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Abstract. In this paper we study the following problem: −Δpu + |u|p−2u = k(x) f (u) + h(x) ,
x ∈ R

N , where u ∈W 1,p(RN) , u > 0 in R
N . Under appropriate assumptions on k , h and f ,

we prove that problem has at least two positive solutions.

1. Introduction

In this paper, we are concerned with the existence of positive solutions to the
following nonhomogeneous quasilinear elliptic equations,

{−Δpu+ |u|p−2u = k(x) f (u)+h(x), x ∈ R
N ,

u ∈W 1,p(RN), u > 0, in R
N , N � 3,

(1.1)

where Δpu = div(|∇u|p−2∇u) is the p -Laplacian operator, 1 < p < ∞ and k is a pos-
itive bounded function, h ∈ Lp∗(RN),h � 0,h �≡ 0 and the function f satisfies the fol-
lowing conditions:

(H1) f ∈C(R,R+), f (0) = 0 and f (t) ≡ 0 if t < 0;
(H2) lim

t→0
f (t)/t p−1 = 0;

(H3) there exists δ ∈ (p−1, N+p
N−p) such that lim

t→∞
f (t)/tδ = 0;

(H4) lim
t→∞

f (t)/t p−1 = l � +∞ .

For p = 2,h �≡ 0, the existence of positive solutions to the following nonhomoge-
neous semilinear elliptic equations,

{−Δu+u = k(x) f (u)+h(x), x ∈ R
N ,

u ∈ H(RN),u > 0, in R
N , N � 3,

has been studied by many authors, see [11, 19, 22-23] and the references therein. For
p = 2, h ≡ 0, that is the homogeneous case, has been studied extensively in the last
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decade, see [12, 15, 17] and the references therein. Still in [14] and [16], the authors
consider the equations −Δu = h(x)up + f (x,u) and −Δu +V(x)u(x) = K(x) f (u) re-
spectively, they all obtain the existence of the solution to the problem.

For h ≡ 0, p > 1, the existence and uniqueness of the positive solutions for the
quasilinear elliptic equation with eigenvalue problems,{

Δpu+λ f (u) = 0 in Ω,
u(x) = 0 on ∂Ω,

(1.2)

with λ > 0, p > 1, Ω ⊂ R
N , N � 2 have been studied by many authors, see [1-2, 5-

10, 20-21] and the references therein. When f is strictly increasing on R
+ , f (0) = 0,

lims→0+ f (s)/sp−1 = 0 and f (s) � α1 +α2sμ ,0 < μ < p−1,α1,α2 > 0, it was shown
in [7] that there exists at least two positive solutions for Eqs (1.2) when λ is suffi-
ciently large. If lims→0+ inf f (s)/sp−1 > 0, f (0) = 0 and the monotonicity hypothesis
( f (s)/sp−1)′ < 0 holds for all s > 0, it was proved in [8] that the problem (1.2) has
a unique positive solution when λ is sufficiently large. Moreover, it was also shown
in [9] that problem (1.2) has a unique positive large solution and at least one positive
small solution when λ is large if f is nondecreasing; there exists α1,α2 > 0 such that
f (s) � α1 +α2sβ , 0 < β < p− 1; lims→0+

f (s)
sp−1 = 0, and there exists T,Y > 0 with

Y � T such that
( f (s)/sp−1)′ > 0 for s ∈ (0,T )

and
( f (s)/sp−1)′ < 0 for s > Y.

Recently, Hai [10] considered the case when Ω is an annular domain, and obtained
the existence of positive large solutions for the problem (1.2) when λ sufficiently small.
Xuan & Chen proved in [20] the singular problem (1.2) has a unique positive radial
solution if f is a continuous function and positive on Ω= BR (here BR is a ball).

Moreover, it was also shown in [21] that problem

Δpu+q(x)u−γ = 0, x ∈ R
N

has a positive entire solution if q ∈C(R+),0 � γ < p−1,
∫ ∞

1
rp+ε−1+[(N−p)|γ|/(p−1)]q(r)dr < ∞,

0 < ε < (N− p)(p−1−|γ|)/(p−1),

and for r ∈ (0,1) , δ < 1, q(r) = O(r−δ ) .
Still in [3], the authors studied the existence of nontrivial solutions for the problem

−Δpu+ |u|p−2u = 0

in a bounded smooth domain Ω ⊂ RN with a nonlinear boundary condition by varia-
tional and topological argument, and the authors in reference [18] obtained ground and
bound state solution of quasilinear equation

−Δpu+V(x)|u|p−2u = f (x,u)
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with unbounded or decaying radial potential.
To the author’s knowledge, it seems that there are few results for nonhomoge-

neous problem (1.1). Only more recently, in [13], Yun-Ho Kim studied the following
boundary value problem with a nonhomogeneous principal part φ :

−div(φ(∇u)∇u) = μ0|u|p−2u+q(λ ,x,u,∇u) in Ω

with the dirichlet boundary condition under certain assumptions on φ and q when μ0

is not an eigenvalue of the p-laplacian. The author showed a bifurcation result on a
noncompact component of solutions for the above nonlinear equation. Motivated by
the results of the above cited papers, we study the existence of two positive solutions of
problem (1.1) under the condition (H1)-(H4) and some further assumption on h , the
results of the semilinear equations are extended to the quasilinear ones. We modify the
methods developed in [19, 23] and extend the results of [19] to a quasilinear elliptic
equation (1.1).

