−ui(s)bii(s)(D1 fii +D2 fii)(ui(s),ui(s))

]
ds

=
N

∑
i=1

[logui(s)]tt0

−
∫ t

t0

N

∑
i=1

ui(s)bii(s)(D1 fii +D2 fii)(ui(s),ui(s))ds.

Here, from condition (1.1), if we set

δ ′
A := min

1�i�N
{(D1 fii +D2 fii)(δA,δA)} > 0,

then we obtain from (2.9)

∫ t

t0

N

∑
i=1

∂gi

∂xi
(u(s),s)ds �

N

∑
i=1

log
MA

δA
− δAδ ′

A

∫ t

t0

N

∑
i=1

bii(s)ds

= N log
MA

δA
− δAδ ′

A

∫ t

t0

N

∑
i=1

bii(s)ds.

Hence by (2.4), ∫ t

t0

N

∑
i=1

∂gi

∂xi
(u(s),s)ds →−∞ as t → ∞ (2.10)

uniformly with respect to ξ0 ∈ A . Thus it follows from (2.8) that

detDξu(t,t0,ξ0) = exp
∫ t

t0

N

∑
i=1

∂gi

∂xi
(u(s),s)ds → 0 as t → ∞ (2.11)

uniformly with respect to ξ0 ∈ A . Since, from (2.8),

detDξ u(t,t0,ξ0) > 0, t � t0,
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it follows from the change of variables formula [3] that

μ(u(t,t0,A)) =
∫

u(t,t0,A)
dx =

∫
A
detDξ u(t,t0,ξ0)dξ0.

Hence from (2.11)
μ(u(t,t0,A)) → 0 as t → ∞.

This completes the proof.

3. Proof of Theorem 1.4

From Remark 2.2, in order to prove Theorem 1.4, it is sufficient to prove the
following lemma.

LEMMA 3.1. Let conditions (A1)-(A3) , (A4) and (A6) hold. Let A be a com-
pact subset of R

N
+ and let t0 ∈ R . Then there exist some numbers δA > 0 , r > 0 and

tA � t0 such that
δA < ui(t) < r, t � tA, 1 � i � N

for any solution u of (GLV ) with u(t0) ∈ A.

Before we prove Lemma 3.1, we give several lemmas which are employed in prov-
ing Lemma 3.1. Firstly from (A4), there exists some number ε > 0 such that

ai(t)−∑
j �=i

bi j(t)
(

a j

b j j

)
M

� εbii(t), t � t0, 1 � i � N. (3.1)

Therefore we have the following proposition.

PROPOSITION 3.2. There exists some number s > 1 such that

sε− (s−1)
(

ai

bii

)
M

> 0, 1 � i � N. (3.2)

Furthermore

ai(t)−∑
j �=i

bi j(t)s
(

a j

b j j

)
M

� αbii(t), t � t0,1 � i � N, (3.3)

where

α ≡ min
1�i�N

{
sε− (s−1)

(
ai

bii

)
M

}
> 0. (3.4)

Proof. Since, for all t � t0 and i = 1, . . . ,N ,

sε− (s−1)
(

ai

bii

)
M
→ ε > 0 as s → 1+0,
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there exists some number s > 1 such that (3.2) holds. Therefore if α is defined by
(3.4), then for t � t0 , i = 1, . . . ,N we have from (3.1)

ai(t)−∑
j �=i

bi j(t)s
(

a j

b j j

)
M

= s

[
ai(t)−∑

j �=i

bi j(t)
(

a j

b j j

)
M

]
− (s−1)ai(t)

� sεbii(t)− (s−1)ai(t)

=
[
sε− (s−1)

ai(t)
bii(t)

]
bii(t) � αbii(t).

This completes the proof.

Henceforth let s and α denote the numbers given in Proposition 3.2. Then it leads
to the following lemma.

