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SOME RESULTS ON WEIGHTED CRITICAL QUASILINEAR PROBLEMS

DONGSHENG KANG

(Communicated by C. L. Tang)

Abstract. In this paper, we are concerned with a kind of quasilinear elliptic problems, which
involves the Caffarelli-Kohn-Nirenberg inequality and critical exponents. By employing varia-
tional methods and analytical techniques, the existence of sign-changing solutions to the problem
is proved.

1. Introduction

In this paper, we investigate the following elliptic problem:

(V7250 22

q—2
- +a |u|?*u
X

|x|plat1) o |x|bp* (a:b) |x|dp*(ad)’

(1.1)
ueW,r(Q),
where Q C RY is a bounded domain with smooth boundary and

0e6Q N>23,A>0,1<p<N,

~_ /N-
0<u<u7u=<—p—a)p,
p
N—-p *
0<a< ,a<b,d<a+l,p<q<pi(ad),
where
. Np . Np
p)i=—F  and d)— P
prlab) =g r iy M plad) = g et g

are the critical Hardy-Sobolev exponents and p*(0,0) = p* := Np/(N — p) is the crit-
ical Sobolev exponent. The space Wol_;f (Q) is the completion of C;’(Q) with respect

to the norm ( Jq \x\_“p|Vu|pdx)1/p.
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By a solution to the problem (1.1), we mean a function u € WO1 P(€) such that the
following equality holds for all v € WO{f(Q) :

/ <\Vu\p_2Vqu lu|P~2uy  |u|P (@b 2y |u|9"2uy )dx _0
o |x|ap |x|pla+1) |x|bP*(ab) |x|@p*(ad) )"
By the standard elliptic regularity argument, u € C'(Q\ {0}).

Problem (1.1) is related to the Caffarelli-Kohn-Nirenberg inequality [3]:

p*(ab) iem) p
(/ Lm)” <cf M viecmy), (1.2)
R

N ‘x‘bp*(u,h) RN |x|”17

which is also named as the (weighted or general) Hardy-Sobolev inequality. For the
sharp constants and extremal functions, see [9]. If b =a+ 1, then p*(a,b) = p and
the following Hardy inequality holds [1] [16]:

[ul? L[ |Vul N
~/]RN |x|P(a+1)dx < E RN ‘x‘ap d)C, V“ECO (R )7 (13)

where [t = (% —a)P.

We employ the following norm in the space WOl P(Q) for u <

1
. (N N
il = gy = ([, (G —n i )os) - 0

By (1.3) it is equivalent to the norm ([, |x|~%?|Vu|P dx)'/P of the space W P(Q). Ac-
cording to the Hardy inequality, the following best constant is well- deﬁned

VulP P
[ (T ey,
X RN |x|ap |x|P(a+l)
Suap = inf ,

ueD}(RN)\(0) jul e |\ e
/RN |x|h17*(a7b)

where the space Dy”(RV) is the completion of Cy(RN) with respect to the norm
(Jgw x| |Vu|P dx)!/P. By Lemma 2.1 of this paper, we can also define the following

constant: | | | ‘
VulP ul?P
A(M”_“MW“JM

Juf”
Q ‘x‘dp*(a,d)

Apaa:= inf
ueWy ' (2)\{0}

The elliptic problems involving the Hardy and Hardy-Sobolev inequalities have
been studied by many authors, either in bounded domain or in the whole space R",
see [2]-[6], [8]-[10], [15]-[19] and the references therein. Many important results were
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obtained in these publications and the results give us Very good insight into these prob-
lems. In particular, when p =2, a =0 and u < (252 2)2 | the problem (1.1) was investi-
gated extensively. On the other hand, we know less about (1.1) when p #2, a# 0 and
u < f. Thus it is meaningful for us to study (1.1) deeply.