We consider the following energy function I : W 1,p(RN) → R defined by:

I(u) =
1
p

∫
RN

(|∇u|p + |u|p)dx−
∫

RN
k(x)F(u)dx−

∫
RN

h(x)udx, (1.3)

where F(u) =
∫ u
0 f (s)ds . It is known that a critical point of I is a weak solution of

problem (1.1). By (H1) and the strong maximum principle, we see that a nontrivial
weak solution of problem (1.1) is indeed a positive solution. By the Ekeland’s varia-
tional principle [4] it is not difficult to get a weak solution u0 for |h|Lp∗ suitably small.
Moreover, u0 is the local minimizer of I and I(u0) < 0. However, under our assump-
tions which without the monotonicity of f (t) and f (t)/t p it seems difficult to get a
second solution (different from u0 of (1.1) by applying the Mountain Pass Theorem
as the mentioned reference), we have to find new ways to show that a (PS) sequence
is bounded in W 1,p(RN) . On the other hand , once a (PS) sequence is bounded in
W 1,p(RN) , the usual strategy is trying to show this sequence converges to a different
solution from u0 , but this still seems not so easy under our assumption. Motivated by
[19] here we study the problem (1.1) by the following two cases:

(A) l < +∞; and (B) l = +∞.

Noted that in both cases, we do not require that f (t)
t p−1 and f (t) are nondecreasing in

t � 0.
In case (A), by using the fact l < +∞ , we can prove that the (PS) sequence ob-

tained by mountain pass theorem converges strongly in W 1,p(RN) to a solution u1 of
(1.1) with I(u1) > 0 then it is clear that u1 �= u0 .

In case (B), the method for case (A) does not work any more. For proving a
(PS) sequence converge to a different solution from u0 , we simply suppose that k(x)≡
1 and seek the solution in W 1,p

r (RN) , otherwise, we have to use the concentration
compactness principle to show that the related (PS) sequence converges strongly in
W 1,p(RN) which is complicated and some more assumptions on k and f are required.

This paper is organized as follows. In section 2, we give the main results. In
section 3, we give the proofs of the main theorems.



504 JING MO AND ZUODONG YANG

2. The main results of this paper

By modifying the methods developed in [19, 23], we obtain the next theorems.

THEOREM 2.1. Suppose that h ∈ Lp∗(RN) , p∗ = p
p−1 , h � 0 , h �≡ 0 and k ∈

L∞(RN , R
+) satisfies,

(K) there exists R0 > 0 such that

sup{ f (s)
sp−1 : s > 0} < inf{ 1

k(x)
: |x| � R0}. (2.1)

Let (H1)-(H4) hold and l ∈ (μ∗,+∞) with

μ∗ = inf
{∫

RN
(|∇u|p + |u|p)dx : u ∈W 1,p(RN),

∫
RN

k(x)updx = 1
}
. (2.2)

Then, there exists m > 0 such that problem (1.1) has at least two positive solutions
u0,u1 ∈W 1,p(RN) satisfying I(u0) < 0 and I(u1) > 0 if | h |Lp∗< m.

THEOREM 2.2. Suppose that k(x)≡ 1 , h(x)= h(|x|)∈C1(RN)
⋂

Lp∗(RN) , h(x)�
(�≡)0 and satisfies,

(G) there exists ξ ∈ Lp∗(RN)
⋂

W 1,∞(RN) such that

|∇h(x)||x| � |ξ | p
p−1 (x) for all x ∈ R

N . (2.3)

Let f satisfies (H1)-(H4) with l = +∞ , then there exists m1 > 0 such that problem
(1.1) has two positive solutions v0,v1 ∈W 1,p

r (RN) with I(v0) < 0 and I(v1) > 0 for
|h|Lp∗ < m1 .

NOTATION. Through this paper, we denote by ‖ · ‖ the norm of W 1,p(RN) and
C1,C2 · ·· are positive constants.

3. The proof of the main results

In this section, we consider the nonhomogeneous elliptic problem in two subsec-
tions.

3.1. Case A: l < +∞.

In this part, we consider the following nonhomogeneous elliptic problem,
{−Δpu+ |u|p−2u = k(x) f (u)+h(x), x ∈ R

N ,
u ∈W 1,p(RN), u > 0, in R

N , N � 3,
(3.1)

where k(x) is a bounded positive function, h∈ Lp∗(RN) , h � 0, h �≡ 0 and the function
f satisfies (H1)-(H4) with l < +∞ , we have the following results for problem (3.1).
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LEMMA 3.1.1. Assume that (H1)-(H4) with l < +∞ hold. Let h ∈ Lp∗(RN) , k
satisfies (K) and {un} ⊂W 1,p(RN) be a bounded (PS) sequence of I . Then {un} has
a strongly convergent subsequence in W 1,p(RN) .