LEMMA 3.3. Let conditions (A1)-(A3) and (A4) hold. Let A be a compact sub-
set of R

N
+ and let t0 ∈ R . Let u(t,t0,ξ0) be a solution of (GLV ) with ξ0 ∈ A. Then

there exists some number t̂ = t̂A � t∗ such that

f̃ii(ui(t,t0,ξ0)) < s

(
ai

bii

)
M

, t � t̂,ξ0 ∈ A,1 � i � N. (3.5)

Proof. Step 1. First, we prove the following claim.
CLAIM. For ξ0 ∈ A, there exist some t∗ = t∗ξ0

� t0 such that

f̃ii(ui(t∗,t0,ξ0)) < s

(
ai

bii

)
M

, 1 � i � N. (3.6)

We assume to the contrary that there exist some number ξ0 ∈ A and i∈ {1, . . . ,N} such
that

f̃ii(ui(t,t0,ξ0)) � s

(
ai

bii

)
M

>

(
ai

bii

)
M

> 0, t � t0. (3.7)

To simplify the notation we put u(t) = u(t,t0,ξ0) . For t � t0 , we have

u′i(t) = ui(t)

[
ai(t)−∑

j �=i

bi j(t) fi j(ui(t),u j(t))−bii f̃ii(ui(t))

]

� ui(t)[ai(t)−bii(t) f̃ii(ui(t))] � ui(t)
[
ai(t)−bii(t)s

(
ai

bii

)
M

]
.

Here, noting that

ai(t) =
ai(t)
bii(t)

·bii(t) �
(

ai

bii

)
M
·bii(t),

we have

u′i(t) � ui(t)
[(

ai

bii

)
M

bii(t)− s

(
ai

bii

)
M

bii(t)
]

= −(s−1)
(

ai

bii

)
M

bii(t)ui(t).
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From (3.7), we have

u′i(t) � −(s−1) f̃−1
ii

((
ai

bii

)
M

)(
ai

bii

)
M

bii(t) < 0, t � t0.

Integrating the both sides on [t0,t] , it follows that

ui(t, t0,ξ0) � −(s−1) f̃−1
ii

((
ai

bii

)
M

)(
ai

bii

)
M

∫ t

t0
bii(s)ds− ξ0.

From (A2), and the fact that s > 1 and (ai/bii)M > 0, we have

ui(t,t0,ξ0) →−∞ as t → ∞;

but this is an obvious contradiction. That proves the claim.
Step 2. We fix ξ ∈ A . From Step 1, there exists some t∗ = tξ � t0 which satisfy

(3.6). Since s > 1, we choose ri so that

s

(
ai

bii

)
M

> ri >

(
ai

bii

)
M

, 1 � i � N.

Then by replacing t0 of Lemma 2.3 by t∗ , we have

f̃ii(ui(t,t0,ξ )) < s

(
ai

bii

)
M

, t � t∗ξ ,1 � i � N.

By continuity with respect to initial conditions, there exists a neighborhood Vξ of ξ
such that

f̃ii(ui(t∗ξ ,t0,η)) < s

(
ai

bii

)
M

, η ∈Vξ ,1 � i � N.

Thus, it follows that

f̃ii(ui(t,t0,η)) < s

(
ai

bii

)
M

, t � t∗ξ ,η ∈Vξ ,1 � i � N.

Since A ⊂ ⋃
ξ∈AVξ by compactness of A , there exist some points ξ1, . . . ,ξL ∈ A such

that

A ⊂
L⋃

k=1

Vξk
.

Hence, (3.5) holds by setting t̂A = max1�k�L{t∗ξk
} . Then the proof is completed.

Henceforth let t̂ denote the number given by (3.5) in Lemma 3.3. Then it imme-
diately leads to the following corollary from (A6).

COROLLARY 3.4. Let conditions (A1)-(A3) , (A4) and (A6) hold. Let A be a
compact subset of R

N
+ and t0 ∈ R , ξ0 ∈ A. Then, for all i,j=1,. . . , N,

fi j(ui(t,t0,ξ0),u j(t,t0,ξ0)) < s

(
a j

b j j

)
M

, t � t̂,ξ0 ∈ A. (3.8)
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It leads to the following lemma.

LEMMA 3.5. Let conditions (A1)-(A3) , (A4) and (A6) hold. Let A be a com-
pact subset of R

N
+ and let t0 ∈ R , ξ0 ∈ A. Then, for all i = 1, . . . ,N ,

f̃ii(ui(t,t0,ξ0)) � min{ f̃ii(ui(t̂,t0,ξ0)),α}, t � t̂,ξ0 ∈ A, (3.9)

where α is the number defined by (3.4) .

Proof. Step 1. First, we shall prove the following claim.
CLAIM. If there exist some T � t̂ , ξ0 ∈ A and i = 1, . . . ,N such that

0 < f̃ii(ui(T,t0,ξ0)) � α, (3.10)

then u′i(T, t0,ξ0) � 0.

