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ON THE SOLVABILITY OF NONLINEAR

BOUNDARY VALUE PROBLEMS

JESÚS RODRÍGUEZ AND KRISTEN KOBYLUS ABERNATHY

(Communicated by J. M. Davis)

Abstract. The focus of this paper is the study of nonlinear differential equations subject to gen-
eral boundary conditions. We formulate sufficient conditions for the existence of solutions based
on the dimension of the solution space of the corresponding linear, homogeneous equation and
the ”size” of the nonlinear terms. Our approach is based on the Lyapunov-Schmidt Procedure
(Alternative Method).

1. Introduction

In this paper, we consider boundary value problems of the form

y(n)(t)+ · · ·+a1(t)y′(t)+a0(t)y(t) = f (y(t))+ (Gy)(t), 0 � t � 1, (1)

subject to

b11y(0)+ · · ·+b1ny
(n−1)(0)+d11y(1)+ · · ·+d1ny

(n−1)(1) = 0,

b21y(0)+ · · ·+b2ny
(n−1)(0)+d21y(1)+ · · ·+d2ny

(n−1)(1) = 0,

...

bn1y(0)+ · · ·+bnny
(n−1)(0)+dn1y(1)+ · · ·+dnny

(n−1)(1) = 0.

(2)

We assume that f : R → R is continuous and that the limits f (∞) and f (−∞)
exist. The map G : (C ([0,1],R),‖ ·‖∞)→ (C ([0,1],R),‖ ·‖∞) is nonlinear and contin-
uous. We concern ourselves with problems where the corresponding linear, homoge-
neous boundary value problem

y(n)(t)+ · · ·+a1(t)y′(t)+a0(t)y(t) = 0 (3)

subject to (2) has a one dimensional solution space. For such problems, we provide
sufficient conditions for the existence of solutions to (1)-(2). These conditions are based
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on the limiting behavior of the real valued function f , the properties of the solution
space of the linear homogeneous boundary value problem (3)-(2), and the ”size” of the
nonlinear map G. It is significant to observe that the results we obtain may be applied
to boundary value problems for integro-differential equations of the form

y(n)(t)+ · · · +a1(t)y′(t)+a0(t)y(t) = f (y(t))+
∫ 1

0
k(t,s)g(t,y(s))ds, 0 � t � 1,

subject to (2) as well as to classical boundary value problems of the form

y(n)(t)+ · · ·+a1(t)y′(t)+a0(t)y(t) = f (y(t))+g(t,y(t)), 0 � t � 1,

subject to (2).
Our approach is based on the Lyapunov-Schmidt Procedure (Alternative Method).

The results we present here allow us to establish the solvability of boundary value prob-
lems that do not fall within the scope of the results previously obtained by Rodrı́guez
and Taylor [20]. Ideas and techniques similar to the ones we use in this paper have
been successfully applied to the study of periodic behavior in discrete and continuous
dynamical systems [3], [5], [6], [8], [10], [21] boundary value problems for differential
and difference equations [1], [7], [12], [13], [15]-[20], and more general systems [2],
[22].

2. Preliminaries

In order to analyze the boundary value problem (1)-(2), we formulate it in system
form. The matrix A(t) is defined by

A(t) =

⎡
⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

−an(t) −an−1(t) −an−2(t) · · · −a1(t)

⎤
⎥⎥⎥⎦ .

The vector

x =

⎡
⎢⎣

x1
...
xn

⎤
⎥⎦

is given by x1 = y, x2 = y′, · · · , xn = y(n−1) and the boundary matrices B , D are

B =

⎡
⎢⎢⎢⎣

b11 b12 b13 · · · b1n

b21 b22 b23 · · · b2n
...

. . .
...

bn1 bn2 bn3 · · · bnn

⎤
⎥⎥⎥⎦ and D =

⎡
⎢⎢⎢⎣

d11 d12 d13 · · · d1n

d21 d22 d23 · · · d2n
...

. . .
...

dn1 dn2 dn3 · · · dnn

⎤
⎥⎥⎥⎦ .
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It is clear that the boundary value problem (1)-(2) is equivalent to

ẋ(t) = A(t)x(t)+

⎡
⎢⎢⎢⎣

0
0
...

f (x1(t))

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0
0
...