The purpose of this paper is to investigate the existence of the sign-changing solu-
tions to (1.1). In order to state clearly the conclusions of this paper, we need to explain
some notations. o(u) and B(u) (a(u) < B(u)) are the zeroes of the function

f)=p-DtP—(N—pla+ D))" ' +u, 1>0, 0<pu<p.
The following constants are well defined and will be used in this paper:

. N-
§:="r g,

N—p(a+1)
N—p(a+1-b)’
N':=pla+1+ pi(ﬁli, dlp*( )),

1

N":=pla+1+(p—1)(pla+1)—dp*(a.d))),
d

T .=

g1 = max{p’ N—dp*(ad)— (év— )(B (M)—S), N—dp*(aad)—gp—l)(ﬁ—a(ﬂ)}’
” .:max{n Nodp' (@)= (B=9) - Nodp'(ad)-(Oow)y,
1= (8 + LA @D) (S 4 dp*(a,d) — pla+ 1)),
o ::(5— Pt ped) PN (5 + pla+1) — dp'(a,d)),
=(8 + pla+1)—dp(a,d))’ (8 + (p— 1)(dp*(a.d) — pla+1))),
Hy —<5 pla+1)+dp(a,d)"" (8 +(p—1)(pla+1) —dp*(a,d))).

The main result of this paper is summarized in the following theorem, which is
new when 0 <a < (N—p)/p and 0 < u < u. We can verify that the sets used in
Theorem 1.1 for the parameters y and g are not empty.

THEOREM 1.1. Assume that one of the following conditions holds:

(i) 1<p<2,0<u<p and q1 <q<p*a,d).

(ii) 2<p<N,0<u<p and q < q<p*(a,d).

(iti) 1<p<2,qg=p,0<A <Apaq, N>N and 0<pu <min{uy, tp}.

(v) 2<p<N,q=p,0<A <Apaq, N>N"and 0 < pu <min{us, us}.
Then the problem (1.1) has one pair of sign-changing solutions ‘u(x), satisfying

‘u|p*(a~,b)—p |u|9—P 1.
/g( P A e ad) ) vt =0,
where v(u) is the first eigenfunction of the weighted eigenvalue problem

di (IVV\HVV> P2y <‘u|p*(a,h)—p ol )\ =
v ‘x‘ap ‘x‘p(a-&-l) - ‘x‘bp*(a,b) ‘x‘dp*(a,d) 4 v

Ve W&Z’(Q).
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REMARK 1.1. Itis known that Sy 45, has the explicit minimizers ([9]):

plat1)=bp*(a,b) N—p(a+1)

_N-— ST\ platD)-bp*(ad)
V(x) = Ce v”<1+<|if—|) r ),, H

where C > 0 is a particular constant and € > 0 is an arbitrary constant. On the other
hand, when 0 < a < N=P and 0 < u < u, the extremals of S, ,, and the existence and
properties of positive solutions to (1.1) were investigated in [10] and [11].

This paper is organized as follows. In Section 2 some preliminary results are
established. In Section 3 the asymptotic properties of the extremal functions related to
Suap are investigated. At last, we verify Theorem 1.1 in Section 4. In the following
argument, 1 = O(€%) (t > 0) means that there exists positive constant C such that
In| < Ce" for € > 0 small enough, o(e") means |o(¢')|/e" — 0 as € — 0 and o(1)
stands for a generic infinitesimal value. We always denote the positive constants as C
and omit dx in integrals for convenience.

2. Preliminary results

We summarize some required results.

LEMMA 2.1. Suppose a<d<a+1, p<qg<p*(a,d),0< u<p. Then:

(i) there exists a constant C >0 such that

|ul? p/q Vul? |u|P .
(/Q [P (@) < C/Q er u [parD ) VueW,, (Q);

(ii) the embedding Wol‘f(gl) — LI(Q, |x| 7P @D s compact if p < q < p*(a,d).

Proof. The statement (i) can be proved by employing the Holder inequality, (1.2)
and the equivalent norm (1.4) of Wolf(Q) . The proof of (ii) can be found in [21].

LEMMA 2.2. ([10],[22]) Let us suppose:

0<a<

p7a<b<a+1, and O< u < .