In fact, from (3.3), (3.8) and (3.10), we have

u′i(T ) = ui(T )

[
ai(T )−∑

j �=i

bi j(T ) fi j(ui(T ),u j(T ))−bii(T ) f̃ii(ui(T ))

]

� ui(T )

[
ai(T )−∑

j �=i

bi j(T )s
(

a j

b j j

)
M

−αbii(T )

]

� ui(T )(αbii(T )−αbii(T )) � 0,

where ui(T ) = ui(T, t0,ξ0) , 1 � i � N . That proves the claim.
Step 2. We prove Lemma 3.5. The proof is devided into two cases.
Case 1. Let

0 < f̃ii(ui(t̂,t0,ξ0)) � α.

It suffices to show that for all t � t̂ , f̃ii(ui(t,t0,ξ0)) � f̃ii(ui(t̂,t0,ξ0)) .
Case 2. Let

f̃ii(ui(t̂,t,ξ0)) � α.

It sufficies to show that for all t � t̂ , f̃ii(ui(t,t0,ξ0)) � α .
In Case 1, we assume to the contrary that there exists some t̃ > t̂ such that β :=

f̃ii(ui(t̃, t0,ξ0)) < f̃ii(ui(t̂,t0,ξ0)) =: γ . We take t1 satisfying:

t1 := inf{t ∈ R | t > t̂, f̃ii(ui(t,t0,ξ0)) = β}.

Next we take t2 satisfying:

t2 := sup{t ∈ R | t̂ � t < t1, f̃ii(ui(t,t0,ξ0)) = γ}.

Since it follows that f̃ii(ui(t1,t0,ξ0)) < f̃ii(ui(t2,t0,ξ0)) and f̃ii(ui(t,t0,ξ0))
� α on [t2, t1] , from Step 1 u′i(t,t0,ξ0) � 0 on [t2,t1] . Hence, we have ui(t1, t0,ξ0) �
ui(t2, t0,ξ0) . By (1.1) f̃ii(ui(t1,t0,ξ0)) � f̃ii(ui(t2,t0,ξ0)) , which is a contradiction.
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In Case 2, we assume to the contrary that there exists some ť > t̂ such that η :=
f̃ii(ui(ť, t0,ξ0)) < α . We take t3 satisfying:

t3 := inf{t ∈ R | t > t̂, f̃ii(ui(t,t0,ξ0)) = η}.

Next we take t4 satisfying:

t4 := sup{t ∈ R | t̂ � t < t3, f̃ii(ui(t, t0,ξ0)) = α}.

Then f̃ii(ui(t3, t0,ξ0)) < f̃ii(ui(t4,t0,ξ0)) similarly to Case 1, we can get ui(t3,t0,ξ0) �
ui(t4, t0,ξ0) . By (1.1) f̃ii(ui(t3,t0,ξ0))� f̃ii(ui(t4,t0,ξ0)) , which is a contradiction. This
completes the proof.

From Lemma 3.5, we have an important lemma which will be employed to prove
Lemma 3.1.

LEMMA 3.6. Let conditions (A1)-(A3) , (A4) and (A6) hold. Let A be a com-
pact subset of R

N
+ and let t0 ∈ R . Let δ > 0 be a number such that δ < α . Then there

exists some t ′ = t ′A � t̂ such that,

f̃ii(ui(t,t0, ξ0)) > δ > 0, t � t ′, ξ0 ∈ A, 1 � i � N.

Proof. Step 1. First, we prove the following claim.
CLAIM. For ξ0 ∈ A and i = 1, . . . ,N , there exists some t ′i = t ′i,ξ0

such that

f̃ii(ui(t ′i ,t0,ξ0)) > δ . (3.11)

We assume to the contrary that there exists some ξ0 ∈ A and i = 1, . . . ,N such that

f̃ii(ui(t,t0,ξ0)) � δ < α, t � t̂.

For simplicity, we put u(t) = u(t,t0,ξ0) . Then, by (3.3) for t � t̂

u′i(t) = ui(t)

[
ai(t)−∑

j �=i

bi j(t) fi j(ui(t),u j(t))−bii(t) f̃ii(ui(t))

]

� ui(t)

[
ai(t)−∑

j �=i

bi j(t)s
(

a j

b j j

)
M

− δbii(t)

]

� ui(t)(αbii(t)− δbii(t)) = (α− δ )ui(t)bii(t).

Since it follows from the above inequality that u′i � 0 on [t̂,∞) , we get

ui(t) � ui(t̂) =: C+ > 0, t � t̂.