G(x1(t))

⎤
⎥⎥⎥⎦ ,0 � t � 1, (4)

subject to
Bx(0)+Dx(1) = 0. (5)

Throughout the paper we will assume that f : R → R is continuous and that it has
finite limits at ∞ and −∞. We write

f (∞) = lim
s→∞

f (s)

and
f (−∞) = lim

s→−∞ f (s).

For any integer p � 1 the space (C ([0,1],Rp),‖ · ‖∞) will denote {φ : [0,1] → R
p :

φ is continuous}. The norm used on this space is the sup norm; this is,

‖φ‖∞ = sup{|φ(t)| : 0 � t � 1},

where | · | denotes the Euclidean norm on R
p.

The map G : (C ([0,1],R),‖ · ‖∞) → (C ([0,1],R),‖ · ‖∞) is continuous and there
exists an M such that for any φ ∈ (C ([0,1],R),‖ · ‖∞) ,

sup{|G(φ(t))| : 0 � t � 1} � M < ∞.

So as to be able to use functional analytic ideas we introduce the following notation.
The space

X = {x ∈ (C ([0,1],Rn),‖ · ‖∞) : Bx(0)+Dx(1) = 0}
and F : X → (C ([0,1],Rn),‖ · ‖∞) is defined by

(Fx)(t) =

⎡
⎢⎢⎢⎣

0
0
...

f (x1(t))

⎤
⎥⎥⎥⎦ ,

and G : X → (C ([0,1],Rn),‖ · ‖∞) is given by

(G x)(t) =

⎡
⎢⎢⎢⎣

0
0
...

G(x1(t))

⎤
⎥⎥⎥⎦ .
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It is obvious that F and G are continuous maps from X into (C ([0,1],Rn),‖·‖∞) and
that sup{‖F (x)‖∞ : x ∈ X} and sup{‖G (x)‖∞ : x ∈ X} are both finite.

We define the operator L : D(L) → (C ([0,1],Rn),‖ · ‖∞) by (Lx)(t) = ẋ(t) −
A(t)x(t) where D(L) consists of the continuously differentiable functions in X . It is
evident that the boundary value problem (1)-(2) is equivalent to

Lx = F (x)+G (x). (6)

Since the properties of the solution space of the linear homogeneous boundary
value problem (3)-(2) play a role in the solvability of (1)-(2), we must first consider the
linear problem Lx = 0.

PROPOSITION 2.1. Lx = 0 if and only if x(t) = Γ(t)v, where Γ(t) is the principal
matrix solution of ẋ(t) = A(t)x(t) and v ∈ ker(B+DΓ(1)).

Proof. Lx = 0 if and only if

ẋ(t)−A(t)x(t) = 0 and Bx(0)+Dx(1) = 0

if and only if

x(t) = Γ(t)C for some C and BΓ(0)C+DΓ(1)C = 0

if and only if [B+DΓ(1)]C = 0 if and only if C ∈ ker(B+DΓ(1)) . �

COROLLARY 2.2. ker(B+DΓ(1)) and ker(L) have the same dimension.

It is well documented that solutions of

ẋ(t) = A(t)x(t)+h(t)

are given by the variation of constants formula

x(t) = Γ(t)x(0)+Γ(t)
∫ t

0
Γ−1(s)h(s)ds.

PROPOSITION 2.3. Lx = h if and only if x is given by the variation of constants
formula above, where x(0) must satisfy

[B+DΓ(1)]x(0) = −DΓ(1)
∫ 1

0
Γ−1(s)h(s)ds.

Proof. Lx = h if and only if

x(t) = Γ(t)x(0)+Γ(t)
∫ t

0
Γ−1(s)h(s)ds

and
Bx(0)+Dx(1) = 0
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if and only if

Bx(0)+D[Γ(1)x(0)+Γ(1)
∫ 1

0
Γ−1(s)h(s)ds] = 0

if and only if

[B+DΓ(1)]x(0) = −DΓ(1)
∫ 1

0
Γ−1(s)h(s)ds. �

COROLLARY 2.4. L is a bijection on D(L) if and only if (B+DΓ(1)) is invert-
ible.

3. The Case of Invertible L

It should be observed that if L is invertible and the nonlinearities f and G are
bounded, it is straightforward to establish the existence of solutions of (1)-(2). In fact,
(1)-(2) is solvable if and only if the operator L−1(F + G ) has a fixed point. The
existence of such a fixed point is an immediate consequence of Schauder’s Theorem
once we observe that L−1(F +G ) is compact.