Proof. It is sufficient to prove that for any ε > 0 there exists R(ε) > R0 (R0 is
given by (K)) and n(ε) > 0 such that:

∫
RN

(|∇un|p + |un|p)dx � ε for all R � R(ε) and n � n(ε). (3.2)

Let ξR : R
N → [0,1] be a smooth function such that

ξR(x) =
{

0, 0 � |x| � R,
1, |x| � 2R.

(3.3)

Moreover, there exists a constant C0 independent of R such that

|∇ξR| � C0

R
for all x ∈ R

N . (3.4)

Then for any u ∈W 1,p(RN) , u �= 0 and all R � 1 there exists a constant C1 > 0 such
that ‖ξRu‖ � C1‖u‖ . Since I′(un) → 0(n → ∞) in (W 1,p(RN))′ and {un} is bounded
in W 1,p(RN) , we know that for any ε > 0, there exists n(ε) > 0 such that

〈I′(un),ξRun〉 =
∫

RN
|∇un|p−2∇un∇(ξRun)+ |un|pξRdx,

−
∫

RN
k(x) f (un)ξRundx−

∫
RN

h(x)ξRundx � C1‖I′(un)‖(W 1,p(RN ))′‖un‖ � ε
4
, (3.5)

for n � n(ε) . That is, if n � n(ε) , then

∫
RN

(|∇un|p + |un|p)ξRdx+
∫

RN
un|∇un|p−2∇un∇ξRdx

�
∫

RN
k(x) f (un)ξRundx+

∫
RN

h(x)ξRundx+
ε
4
. (3.6)

It follows from (H1) and (K) that there exists 0 < θ < 1 such that

k(x) f (un)un � θup
n for |x| � R0

since h ∈ Lp∗(RN) and ‖un‖ �C for some constant C > 0, it follows from (3.3), there
exists R(ε) � R0 such that

∫
RN

h(x)ξRundx � |h(x)ξR|Lp∗ |un|Lp � ε
4

for R � R(ε). (3.7)

Then, for R � R(ε) and n > n(ε) , combining (3.3)-(3.4) with (3.6), we deduce that

∫
RN

(|∇un|p +(1−θ )|un|p)ξRdx � C0

R
‖un‖+

ε
2

� C2

R
+
ε
2
. (3.8)
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Noting that the constant C2 is independent on R, we can choose R > 0 large enough
such that (3.2) holds, then we finish the proof of the lemma. �

Now we give a property of the variational functional I defined by (1.3) which is
required by using Ekeland’s variational principle.

LEMMA 3.1.2. If (H1)-(H3) hold, h ∈ Lp∗(RN) and k ∈ L∞(RN) , then there
exists ρ ,α,m > 0 such that I(u) |‖u‖=ρ� α > 0 for |h|Lp∗ < m.

Proof. It follows from (H1)-(H3) that for any ε > 0 there exists δ ∈ (p−1, N+p
N−p )

and A = A(ε,δ ) > 0 such that for all

s > 0,F(s) � εsp +Asδ+1. (3.9)

By the Sobolev Embedding Theorem, we have

I(u) =
1
p

∫
RN

(|∇u|p + |u|p)dx−
∫

RN
k(x)F(u)dx−

∫
RN

h(x)udx

� 1
p
‖u‖− ε

∫
RN

k(x)up−A
∫

RN
k(x)uδ+1−

∫
RN

h(x)udx

� 1
p
‖u‖−C3ε‖u‖−C4(ε)‖u‖δ+1−|h|Lp∗ ‖u‖

= ‖u‖
[
(
1
p
−C3ε)‖u‖p−1−C4(ε)‖u‖δ −|h|Lp∗

]
. (3.10)

Taking ε = 1
2pC3

and setting g(t) = 1
2pt

p−1−C4tδ for all t � 0. Since δ > p− 1 we
see that there exists ρ > 0 such that maxt�0 g(t) = g(ρ) = m . Then it follows from
(3.10) that there exists α > 0 such that

I(u) |‖u‖=ρ� α > 0 for |h|Lp∗ < m .

For ρ given by Lemma 3.1.1, we denote

Bρ = {u ∈W 1,p(RN) : ‖u‖W1,p < ρ}.

Then by Ekeland’s variational principle and Lemma 3.1.2, we have the following lemma
which show that I has a local minimum if |h|Lp∗ is small.