Thus, since δ < α ,
u′i(t) � C+(α− δ )bii(t) > 0, t � t̂,



NONAUTONOMOUS LOTKA-VOLTERRA MODEL 461

integrating both of sides on [t̂,t] , gives

ui(t) � C+(α− δ )
∫ t

t̂
bii(s)ds−C+.

From (A2), it follows that ui(t,t0,ξ0) → ∞ as t → ∞ , which is a contradiction. That
proves the claim.

Step 2. We fix ξ0 ∈ A and i = 1, . . . ,N . From Step 1, there exists some t ′i =
t ′i,ξ0

� t̂ satisfy (3.11). Since δ < min{ f̃ii(ui(t ′i ,t0,ξ0)),α} and t ′i � t̂ , we can claim the
following:
CLAIM. For t � t ′i ,

f̃ii(ui(t,t0,ξ0)) > δ .

In fact, by t ′i � t̂ , we have (3.8) for t � t ′i . Therefore similarly to the proof of
Lemma 3.5, we have

f̃ii(ui(t,t0,ξ0)) � min{ f̃ii(ui(t ′i ,t0,ξ0)),α} > δ

for t � t ′i . That proves the claim. Here we set t ′(ξ0) = max1�i�n{t ′i,ξ0
} . Then

f̃ii(ui(t,t0,ξ0)) > δ > 0, t � t ′(ξ0),1 � i � N.

Therefore similarly to the proof of Lemma 3.3, from the compactness of A , there exists
t ′A � t̂ such that

f̃ii(ui(t,t0,ξ0)) > δ , t � t ′A,ξ0 ∈ A,1 � i � N.

Then the proof is completed.

By employing Lemma 3.6, we shall prove Lemma 3.1.

PROOF OF LEMMA 3.1 Firstly, we take the number tA given in Lemma 3.6. Let
us set

r := max
1�i�N

{
s

(
ai

bii

)
M

}
.

Then
0 < δ < f̃ii(ui(t,t0,ξ0)) < r, t � tA,ξ ∈ A,1 � i � N,

where s , δ are the numbers appearing in Proposition 3.2 and Lemma 3.6. Then it
follows that

0 < f̃−1
ii (δ ) < ui(t,t0,ξ0) < f̃−1

ii (r), t � tA,ξ0 ∈ A,1 � i � N.

Hence we have

0 < δ ′ < ui(t,t0,ξ0) < r′ t � tA,ξ0 ∈ A,1 � i � N

by setting
δ ′ := min

1�i�N
{ f̃−1

ii (δ )}, r′ := max
1�i�N

{ f̃−1
ii (r)}.

This completes the proof. �
From Proposition 2.1 and Lemma 3.1, we can prove Theorem 1.4.
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4. Proof of Theorem 1.5

From Remark 2.2, in order to prove Theorem 1.5, it is sufficient to prove the
following lemma.

LEMMA 4.1. Let conditions (A1)-(A3) , (A5) and (A7) hold. Let A be a com-
pact subset of R

N
+ and let t0 ∈ R . Then there exist some numbers δA > 0 , r > 0 and

tA � t0 such that
δA < ui(t) < r, t � tA, 1 � i � N.

We give several lemmas which are employed in proving Lemma 4.1. Firstly from
(A5), there exists some number ε > 0 such that for all t � t0 and i = 1, . . . ,N ,

ai(t)−∑
j �=i

bi j(t) fi j

(
f̃−1
ii

((
ai

bii

)
M

)
, f̃−1

j j

((
a j

b j j

)
M

))
� εbii(t). (4.1)

Therefore we have the following proposition.

PROPOSITION 4.2. There exists some number s > 1 such that

sε− (s−1)
(

ai

bii

)
M

> 0, 1 � i � N.

Therefore, if we put

α ≡ min
1�i�N

{
sε− (s−1)

(
ai

bii

)
M

}
> 0, (4.2)

then for all t � t0 and i = 1, . . . ,N ,

ai(t)−∑
j �=i

bi j(t)s fi j

(
f̃−1
ii

((
ai

bii

)
M

)
, f̃−1

j j

((
a j

b j j

)
M

))
� αbii(t). (4.3)

Proof. Similarly to Proposition 3.2, we can prove the proposition. �
Henceforth let s and α denote the numbers given in Proposition 4.2. Inequality

(4.3) corresponds to inequality (3.3). Now we recall that conditions (A1)-(A3) and (A4)
imply Lemma 3.3. Hence under conditions (A1)-(A3) and (A5) we can obtain the same
results as in Lemma 3.3. That is,

LEMMA 4.3. Let conditions (A1)-(A3) and (A5) hold. Let A be a compact sub-
set of R

N
+ and let t0 ∈ R . Let u(t,t0,ξ0) be a solution of (GLV ) with ξ0 ∈ A. Then

Lemma 3.3 are still valid, where s is the number given by Proposition 4.2.