4. The Case of Singular L

Since the existence of solutions is relatively straightforward when L is invertible,
the more interesting case is when ker(L) or, equivalently, ker(B+DΓ(1)) is nontrival.
In this paper, we consider the case when the dimension of ker(L) is one. For the
reader’s convenience, we offer a self-contained presentation of the basic ideas of the
Lyapunov-Schmidt reduction. These ideas have been applied to a large class of prob-
lems in differential and difference equations [3], [6], [7], [8], [12]-[20]. For an abstract
formulation and for a vast number of applications, we refer the reader to [4], [5], [9].

We know that Lx = 0 if and only if x(t) = Γ(t)v, where v ∈ ker(B + DΓ(1)).
We now wish to examine when Lx = h has a solution. According to Proposition 2.3,
h ∈ Im(L) if and only if there is some x0 ∈ R

n such that

[B+DΓ(1)]x0 = −DΓ(1)
∫ 1

0
Γ−1(s)h(s)ds;

that is, if and only if

∫ 1

0
DΓ(1)Γ−1(s)h(s)ds ∈ Im(B+DΓ(1)).

Since Im(B+DΓ(1)) = [ker(B+DΓ(1))T ]⊥, h ∈ Im(L) if and only if

WT
∫ 1

0
DΓ(1)Γ−1(s)h(s)ds = 0,
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where the columns of the n by n matrix W form a basis for ker(B+DΓ(1))T .
We define

ΨT (t) = WT DΓ(1)Γ−1(t).

By the argument outlined above, Lx = h if and only if
∫ 1
0 ΨT (t)h(t)dt = 0.

Since L is not invertible, we can’t apply the Schauder Fixed Point Theorem di-
rectly. We will use the splittings of D(L) and (C ([0,1],Rn),‖ · ‖∞) typically used in
the Lyapunov-Schmidt procedure.

We find projections, P, of D(L) onto ker(L), and E, of (C ([0,1],Rn),‖ ·‖∞) onto
Im(L), so that we may write

D(L) = ker(L)⊕ Im(I−P) and (C ([0,1],Rn),‖ · ‖∞) = Im(L)⊕ Im(I−E).

Let Φ(t) = Γ(t)V where the vector V forms a basis for ker(B+DΓ(1)). Let

C1 =
∫ 1

0
ΦT (t)Φ(t)dt

and

C2 =
∫ 1

0
ΨT (t)Ψ(t)dt.

PROPOSITION 4.1. C1 is invertible and C2 is invertible when [B : D] has full
rank.

Proof. To show C1 is invertible, assume C1a = 0 and define q(t) = Φ(t)a. Then
aTC1a =

∫ 1
0 qT (t)q(t)dt = 0 which implies q(t)= 0 for all t ∈ [0,1]. This implies a = 0

because Φ(t) is a nonzero vector.
To show C2 is invertible, we need to show the columns of ΨT (t) are linearly

independent. Let ΨT
j (t) be the jth column of ΨT (t). If [B : D] has full rank, a ∈

ker(BT ) and a ∈ ker(DT ) implies a = 0. Now,

c1ΨT
1 (t)+ c2ΨT

2 (t) = 0

if and only if
(c1,c2)D = 0

if and only if
(c1,c2)T ∈ ker(DT ).

Since
(c1,c2)T ∈ ker[B+DΓ(1)]T , (c1,c2)T ∈ ker(BT )

and hence (c1,c2)T = (0,0).
Let

(I−E)x(t) = Ψ(t)C−1
2

∫ 1

0
ΨT (s)x(s)ds,

and

Px(t) = Φ(t)C−1
1

∫ 1

0
ΦT (s)x(s)ds.
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For the reader’s convenience, we have presented a detailed construction of the projec-
tions onto the ker(L) and Im(L). For the case of periodic boundary conditions, we
refer the reader to D.C. Lewis [11]; for discrete boundary value problems, we suggest
Rodrı́guez [14]. Although the projections we have constructed here are a special case
of those that appear in Spealman and Sweet [22] and Rodrı́guez and Taylor [20], we
have chosen present this construction due to the fact that we do not need to appeal to
the full generality of the results mentioned previously.

We now use the standard techniques of the Lyapunov-Schmidt method to analyze
Lx = F (x)+G (x).