LEMMA 3.1.3. Assume that (H1)-(H4) with l < +∞ hold, h ∈ Lp∗ ,h � (�≡)0
and k satisfies (1.3) , if |h|Lp∗ < m,m is given by Lemma 3.1.2, then there exists u0 ∈
W 1,p(RN) such that I(u0) = inf{I(u) : u ∈ Bρ} < 0 and u0 is a positive solution of
problem (3.1) .

Proof. Since h ∈ Lp∗ ,h � 0 and h �≡ 0, we can choose a function ϕ ∈W 1,p(RN)
such that ∫

RN
h(x)ϕ(x)dx > 0. (3.11)
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For t > 0, we have

I(tϕ) =
t p

p

∫
RN

(|∇ϕ |p + |ϕ |p)dx−
∫

RN
k(x)F(tϕ)dx− t

∫
RN

h(x)ϕdx

� t p

p
‖ϕ‖p− t

∫
RN

h(x)ϕdx < 0 (3.12)

for t > 0 small enough. Hence c0 = inf{I(u) : u ∈ Bρ} < 0. By the Ekeland’s varia-
tional principle, there exists {un} ⊂ Bρ such that

c0 � I(un) < c0 +
1
n

and I(w) � I(un)− 1
n
‖w−un‖ for all w ∈ Bρ .

Then by a standard procedure, we can show that {un} is a bounded (PS) sequence of
I , hence, Lemma 3.1.1 implies that there exists u0 ∈ W 1,p(RN) such that I′(u0) = 0
and I(u0) = c0 < 0.

Next, we prove the problem (3.1) has a mountain pass type solution. For this
purpose, we use a variant version of Mountain Pass Theorem which allows us to find a
so-called Cerami type (PS) sequence. Let us recall this theorem, and the proof can be
found in [3, Chapter IV]

PROPOSITION 3.1. (Mountain Pass Theorem) Let E be a real Banach space with
its dual space E∗ and suppose that I ∈C1(E,R) satisfies

max{I(0), I(e)} � μ < η � inf
‖u‖=ρ

I(u),

for some μ < η , ρ > 0 and ‖e‖ > ρ . Let c � η be characterized by

c = inf
γ∈Γ

max
0�τ�1

I(γ(τ)),

where Γ= {γ ∈C([0,1],E) : γ(0) = 0,γ(1) = e} is the set of continuous paths joining
0 and e, then there exists a sequence {un} ⊂ E such that

I(un) → c � η and (1+‖un‖)‖I′(un)‖E∗ → 0.

The following lemma shows that I defined in (1.3) has the so-called mountain pass
geometry.

LEMMA 3.1.4. Suppose that (H1)-(H4) hold and l ∈ (μ∗,+∞) with μ∗ given
by (2.2) . Then there exists v ∈W 1,p(RN) with ‖v‖ > ρ (ρ is given by Lemma 3.1.2),
such that I(v) < 0 .

Proof. Since l > μ∗ , we can choose a nonnegative function φ ∈W 1,p(RN) with
∫

RN
k(x)φ pdx = 1 such that

∫
RN

(|∇φ |p +φ p)dx < l. (3.13)



508 JING MO AND ZUODONG YANG

Therefore, by (H4) and Fatou’s Lemma we deduce that

lim
t→∞

I(tφ)
t p =

1
p
‖φ‖p− lim

t→∞

∫
RN

k(x)
F(tφ)

t p dx− lim
t→∞

1
t p−1

∫
RN

h(x)φdx

� 1
p
(‖φ‖p− l) < 0 (3.14)

and the lemma is proved by taking v = t0φ with t0 > 0 large enough.
From Lemma 3.1.2 and 3.1.4, there is a sequence {un} ⊂W 1,p(RN) such that

I(un) → c and ‖I′(un)‖(W1,p)′(1+‖un‖) → 0 as n → ∞, (3.15)

where (W 1,p)′ denotes the dual space of W 1,p(RN) . For this sequence {un} , let

wn =
un

‖un‖ . (3.16)

Clearly, {wn} is bounded in W 1,p(RN) and there is a w ∈W 1,p(RN) such that, up to a
subsequence:

wn ⇀ w weakly in W 1,p(RN),

wn → w a.e. in R
N ,

wn → w strongly in Lp
loc(R

N). (3.17)

For the above w we have the following lemma.

LEMMA 3.1.5. Assume that (H1)-(H4) and (K) hold. Let h ∈ Lp∗(RN) and
l ∈ (μ∗, +∞) for u∗ given by (2.2) . If ‖un‖ → +∞ as n → +∞ , then w given by
(3.17) is a nontrivial nonnegative solution of

−Δpu+ |u|p−2u = lk(x)u, u ∈W 1,p(RN). (3.18)

Proof. We prove this lemma through the following three steps.
Step 1: w �≡ 0. By contradiction, if w ≡ 0, the Sobolev Embedding Theorem

implies that wn → 0 strongly in Lp(BR0) as n → +∞ , R0 is given by (K) and then by
(H1) , (H4) and l < +∞ , there exists C5 > 0 such that

f (t)
t p−1 � C5 for all t ∈ R. (3.19)