Then the best constant Sy, . is achieved in RN by the radial functions
o0 -1\ _ -9 -1
Ve(x) =€ Uppu(e 'x) = °Uppue " |x|), Ve>O0,

that satisfy

[We@)” | Ve@)l? Ve (x) [ () )
- = —_— = p¥(a.b)—p
/RN ( wfor HaplarD /RN x[PP (@) (Spap) P@h=p.
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The function Uy (x) = Up u(|x|) is the unique radial solution of the limiting problem:

— e . N
‘u‘x‘p(a""l) |x|bp*(a,b) in R \{O}a (21)

div( |Vu|P~2Vu up~1 uP"(ab)—1
[P

ueDYP(RY), u>0 in RN\{0},

satisfying
Upu(1) = (p"(a,b) (i — p)/p) &7

Furthermore, Uy, have the following properties:

lim r*W U,y (r) = Cr, lim UL ()] = Cra(),

r—0
Jim AU () =Coy tim AW ()] = C(w),

where Ci(i =1,2) are positive constants and o.(i) and B(u) are zeroes of the function
f(t):(p_l)tp_(N_p(a—’_l))tpil—'—nuw t>07

that satisfy
)<N—p(a+1) <B(H)<N—p(a+1).

0<a
(u ) 1

(2.2)

Furthermore, there exist positive constants Cz = C3(U,p,a,b) and Cs = C4(u,p,a,b)
such that

alp) B\ s
Cs < Upu() (W] 5" + 11 3)° < .

We mention that the properties of positive solutions to (1.1) were investigated in a
recent paper [11] and the following results are already known.

LEMMA 2.3. ([11]) Suppose 1 < p <N and 0 < u < u. Assume that u €
W()l’p(Q) is a positive solution to the problem (1.1). Then:

a

(i) there exists some constants p > 0 small and C > 0, such that
u(x) > Clx| =W, vxe B,(0)\ {0}:

I r —bp*(a,b Ny .
(ii) uel (Q,|x] P ))7 V”E(l’a(zo))’

g , —bp*(a N
(iii) x|~ |Vu| € L"(Q, |x|~bP"(@b)) re(l, OC(TEJH)'



524 DONGSHENG KANG

3. Asymptotic property of the extremal function

Let V¢(x) be the functions in Lemma 2.2. Take p > 0 small enough such that
By(0)CQ, ¢(x)eCH(Q),0<0(x) <1, 0x)=1 for [x| <5 and ¢(x)=
for |x| > p. Setting ue(x) = @(x)Ve(x), we have the following estimates.

LEMMA 3.1. ([12]) As € — O we have:

p*(a,b)

Vug|P ul at1)—
/]R <x§P _“|x|p(§+1)> (Sap) "™ P 4 O(ePWPtplat Ny

(ab) o*(ah X
/ x [P (@d) = (Sypap) 7@ ”+0( gPITDI @)=y,

CeN—dr'(ad)—qs = Ndplad) g o +(q q),

Bw)
e >{ CetBW-9)|Ing|, g=Ydplad)
Q |x|dp*lad) = S M
(B(1)-3) N-dp’(a.d)
Cel u , l<q< i 7

q
Ug *
_— < .
/Q. ‘x‘dp*(a,d) 07 1 ~N q < p (a7d)

LEMMA 3.2. Suppose 0 < u < u and 0 < q < p*(a,b) — 1. Assume that u €
Wolap(Q) is a positive solution of the problem (1.1). Then as € — 0 we have

O(er149=W), () + (p— DB(k) > pd
-1
[ AR § e t-ewmel), a(u)+ (- DB =pd. ()
O DBW=50) () + (p— DB(k) < pS,
o<el+ V=) (p— T)ox(u) + B) > pd,
\Vu\p 1|Vu8\ REVIAE
S = 0P e, (p - Dau)+ B =ps.  (32)
O W) (p— 1yalu) +B(k) < 5.
OV r(u) +gB () > N,
q
e = ) O nel), au) + B () = N, (3.3)
0PI, a(u) +aB(u) < N,
Oe"0=0-11), gar(u) + (1) > N,
[ s = 1 0B -9 nel), qau)+ B() =N, 64
O(ePW=9), go(u)+B(u) < N,
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o3y, a(u)+(p—1)B(u) > ps,
uup_l
et S—a(u) _ _
/Q\x\l’(““) 0(e5=“W|ne|), a(u)+(p—1)B(u) = psd,