REMARK 4.2. If L̃ is the restriction of L to Im(I−P) then Im(L̃) = Im(L). L̃,
viewed as a map from Im(I −P) into Im(L) is invertible. We denote (L̃)−1 by M.
From this, it follows that MLx = (I−P)x. Later, we will use the obvious fact that M is
compact.

PROPOSITION 4.3. Lx = F (x)+G (x) is equivalent to
⎧⎨
⎩

x = Px+MEF (x)+MEG (x)
and

(I−E)F (Px+ME(F (x)+G (x)))+ (I−E)G (Px+ME(F (x)+G (x))) = 0.

Proof. We have Lx = F (x)+G (x) if and only if
⎧⎨
⎩

E(Lx− (F (x)+G (x))) = 0
and

(I−E)(Lx− (F (x)+G (x))) = 0,

if and only if ⎧⎨
⎩

Lx = E(F (x)+G (x))
and

(I−E)(F (x)+G (x)) = 0,

if and only if ⎧⎨
⎩

(I−P)x = ME(F (x)+G (x))
and

(I−E)(F (x)+G (x)) = 0,

if and only if
⎧⎨
⎩

x = Px+ME(F (x)+G (x))
and

(I−E)(F (Px+ME(F (x)+G (x)))+G (Px+ME(F (x)+G (x)))) = 0.

We have limited our presentation of the Lyapunov-Schmidt Procedure to only
those aspects necessary for the problem at hand. This approach, as well as its gen-
eralization, the Alternative Method, is well documented [2]-[5], [9], [12], [13], [15],
[17]. For those interested in the study of periodicity, in either discrete or continuous



494 JESÚS RODRÍGUEZ AND KRISTEN KOBYLUS ABERNATHY

dynamical systems, we suggest [3], [5], [6], [8], [10], [21]. For applications in the field
of discrete boundary value problems, the reader may consult [7], [14], [16], [18], [19].
An abstract and very general presentation appears in [2], [5], [9].

5. Main Results

The conditions of 4.3 may be rewritten as
⎧⎪⎪⎨
⎪⎪⎩

x = αΦ(t)+MEF (x)+MEG (x)
and

0 =
∫ 1
0 Ψ2(t) f (αΦ1(t)+ [ME(F (x)+G (x))]1(t))dt +

∫ 1
0 Ψ2(t)G(αΦ1(t)

+[ME(F (x)+G (x))]1(t))dt,

where Φi(t), Ψi(t), and [ME(F (x)+G (x))]i(t) are the ith entries of Φ(t), Ψ(t), and
αΦ(t)+ME(F (x)+G (x))(t), respectively.

We will assume that there are finite numbers, which we designate f (∞) and
f (−∞), such that

lim
r→∞

f (r) = f (∞)

and
lim

r→−∞ f (r) = f (−∞).

We define J1 and J2 as

J1 = f (∞)
∫
{t∈[0,1]:Φ1(t)>0}

Ψ2(t)dt + f (−∞)
∫
{t∈[0,1]:Φ1(t)<0}

Ψ2(t)dt

and
J2 = f (−∞)

∫
{t∈[0,1]:Φ1(t)>0}

Ψ2(t)dt + f (∞)
∫
{t∈[0,1]:Φ1(t)<0}

Ψ2(t)dt.

THEOREM 5.1. Suppose that:

1. dim(ker(B+DΓ(1))) = 1 where Γ(t) is the principal matrix solution of ẋ(t) =
A(t)x(t);

2. [B : D] has full rank;

3. f : R → R is continuous;

4. f (∞) and f (−∞) exist;

5. J1J2 < 0;

6. G : (C ([0,1],R),‖ · ‖∞) → (C ([0,1],R),‖ · ‖∞) is continuous and

sup{‖G(w)‖ : w ∈ (C ([0,1],R),‖ · ‖∞)} � min{|J1|, |J2|}.
Then there exists at least one solution of

y(n) +a1(t)y(n−1) + · · ·+an−1(t)y′ +an(t)y = f (y(t))+ (Gy)(t)
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that satisfies

b11y(0)+ · · ·+b1ny
(n−1)(0)+d11y(1)+ · · ·+d1ny

(n−1)(1) = 0,

b21y(0)+ · · ·+b2ny
(n−1)(0)+d21y(1)+ · · ·+d2ny

(n−1)(1) = 0,

...

bn1y(0)+ · · ·+bnny
(n−1)(0)+dn1y(1)+ · · ·+dnny

(n−1)(1) = 0.