Hence
∫
|x|<R0

k(x)
f (un)

up−1
n

|wn|pdx � C5|k|∞
∫
|x|<R0

|wn|pdx → 0 as n → +∞ (3.20)

on the other hand by (K) there exists η ∈ (0,1) such that

sup{ f (s)
sp−1 : s > 0} < η inf{ 1

k(x)
: |x| � R0} (3.21)
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and for all n ∈ R ,

∫
|x|�R0

k(x)
f (un)

up−1
n

|wn|pdx � η
∫
|x|�R0

k(x)|wn|pdx � η < 1. (3.22)

Therefore, from (3.20) and (3.22), we see that

lim
n→∞

sup
∫

RN
k(x)

f (un)

up−1
n

|wn|pdx < 1. (3.23)

However, since ‖un‖→ ∞ , it follows from (3.15) that

〈I′(un),un〉
‖un‖p = o(1), (3.24)

that is

o(1) = ‖wn‖p−
∫

RN
k(x)

f (un)

up−1
n

|wn|pdx = 1−
∫

RN
k(x)

f (un)

up−1
n

|wn|pdx, (3.25)

where and in what follows, o(1) denotes a quality which goes to zero as n → +∞ ,
clearly this contradicts (3.23), so w �≡ 0.

Step 2: w � 0. In this step, we show that w is nonnegative, that is w � 0. Let
w−

n (x) = max{−wn,0} , and {w−
n } is also bounded in W 1,p(RN) , if ‖un‖→ ∞ , then

〈I′(un),w−
n 〉

‖un‖p−1 = o(1). (3.26)

That is

−‖w−
n ‖p =

∫
RN

k(x)
f (un)

‖un‖p−1 w−
n dx+o(1). (3.27)

By (H1) , f (t) ≡ 0 for all t � 0, then (3.27) implies limn→∞ ‖w−
n ‖ = 0. Thus w−

n =
0 a.e. x ∈ R

N and w � 0.
Step 3: w solves (3.18). By (3.15) and ‖un‖→ ∞ , we have

〈I′(un),φ〉
‖un‖p−1 = o(1) for any φ ∈C∞

0 (RN), (3.28)

that is
∫

RN
|∇wn|p−2∇wn∇φ + |wn|p−2wnφdx =

∫
RN

k(x)
f (un)

up−1
n

wnφdx+o(1). (3.29)

That implies that

∫
RN

|∇w|p−2∇w∇φ + |w|p−2wφdx =
∫

RN
k(x)

f (un)

up−1
n

wnφdx+o(1) (3.30)
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since wn ⇀ w weakly in W 1,p(RN) , hence to show w solves equation (3.18), it is
sufficient to show that

∫
RN

k(x)
f (un)

up−1
n

wnφdx →
∫

RN
lk(x)w(x)φdx as n → +∞. (3.31)

Let
Ω+ = {x ∈ R

N : w(x) > 0} and Ω0 = {x ∈ R
N : w(x) = 0}, (3.32)

then by (3.17) we have

wn =
un

‖un‖ → w a.e. in Ω+ and ‖un‖→ +∞,

so we get that un(x) → +∞ a.e. in Ω+ . Hence, (H4) implies that

f (un)

up−1
n

wn(x) → lw(x) a.e. in Ω+

since wn → 0 a. e. in Ω0 , it follows from (3.19) that

f (un)

up−1
n

wn(x) → 0 ≡ lw(x) a.e. in Ω0.

Hence, by (3.19) and ‖wn‖ = 1, we have

f (un)

up−1
n

wn(x) ⇀ lw(x) weakly in Lp(RN). (3.33)

So, for φ ∈C∞
0 (RN) and k ∈ L∞(RN) we have that

∫
RN

|∇w|p−2∇w∇φ + |w|p−2wφdx =
∫

RN
lk(x)w(x)φ(x)dx,

so w is the solution of equation (3.18) in weak sense.

LEMMA 3.1.6. Let us suppose that k ∈ L∞(RN ,R+) and let μ∗ be defined by
(2.2) with l ∈ (μ∗,+∞) . Then (3.18) has no any nontrivial nonnegative solution.

Proof. Since l > μ∗ , there is a constant σ > 0 such that μ∗ < μ∗+σ < l . By the
definition of μ∗ in (2.2), there exists vσ ∈W 1,p(RN) such that

∫
RN

k(x)vp
σdx = 1 and μ∗ � ‖vσ‖p

W1,p < μ∗ +σ . (3.34)

Since C∞
0 (RN) is dense in W 1,p(RN) , we may assume vσ ∈ C∞

0 (RN) . Let R > 0 be
such that Suppvσ ⊂ BR and define

μR = inf
{∫

BR

(|∇u|p + |u|p)dx :
∫

BR

k(x)updx = 1, u ∈W 1,p
0 (BR)

}
. (3.35)
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Then vσ ∈W 1,p
0 (BR) and