O0(eP=DBW=9)) "a(u)+(p—1)B(u) < pd,
O(eP=DE=2()y (p - Do(u) + B(u) > ps,

u‘lug
[ s = 4 03 inel), (- V() + Blat) =

O(eP19), (p—Do(u)+p(u) < pd.
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(3.5)

(3.6)

Proof. The statements (3.1)-(3.6) can be verified by the Holder inequality, Lemma
2.3 and Lemma 3.1. For simplicity we only prove (3.1). Note that the following equality
is useful:

Nty +bp*(a,b) =

3.7)

VERIFICATION OF (3.1). Assume that a(u)+ (p—1)B(u) > pS. By taking

T > 0 small we deduce that
N1y
bp*(a,b) aw+arl
Nt —gp——— <(@+1)(p—1)+B(u)(p— 1))1\110—1-
a@)tari T a@)tari T
Consequently,
|Vu||Vue |P~!
Q  |xor
a T 7 e
< / (|x| |Vu|) H)+a+ Wﬁlﬂir
Q |x|bp (a,b)
N N
hp (a.b) (u)+0a+1 - a(u)+011+17771
—7—1 — 1 1 —7—1 Nty -7
\x\ +a+1 | | a(p— Wu ‘P u)+a+1 a(u)+a+1
bp™(a,b bp™(a,b
N-p g Lo(ir,l N Lo(ir,l Nl
< C{;‘i( P )(p—1) (/ £ a(u)tatl 7 o(u)tatl
0
N Nt
(M)+0a+1 T a(u)+0a+1 -7l
_5(p— _Neg _ Ny
x (r—(a+1>(p—1>(r% I D) e ‘dr) vt T
N
— = T
< ce~(FHp=1) / 4 /5 CImErT
0 1
bp*(ah) bp* (ah) e i
p™(a,b b, a o(u)+a+
N—p 1"’071“\/ Npo 1+N - N7y
< CE*(T)(P*I) (O(E a(w)tati T ) _|_0(g a@)Far1 T )) a(@)+ari ©
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~(X52) (p=)+N—(a()+a-+1)— Ll

<Ce autat1
(p=1)+(8—0u()) gt lie
<Ce¢ a@)yrarl "

Since 7 is arbitrary, taking the limit as 7 — 0 we have

|Vu||Vue|P~!

N < CeP—D+(@-a(w)
Q x|eP

~

Assume that o(u)+ (p—1)B(u) < p§. By taking T > 0 small we deduce that

N

bp*(a7b> a(/.l.)frOaJrl -7

N+ a1 > ((@+1)(p—1)+B(u)(p— 1))1\110—“-
a(@)+at+l v a(@+at+l "
By direct calculation we have
|Vu||Vue|P~!
o |xlor
Nty _z 1
(x|~ Va1 T\ v
o a
< /Q ‘x‘bp*(a:b) g
N N

Ai;p*(a,b) (1(1(]4)1011+l - a(u)g)zﬁrl -l

T T T
% (/ |x| Wﬁm*“ <|x|,u(p,1)‘vu£‘p,1> a(u)+0a+lrl> Wﬁaﬂ”

Q
0 b(ah) 4y brt(ab) 4y g
< ce~ (500D (/ g AT
0
N N
rari " et !

« (r—(a-‘rl)(p—l)(r%+r%)—5(17—1)> %7Pld7‘ %—f
< ce~ T =D +at D (p=1)+B () (p-1)
= 0 (P~ DBU)=3+1)y
If a(u)+ (p—1)B(u) = pd, by repeating the above argument we have

Vu||Vue[P~! - -
/Q%:O(E(p DBEW-8+1)1g)).

The proof of this lemma is thus completed.
4. Existence of sign-changing solutions

In this section, we investigate the sign-changing solutions to the problem (1.1).
We have to overcome the singularity of the positive solutions to (1.1).
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For v >0 small and u € Wolf(Q), we define

1 1 ulp lab)=v uld
I = - o [ @
p ) qlo

p*(a,b)—v Jo |x|br(ab |x|dP*(a.d)
Av={ue W, (Q): (Jy(u),u) =0,u#0}, 4.2)
ciy = inf Jy(u). 4.3)
ucly

Then J, € C! (W(i P(Q), R). Moreover, for v/ > 0 small enough, there exists 0 > 0
such that the following lower bound holds:

cry =0, Yvelo,v].