Proof. Let J = min{|J1|, |J2|}. We define mappings:

H1 : R× (C ([0,1],Rn),‖ · ‖∞) → (C ([0,1],Rn),‖ · ‖∞),
H2 : R× (C ([0,1],Rn),‖ · ‖∞) → R,

H : R× (C ([0,1],Rn),‖ · ‖∞) → R× (C ([0,1],Rn),‖ · ‖∞),

by

H1(α,x) = αΦ(t)+MEF (x)+MEG (x),

H2(α,x) = α−
(∫ 1

0
Ψ2(t) f (αΦ1 +[ME(F (x)+G (x))]1(t))dt

+
∫ 1

0
Ψ2(t)G(αΦ1 +[ME(F (x)+G (x))]1(t))dt

)
,

and
H(α,x) = (H1(α,x),H2(α,x)).

Since {t :Φ1(t) = 0} has Lebesgue measure zero, it follows that

∫ 1

0
Ψ2(t) f (αΦ1(t)+ [ME(F (x)+G (x))]1(t))dt

=
∫
{t∈[0,1]:Φ1(t)>0}

Ψ2(t) f (αΦ1 +[ME(F (x)+G (x))]1(t))dt

+
∫
{t∈[0,1]:Φ1(t)<0}

Ψ2(t) f (αΦ1 +[ME(F (x)+G (x))]1(t))dt.

Since ME(F +G ) is bounded, by the Lebesgue Dominated Convergence Theorem,

lim
α→∞

∫ 1

0
Ψ2(t) f (αΦ1(t)+ [ME(F (x)+G (x))]1(t))dt

= f (∞)
∫
{t∈[0,1]:Φ1(t)>0}

Ψ2(t)dt + f (−∞)
∫
{t∈[0,1]:Φ1(t)<0}

Ψ2(t)dt

= J1.

Similarly,

lim
α→−∞

∫ 1

0
Ψ2(t) f (αΦ1(t)+ [ME(F (x)+G (x))]1(t))dt
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= f (−∞)
∫
{t∈[0,1]:Φ1(t)>0}

Ψ2(t)dt + f (∞)
∫
{t∈[0,1]:Φ1(t)<0}

Ψ2(t)dt

= J2.

Without loss of generality, we assume J2 < 0 < J1.
Assuming that Ψ2(t) is not identically zero, we can choose our basis for ker(B+

DΓ(1))T so that ‖Ψ‖∞ � 1. Therefore, there is some α0 � m where m = sup{| f (t)| :
t ∈ R} such that for all α � α0,

∫ 1

0
Ψ2(t) f (αΦ1(t)+ [ME(F (x)+G (x))]1(t))dt � J

and ∫ 1

0
Ψ2(t) f (−αΦ1(t)+ [ME(F (x)+G (x))]1(t))dt � −J.

Since
|G(αΦ1 +[ME(F (x)+G (x))]1(t))| � J

for all t ∈ R, for α � α0 and x ∈ (C ([0,1],Rn),‖ · ‖∞),

H2(α,x) = α−
(∫ 1

0
Ψ2(t) f (αΦ1 +[ME(F (x)+G (x))]1(t))dt

+
∫ 1

0
Ψ2(t)G(αΦ1 +[ME(F (x)+G (x))]1(t))dt

)

� α− (J− J) = α.

Similarly, for α � α0 and x ∈ (C ([0,1],Rn),‖ · ‖∞), H2(−α,x) � −α.
Letting δ = α0 +(m+ J), define

B = {(α,x) ∈ R× (C ([0,1],Rn),‖ · ‖∞)
: |α| � δ and ‖x‖∞ � δ‖Φ‖∞+‖ME‖(m+ J)}.