μR � ‖vσ‖p < μ∗ +σ < l. (3.36)

By the compactness of the embedding W 1,p
0 (BR) ↪→ Lq(BR) , it is not difficult to see that

there exists wR ∈W 1,p
0 (BR)\{0} with wR � 0 and

∫
BR

k(x)wp
R(x)dx = 1 such that

−ΔpwR + |wR|p−2wR = μRk(x)wR, x ∈ BR. (3.37)

It follows from the strong maximum principle that

wR(x) > 0, ∀x ∈ BR,
∂wR

∂ν
< 0, ∀|x| = R. (3.38)

Therefore, if 0 �= u ∈W 1,p(RN) is a nonnegative solution, then

μR

∫
BR

k(x)wRudx =
∫

BR

(−ΔpwR + |wR|p−2wR)udx

=
∫

BR

|∇wR|p−2∇wR∇u+
∫
BR

|wR|p−2wRudx

−
∫
∂BR

|∇wR|p−2 ∂wR

∂ν
udσ

=
∫

BR

lk(x)uwRudx−
∫
∂
BR|∇wR|p−2 ∂wR

∂ν
udσ

� l
∫

BR

k(x)uwRudx

using u � 0 and u �= 0, we may choose R > 0 large enough such that
∫
BR

k(x)uwRudx >
0 so, the above inequality implies that μR � l . This contradicts (3.36).

PROOF OF THEOREM 2.1. From the above Lemma 3.1.5 and 3.1.6, if ‖un‖ →
+∞ , we get a contradiction. Hence, {un} is bounded in W 1,p(RN). Then by Lemma
3.1.1, we see that problem (3.1) has a positive solution u1 ∈W 1,p(RN) with I(u1) > 0.
So, we finish the proof of Theorem 2.1.

3.2. Case B: l = ∞ .

In this section, we consider the problem (1.1) with k(x) ≡ 1, that is,

{−Δpu+ |u|p−2u = f (u)+h(x), x ∈ R
N ,

u ∈W 1,p(RN), u > 0, x ∈ R
N , N � 3,

(3.39)

where h(x) = h(|x|) ∈ C1 ⋂
Lp∗(RN),h � (�≡)0 and f satisfies (H1)-(H4) with l =

+∞ . Since we assume that k(x)≡ 1 and h is radial, it is known that the energy function
I in (1.3) can be defined on W 1,p

r (RN) , the subspace of radial function of W 1,p(RN) .
Moreover, a non-zero critical point of I is a solution of problem (3.39).
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LEMMA 3.2.1. Suppose that h(x) = h(|x|)∈ Lp∗(RN) , h � (�≡)0 , and conditions
(H1)-(H3) hold. Then there exists m1 > 0 and v0 ∈ W 1,p

r (RN) such that I′(v0) = 0
and I(v0) < 0 if |h|Lp∗ < m1 .

Proof. Similar to the proof of Lemma 3.1.3, by the Ekeland’s variational principle,
we can find a bounded (PS) sequence {vn} ⊂W 1,p

r (RN) such that

I(vn) → b̃0 := inf{I(v) : v ∈W 1,p
r (RN) and ‖v‖ = ρ} < 0, (3.40)

where ρ is given by Lemma 3.1.2. Then from (H1)-(H3) and the compactness of the
embedding W 1,p

r (RN) ↪→ Lq(RN)(p < q < pN
N−p ) , there exists v0 ∈W 1,p

r (RN) such that

vn → v0 strongly in W 1,p
r (RN) . Hence, we get I(v0) = b̃0 < 0 and I′(v0) = 0.

Next, we prove that problem (3.39) has a mountain pass type solution. In order to
prove this, we use the following theorem which given in [9].

LEMMA 3.2.2. (see [9, Theorem 1.1]). Let X be a Banach space equipped with
a norm ‖u‖X and let J ⊂R

+ be an interval. Consider a family (Iλ )λ∈J of C1 function
on X of the form

Iλ (u) = A(u)−λB(u) for λ ∈ J,

such that A(u) → +∞ as ‖u‖X → +∞ . Suppose that there are two points v1,v2 in X
such that

cλ = inf
γ∈Γ

max
t∈(0,1)

Iλ (γ(t)) > max{Iλ (v1), Iλ (v2} for λ ∈ J,

where Γ = {γ ∈C([0,1],X),γ(0) = v1,γ(1) = v2}. Then for almost every λ ∈ J , there
is a sequence {vn} ⊂ X such that:

(1) {vn} is bounded in X ,
(2) Iλ (vn) → cλ and
(3) I′λ (vn) → 0 in X−1 as n → +∞ .

Moreover, the map λ → cλ is continuous from the left.

For λ ∈ [ 1
p ,1] , we define the family of functionals Iλ : W 1,p

r (RN) → R by

Iλ (u) =
1
p

∫
RN

(|∇u|p + |u|p)dx−λ
∫

RN
(F(u)+h(x)u)dx.