We recall the following existence result related to the positive solutions of (1.1).

LEMMA 4.1. ([10]) Suppose N >3, A >0, a<b,d<a+1,0< u<p. As-
sume that one of the following conditions holds:

(i) g=p,0<A<Ayqa N>p?(a+1)+(1—p)dp*(a,d) and

O<u<fi= N-(° (a+1)+p(l—p)dp*(a,d)) (N_dl:(a,d)>1’—1

(ii) A>0,9<qg<p*(a,d), where

N —dp*(a,d) p(2N—dp*(a,d)—p(a+1+B(u))) }
Buw) 7 N—p(a+1) '

Then the problem (1.1) has a mountain-pass-type positive solution u; € Ag .

2]'::111&1)({1)7

It should be mentioned that the solution u; has the following property [20]:
Jo(uy) = supJo(tuy) = c10:= inf Jo(u).
1€R u€Ng

LEMMA 4.2. ([10]) For € > 0 small enough, there exists a constant C > 0 such
that

supJo(tu )<(l—#>(s h)%_c 7142 +0(£1’(B(“>*5>).
=0 \p pHab)) T o [x[dr @d)

To obtain the sign-changing solutions, we employ the min-max principle ([7]). To
this end, let B C WOl P(Q) be a closed symmetric set. Then the Krasnoselski genus
i(B) is well defined. Fix p > 0 and define

1

Sp ={uluc Wy 2 (Q), |lull=p},

A ={h|h: Wo,ll (Q) — W&’f(Q) is an odd homeomorphism},

T ={B|BC W()lap(Q) is closed symmetric , i(h(B)NSp) >2,Vhe A }.

The following result in the sub-critical case can be obtained by the min-max prin-
ciple ([7]) and the proof is omitted for simplicity.
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LEMMA 4.3. There isa v* >0, such that for every v € (0, v*), the problem

. <|Vu|p_2Vu> ulP2u |u| P (@D)=2=vy u|92u
|x[ap |x|p(a+1) |x|bp*(a’b) \x\dp*(a’d) ’ (4.4)
ueWyl(Q),

has a pair of sign-changing solutions tu, \ satisfying
p*(ab)—p—v |z |77

‘u27v - B
/Q( x[or(@d) +A x[ 47 (@) ) v(uay)P tupy =0,

where v(uy ) is the first eigenfunction of the weighted eigenvalue problem

Vy|P—2Vv p—2 p*(a.b)—p—v q-—p
—div<| V| V) _ [P~y _ (|“2,V‘ i ) |“2~,v*| >|v|p*2v7
|x|up |x|p(u+1) ‘x‘bp (a,b) |x|dp (ad)

ve W, (Q).

Furthermore,
cov i= inf supJy(w) = Jy(uzy).
AETF) weA
Note that the sets in Theorem 1.1 for the parameters ¢ and u are smaller than
those in Lemma 4.1 respectively. Thus under the assumptions of Theorem 1.1 we can
get a positive solution u; to (1.1). Furthermore, we have the following estimate for the
sub-critical problem (4.4).

LEMMA 4.4. Under the assumptions of Theorem 1.1, there exist o > 0 and
v* >0 such that

1 1 _p(ab)
e < 1t (5= o) () T 0, VY (0.0, 4

Proof. Arguing as in [8] and [18], we have that ¢1,, — c10 and ¢z, — 2 as
v—0.

The following elementary inequalities are well known: Vr € [1, +o0), there exists
aconstant C =C(r) > 0 such that

|A+B|"
|A+B|"

A"+ BI"+C(|A]""[B|+|A|B]""), VA, BER,

<
> |Al"+|BI"=C(JA"""|B|+|A[B|""), VA, BER.