Here, ‖ME‖ denotes the operator norm of the bounded, linear map ME.
Note that ‖MEF (x)‖∞ � ‖ME‖m and ‖MEG (x)‖∞ � ‖ME‖J for every x ∈

(C ([0,1],Rn),‖ · ‖∞).
Now if α ∈ [α0,δ ], for all x ∈ (C ([0,1],Rn),‖ · ‖∞), we have

H2(α,x) = α−
(∫ 1

0
Ψ2(t) f (αΦ1(t)+ [ME(F (x)+G (x))]1(t)

)
dt

+
∫ 1

0
Ψ2(t)G(αΦ1(t)+ [ME(F (x)+G (x))]1(t))dt)

� α−
(∫ 1

0
|Ψ2(t)|| f (αΦ1(t)+ [ME(F (x)+G (x))]1(t))|dt

+
∫ 1

0
|Ψ2(t)||G(αΦ1(t)+ [ME(F (x)+G (x))]1(t))|dt

)

� α− (m+ J) � α−α0− J � −J � −δ
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and

H2(−α,x) = −α−
(∫ 1

0
Ψ2(t) f (αΦ1(t)+ [ME(F (x)+G (x))]1(t))dt

+
∫ 1

0
Ψ2(t)G(αΦ1(t)+ [ME(F (x)+G (x))]1(t))dt

)

� −α+
∫ 1

0
|Ψ2(t)|| f (αΦ1(t)+ [ME(F (x)+G (x))]1(t))|dt

+
∫ 1

0
|Ψ2(t)||G(αΦ1(t)+ [ME(F (x)+G (x))]1(t))|dt

� −α+(m+ J) � −α+α0 + J � J � δ .

Thus, for all x ∈ (C ([0,1],Rn),‖ · ‖∞) and α ∈ [α0,δ ],

H2(α,x), H2(−α,x) ∈ [−α,α] ⊆ [−δ ,δ ].

Furthermore, if 0 � α < α0, for all x ∈ (C ([0,1],Rn),‖ · ‖∞),

|H2(±α,x)| � |±α|+
∫ 1

0
|Ψ2(t)|| f (αΦ1(t)+ [ME(F (x)+G (x))]1(t))|dt

+
∫ 1

0
|Ψ2(t)||G(αΦ1(t)+ [ME(F (x)+G (x))]1(t))|dt

� α0 +(m+ J) � δ .

We have shown that H2 maps [−δ ,δ ]×(C ([0,1],Rn),‖·‖∞) into [−δ ,δ ] when Ψ2(t)
is not identically zero. However, if Ψ2(t) is identically zero, H2(α,x) = α and so
H2 will map [−δ ,δ ]× (C ([0,1],Rn),‖ · ‖∞) into [−δ ,δ ]. From this it follows that
H(B) ⊆ B. For if (α,x) ∈ B, then H2(α,x) ∈ [−δ ,δ ], while

|H1(α,x)| � |α||Φ|+‖ME(F (x)+G (x))‖∞
� δ‖Φ‖∞+‖ME‖m+‖ME‖J.

Since M is compact and E, F , and G are continuous and map bounded sets to bounded
sets, H is completely continuous. So, the completely continuous function H maps the
non-empty, closed, bounded, convex set B into itself. Hence, the Schauder Fixed Point
Theorem guarantees existence of at least one fixed point, x̃ , of H in B. For each such
x̃, ỹ = x̃1 is a solution of

y(n) +a1(t)y(n−1) + · · ·+an−1(t)y′ +an(t)y = f (y(t))+ (Gy)(t)

which satisfies

b11y(0)+ · · ·+b1ny
(n−1)(0)+d11y(1)+ · · ·+d1ny

(n−1)(1) = 0,

b21y(0)+ · · ·+b2ny
(n−1)(0)+d21y(1)+ · · ·+d2ny

(n−1)(1) = 0,

...

bn1y(0)+ · · ·+bnny
(n−1)(0)+dn1y(1)+ · · ·+dnny

(n−1)(1) = 0.
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6. Final Remarks

In the case of a classical boundary value problem of the form

y(n)(t)+ · · ·+a1(t)y′(t)+a0(t)y(t) = f (y(t))+g(t,y(t))

subject to (2), we can ensure solvability whenever

sup{|g(u,v)| : (u,v) ∈ R
2} � min{|J1|, |J2|}.

Similarly, in the case of a integro-differential boundary value problem of the form

y(n)(t)+ · · · +a1(t)y′(t)+a0(t)y(t) = f (y(t))+
∫ 1

0
g(t,y(s))ds

subject to (2), we obtain the existence of solutions if

sup{|g(u,v)| : (u,v) ∈ R
2} � min{|J1|, |J2|}.
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[17] J. RODRÍGUEZ AND D. SWEET, Projection methods for nonlinear boundary value problems, J. Dif-
ferential Equations, 58 (1985), 282–293.
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