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SOME RESULTS ON WEIGHTED CRITICAL QUASILINEAR PROBLEMS

DONGSHENG KANG

Abstract. In this paper, we are concerned with a kind of quasilinear elliptic problems, which
involves the Caffarelli-Kohn-Nirenberg inequality and critical exponents. By employing varia-
tional methods and analytical techniques, the existence of sign-changing solutions to the problem
is proved.
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