Set ['; =span{ug, u; }, where ue and u; are the functions defined as in Lemmas
3.1 and 4.1. Then I'; € .%, and

¢y < sup Jy(w) = sup Jy(Au; + Bug).
welg A,BER
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Consequently,
JV(Aul + Bu,)
|Auy + Bug |9 1 |Auy + Bug|P"(@b)=v
=—|A Bugl| — —
H l/t1+ MSH q o |X|dp ad) p*(a,b)—v o |x|bp*(1/l,h)
< Jv(Aul) +Jy(Bug)

+ CIAP B [ | Vi 7 [Vt |+ CLAN B [ ] Vi | Vi
Q

“(ab *(a,b)—1—v
4 AP @)1 V|B|/ uy |b: ab)u +C|A|B|p*(a,h)1v/g%
-1
+ClAPP™ 1|B|/ P |pa+1 + ClA[[B|P~ 1/Q|Z|l,ff+1)
+ClAlm 1|B|/ Ildpild + ClA||B|*~ 1/ |u|cll;/:781d
< Jv(Auy) +Jy(Bug)

+C(JA|P 4 |BIP) (P9 4 glp=1(B1)=0) 4 ga(W)=5 | (p=D{a(W)=0)y| | g|
_i_c(‘A‘p*(a,b)—v + |B|p*(a7b)—V) (ePWI=0 4 gd=all)y|ng|
+C(|A|7+B|) (P10 + e5~W) Ineg|.

By the above estimates we get that

lim Jy(Au; + Bug) = —oo for small enough € > 0.

A,B—oo

Therefore we may assume that A and B are in bounded sets. From Lemmas 3.1, 3.2
and 4.3 it follows that
Jv(Al/ll “FBME)
< Jv(Al/ll) +Jv(Bu8)
+ C(g(pfl)(ﬁ(u)*fS) +ePw)=8 o (p=1)(~a(u)) . 85*06(#1)) |Ing|
< Cly +JO(BM£)
+ C(g(pfl)(ﬁ(u)*fS) +ePw)=8 o (p=1)(~a(u)) . 85*06(#1)) |Ing|+1;
1 1 _plab) ul
< *ab)—p — &
X Cl, v+ (p p*(a b)) (S#ﬂ,b) P p C,/Q |x|dp*(a,d)
+ C(g(p—l)(ﬁ( W)=8) 1 eBu)=8 4 (p=1)(6—o(p)) 4 85‘0‘(“))|ln£| +1,

where
p*(ab) p*(ab)—v

I = |B|p / ”8 |B|p /”e
YT pr(ab) Ja |x[bP*(@b) — p*(a,b) —v Jo |x|brFlab) |
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(i). Assumethat 1 <p <2 and g > ¢q;, where

qlzmax{p7 N*dp*(avd)*(gfl)(ﬁ(#)*&, N*dp*(md)*gpfl)(&a(u)}.
Then
N—dp*(a,d) —q8 < (p—1)(B(1) —6) < B(u) -
N —dp*(a,d) — g8 < (p— 1)(8 — au(w)) < 6 — ax(u).
Since

N —dp*(a.d)—(p=1)(B(p) =) _ N—dp(a.d)
5 Bw) 7

from Lemma 3.1 it follows that there exists a constant o > 0 such that

(P DBU=-8) 4 gBG0-3 4 e(p=DE-0lw) 4 ()1 g

o o, (4.6)
/;2 |x|dp*(ad) = o ’

Choose v** > 0 small enough such that /; < o for 0 < v < v**. Then

*(ab)

L] ) (Suas) T 7 — 0, YV E (0,v7).

cay < Jv(Aug +Bug) < Clv+<p @b

(ii). Assume that p > 2 and g > ¢, where

@ :max{p, N*dp*(wdzsf(ﬁ(#)ﬂs), N*dp*(mdg*(&a(#)}.
Then
N—dp*(a,d)—q8 < B(u)—8 < (p—1)(B(u)—9),
N—dp*(a,d)—q8 < §—a(n) < (p—1)(6 — a(u)).
Since

N—dp*(a,d)— (B(u) —8) = N—dp*(a,d)
8 Bw)
from Lemma 3.1 it follows that (4.6) for some constant & > 0. Choose v** > 0 small
enough such that I} < o for 0 < v < v**. Therefore (4.5) holds.
(iii). 1<p<2,q=p and 0 <A <Ay 44 Discussing as above we also have

1 1
Jv(Auy +Bug) < Clv+<p v b)>(Suuh / ‘x‘dp @d)

+ C(elPDE-alw) 4 gp-DB®-8))|ng| + 1.
It (p—1)(B(k) — 8) > N —dp*(a,d) — p3, then

pla+1)—dp*(a,d) S N —dp*(a,d)

B(u)>6+ P »
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If (p—1)(8 —a(u)) >N —dp*(a,d) — p$, then

a-+ 1) _dp*(a7d)

1 <.
p—

() < 5 21
On the other hand, it’s easy to verify that the function

f@)=(p—Dt"—(N—pla+1))" ' +u, 1>0,

has the unique minimal point & . Furthermore, f(¢) is decreasing on the interval (0,8)
and is increasing on the interval (§, o).