LEMMA 3.2.3. Assume that (H1)-(H4) with l = +∞ hold, then:
(1) there exists v ∈W 1,p

r (RN)\{0} such that Iλ (v) < 0 for all λ ∈ [ 1
p ,1];

(2) for m1 > 0 given in Lemma 3.2.1, if |h|Lp∗ < m1 , then

cλ = inf
γ∈Γ

max
t∈(0,1)

Iλ (γ(t)) > max{Iλ (0), Iλ (v)} for all λ ∈ [
1
p
,1],

where Γ= {γ ∈C([0,1],W 1,p
r (RN)) : γ(0) = 0,γ(1) = v} .
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Proof. (1) For σ > 0, there exists v ∈W 1,p
r (RN)\{0} and v � 0 such that

∫
RN

|∇v|pdx < σ
∫

RN
|v|pdx.

Since

inf
{∫

RN
|∇u|pdx : u ∈W 1,p

r (RN) and |u|Lp = 1
}

= 0.

By (H4) with l = +∞ and Fatou’s Lemma, we have

lim
t→+∞

∫
RN

F(tv)
t p dx � (1+σ)

∫
RN

|v|pdx (3.41)

and then for any λ ∈ [ 1
p ,1],

lim
t→+∞

∫
RN

Iλ (tv)
t p dx � lim

t→+∞

∫
RN

I 1
p
(tv)

t p dx

� 1
p
(
∫

RN
|∇v|pdx−σ

∫
RN

|v|pdx) < 0, (3.42)

so, we can choose t1 > 0 large enough such that I 1
p
(tv) < 0. Then taking v = t1v , we

see that Iλ (v) � I 1
p
(v) < 0 and (1) holds.

(2) For any λ ∈ [ 1
p ,1] and u ∈W 1,p

r (RN) , we have

Iλ (u) � 1
p

∫
RN

(|∇u|p + |u|p)dx−
∫

RN
(F(u)dx−|h|Lp∗ |u|Lp) = J(u).

Similar to the proof of Lemma 3.1.2, if |h|Lp∗ < m1 with m1 given by Lemma 3.2.1,
we deduce that infγ∈Γmaxt∈(0,1) J(γ(t)) > 0. Then

cλ = inf
γ∈Γ

max
t∈(0,1)

Iλ (γ(t)) � inf
γ∈Γ

max
t∈(0,1)

J(γ(t)) > max
{

Iλ (0), Iλ (v) for all λ ∈ [
1
p
,1]

}

and we complete the proof of the lemma. �

By Lemma 3.2.3 and Lemma 3.2.2, there exists {λ j} ⊂ [ 1
p ,1] such that:

(a)λ j → 1 as j → +∞, and

(b) Iλ j
has a bounded (PS) sequence {u j

n} at the level cλ j
.

Since the embedding W 1,p
r (RN) ↪→ Lq(RN)(p < q < Np

N+p) is compact, we de-

duce that for each j ∈ N , there exists u j ∈ W 1,p
r (RN) such that u j

n → u j strongly in

W 1,p
r (RN) and u j is a positive solution of

−Δpu+ |u|p−2u = λ j( f (u)+h(x)) in R
N . (3.43)
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Next, we deduce the Pohozaev type identity which u j is satisfies

N− p
p

∫
RN

|∇u j|pdx+
N
p

∫
RN

|u j|pdx

= Nλ j

∫
RN

(F(u j)+hu j)dx+λ j

∫
RN

∇h(x) · xu jdx. (3.44)

In order to prove that {u j} is a bounded (PS) sequence of I , we need the technique
condition (K) .

LEMMA 3.2.4. Assume that (H1)-(H4) with l = +∞ hold, h satisfies (1.5) and
|h|Lp∗ < m1 for m1 given by Lemma 3.1.1. Then {u j} ⊂W 1,p

r (RN) is bounded.

Proof. Since the map λ → cλ is continuous from the left by Lemma 3.2.2, then
by Lemma 3.2.3 (b), we have

Iλ j
(u j) = cλ j

→ c1 > 0 as λ j → 1.

Thus, there exists K > 0 such that Iλ j
(u j) � K for all j ∈ N . From this and (3.44) we

deduce that ∫
RN

|∇u j|pdx+λ j

∫
RN

∇h · xu jdx = NIλ j
(u j)

so ∫
RN

|∇u j|pdx � KN +
∫

RN
|∇h||x||u j|dx. (3.45)

Then by (G) we have

∫
RN

|∇u j|pdx � KN +
∫

RN
|ξ | p

p−1 |u j|dx

� KN +
1
p∗

∫
RN

|ξ |p∗dx+
∫

RN
|ξ p

p−1 u j|pdx. (3.46)

Since ξ ∈ Lp∗(RN)∩W 1,∞(RN) , we know that ξ p∗u j ∈ W 1,p(RN) . It follows from
〈I′λ j