Henceforth let t̂ = t̂A denote the number satisfying

f̃ii(ui(t,t0,ξ0)) < s

(
ai

bii

)
M

, t � t̂, ξ0 ∈ A, 1 � i � N,

where A is compact. Then it immediately leads to the following corollary from (A7).
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COROLLARY 4.4. Let conditions (A1)-(A3) , (A5) and (A7) hold. Let A be a
compact subset of R

N
+ and t0 ∈R , ξ0 ∈A. Then for all t � t̂ , ξ0 ∈A and i, j = 1, . . . ,N ,

fi j(ui(t, t0,ξ0),u j(t,t0,ξ0)) < s fi j

(
f̃−1
ii

(
ai

bii

)
M

, f̃−1
j j

(
a j

b j j

)
M

)
. (4.4)

Proof. We fix ξ0 ∈ A and j = 1, . . . ,N . Then it follows, from Lemma 4.3, that

u j(t,t0,ξ0) < f̃−1
j j

(
s

(
a j

b j j

)
M

)
, t � t̂.

This completes the proof by (A7).

Corollary 4.4 corresponds to Corollary 3.4. We recall that Corollary 3.4 implies
Lemmas 3.5 and 3.6. Hence, under conditions (A1)-(A3), (A5) and (A7), we can obtain
the same results as in Lemmas 3.5 and 3.6, as seen below:

LEMMA 4.5. Let conditions (A1)-(A3) , (A5) and (A7) hold. Let A be a com-
pact subset of R

N
+ and let t0 ∈ R , ξ0 ∈ A. Then for all i = 1, . . . ,N , (3.9) is still valid,

where α is the number defined by (4.2) .

Proof. First we will prove the following claim.
CLAIM. If there are T � t̂ , ξ0 ∈ A and i = 1,2 . . . ,N satisfying (3.10) , then

u′i(T,t0,ξ0) � 0.

In fact, from (4.3), (4.4) and (3.10), we have

u′i(T ) = ui(T )

[
ai(T )−∑

j �=i

bi j(T ) fi j(ui(T ),u j(T ))−bii(T ) f̃ii(ui(T ))

]

� ui(T )

[
ai(T )−∑

j �=i

bi j(T )s fi j

(
f̃−1
ii

(
ai

bii

)
M

, f̃−1
j j

(
a j

b j j

)
M

)
−αbii(T )

]

� ui(T )(αbii(T )−αbii(T )) � 0,

where ui(T ) = ui(T, t0,ξ0) , 1 � i � N . That proves the claim.
The remainder of the proof proceeds as in the proof of Lemma 3.5.

LEMMA 4.6. Let conditions (A1)-(A3) , (A5) and (A7) hold. Let A be a com-
pact subset of R

N
+ and let t0 ∈ R . Let δ > 0 be a number such that δ < α . Then

Lemma 3.6 are still valid.

Proof. We only give the sketch of the proof of (i).
To show our statement by contradiction suppose to the contrary that

f̃ii(ui(t,t0,ξ0)) � δ < α, t � t̂
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for some ξ0 ∈ A and i = 1, . . . ,N . For simplicity we put u(t) = u(t, t0,ξ0) . Then, by
(4.3) and (4.4)

u′i(t) = ui(t)

[
ai(t)−∑

j �=i

bi j(t) fi j(ui(t),u j(t))−bii(t) f̃ii(ui(t))

]

� ui(t)

[
ai(t)−∑

j �=i

bi j(t)s fi j

(
f̃−1
ii

(
ai

bii

)
M

, f̃−1
j j

(
a j

b j j

)
M

)
− δbii(t)

]

� ui(t)(αbii(t)− δbii(t)) = (α− δ )ui(t)bii(t), t � t̂.

Hence we can get a contradiction as in the proof of Lemma 3.6.

By the above lemmas we can prove Lemma 4.1, and so we can prove Theorem
1.5.
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