(u j),ξ p∗u j〉 = 0 that

∫
RN

|∇u j|p−2∇u j∇(ξ
p

p−1 u j)+ ξ
p

p−1 up
j dx = λ j

∫
RN

( f (u j)+h)ξ
p

p−1 u jdx. (3.47)
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It follows from (3.45) that (denoting by p∗ = p
p−1 )

∫
RN

|∇u j|p−2∇u j∇(ξ
p

p−1 u j)dx

�
∫

RN
|∇u j|pξ

p
p−1 dx+

p
p−1

∫
RN

|∇u j|p−2∇u j∇ξu jξ
p

p−1 dx

�
∫

RN
|∇u j|pξ

p
p−1 dx+

∫
RN

(|∇u j|p−2(∇u j∇ξ )
p

p−1

+
1

p−1

∫
RN

(u jξ
p

p−1 )pdx

� (|ξ |p∗∞ + |∇ξ |p∗∞ )
∫

RN
|∇u j|pdx+

1
p−1

∫
RN

(u jξ
p

p−1 )pdx

� C6

∫
RN

|∇u j|pdx+C7

∫
RN

(u jξ
p

p−1 )pdx. (3.48)

By (H4) with l = +∞ , for any L > 0, there exists C(L) > 0 such that

f (s)s � Lsp +C(L) for all s > 0, (3.49)

so
∫

RN
|∇u j|p−2∇u j∇(ξ

p
p−1 u j)dx

= λ j

∫
RN

( f (u j)+h(x))ξ
p

p−1 up
j dx−

∫
RN

ξ
p

p−1 up
j dx

� 1
p

∫
RN

( f (u j)+h(x))ξ
p

p−1 u jdx−
∫

RN
ξ

p
p−1 up

j dx

� L
p

∫
RN

ξ
p

p−1 up
j dx−

∫
RN
ξ

p
p−1 up

j dx+C8. (3.50)

From the above statements (3.46), (3.48), and (3.50), we obtain:

L
p

∫
RN

ξ
p

p−1 up
j dx−

∫
RN
ξ

p
p−1 up

j dx+C8

� C6

∫
RN

|∇u j|pdx+C7

∫
RN

(u jξ
p

p−1 )pdx

� C6

(
KN +

1
p∗

∫
RN

|ξ |p∗dx+
∫

RN
|ξ p

p−1 u j|pdx
)

+C7

∫
RN

(u jξ
p

p−1 )pdx

� C9 +C10

∫
RN

|ξ p
p−1 u j|pdx. (3.51)

That is
L
p

∫
RN

ξ
p

p−1 up
j dx � C11

∫
RN

ξ
p

p−1 up
j dx+C12 (3.52)
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taking L > 0 large enough, we get that
∫
RN ξ

p
p−1 up

j dx is bounded, since (3.46), we
easily know that

∫
RN |∇u j|p is bounded, ect |∇u j|Lp is bounded. It follows from

Iλ j
(u j) � K for all j ∈ N that

1
p

∫
RN

|∇u j|pdx+ |u j|pdx−λ j

∫
RN

(F(u j)+h(x)u j)dx � K. (3.53)

By (H2)-(H3) there exists a constant C > 0 such that

F(u j) � 1
2p

|u j|p +CuP∗
j , p∗ =

Np
N− p

. (3.54)

Then, substituting this inequality into (3.53) and by the Sobolev inequality we deduce
that

1
2p

|u j|pdx � C+ |h|p∗|u j|p.

Thus, {|u j|p} is bounded and we complete the proof of the lemma.

LEMMA 3.2.5. Under the assumptions of Lemma 3.2.4, the above sequence {u j}
is also a (PS) sequence for I .

Proof. From the definition of I and Iλ j
, we have

I(u j) = Iλ j
(u j)+ (λ j −1)

∫
RN

(F(u j)+h(x)u j)dx.

By Lemma 3.2.2, we know that Iλ j
(u j) = cλ j

→ c1 > 0 as λ j → 1. Then from Lemma

3.2.4 we get I(u j) → c1 > 0. Since I′λ j
(u j) = 0, for any ϕ ∈W 1,p

r (RN), we have :

〈I′(u j),ϕ〉 = 〈I′λ j
(u j),ϕ〉+(λ j −1)

∫
RN

( f (u j)+h(x))ϕdx→ 0.

Thus I′(u j) → 0 in the dual space of W 1,p
r (RN) .

PROOF OF THEOREM 2.2. By Lemma 3.2.1, problem (3.39) has a positive so-
lution v0 ∈ W 1,p

r (RN) with I(v0) < 0. On the other hand, from Lemma 3.2.5 and
the compactness of the embedding W 1,p

r (RN) ↪→ Lq(RN)(p < q < p∗) , we know that
problem (3.39) possess a second positive solution v1 ∈W 1,p

r (RN) with I(v1) = c1 > 0.
Hence, v0 �= v1 and we complete the proof of Theorem 2.2.
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