If
N>N:=p((p+1)(a+1)—dp'(ad)),
then
O +dp*(a,d)—pla+1)>0.
Furthermore,
a+1)—dp*(a,d
54 PErDdrad) g,
=
which is equivalent to
a+1)—dp*(a,d
(o + HEEL=ED) pipiu)) o,
and it is equivalent to
O<u<uw,
where . |
= (8 + KA @A Pl (5 4 gyt (a,d) — pla+1)).
If .
1) —
N>N/:p(a+1+p(a+ )—dp (a,d))7
p—1
then i
0<g-platl—dpriad) s
p—1
Hence D do*(a.d
5_p(a+ )_ lp (Cl, ) >OC(‘U),
p—
which is equivalent to
a+1)—dp*(a,d
(o - M= PIED) o faqu) o

and it is equivalent to
O<u <,
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where Do)
s =(8 — Lt @Dl (§ 4 p(a+ 1) —dp*(a,d)).

Now we choose N and u such that
N>max{N,N'} =N and 0<pu <min{u, w}.

Then taking € small we have
C(elP= @) 4 glp=1)( ) |Ing| - C/ ‘ ‘d 5 <20
X

for some constant ¢ > 0. Choose v** > 0 small enough such that /; < o for 0 <
v < v**. Thus (4.5) holds.
(iv). p=2,q=p and 0 <A <Ay ,q. Discussing as above we also have

1 1 r(a,
Jy(Au; + B +< Swanp) D=
(Auy +Bug) < c1y s e b)>( wap) 7D

14
B(u)=6 | g8—a(u) _c| e
+C (P54 o)) g c/Q e i

If B(u)—6 >N—dp*(a,d)— pd, then

N_dp*(a7d)
—,
Assume that N > N" = p(a+1+ (p—1)(p(a+1)—dp*(a,d))). Then

B(u)>d6+plat+l)—dp*(a,d) >

8+ (p—1)(dp*(a,d) — pla+1)) > 0.

Furthermore,
§+pla+1)—dp(ad) < B(u),

which is equivalent to
f(8+pla+1)—dp*(a,d)) < f(B(u)) =0,

and it is equivalent to
0<u<us,

where
=(8+pla+1)—dp*(a,d)’" (8 +(p—1)(dp*(a,d) - pla+1))).
If § — () >N —dp*(a,d) — p§, then
a(p) <8 —pla+1)+dp*(a,d) < 8.
Assume N > N := p((p+1)(a+1)—dp*(a,d)). Then

0<d—pla+1)+dp(a,d)<$.
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Consequently,
8~ pla+1)+dp*(a,d) > a(),

which is equivalent to

f(8—pla+1)+dp*(a.d)) < f(a(un)) =0,
and it is equivalent to
0<u <,

where

* p-1 *
e =(8=pla+1)+dp'(ad)) (8+(p—1)(pla+1)—dp(a,d).
Now we choose N and u such that
N >max{ NN} =N" and 0<u <min{uz,us}.

Taking & small we have
C(elP DG | (p=DBW-0)) |1 g| - c/ ’ ‘d <20

for some constant o > 0. Choose v** > 0 small enough such that [} < o for 0<
v < v**. Therefore (4.5) holds.
The proof of the lemma is completed.

PROOF OF THEOREM 1.1. Set vp = min{V’, v*,v**}. From the fact ¢, — c1

as v — 0 and by Lemma 4.4 it follows that ¢, , is bounded uniformly in v € (0, vp) .

Let upy be the solution obtained in Lemma 4.3. Then there exists a constant C > 0
such that

lugv|| <C, Vve(0,w). 4.7)

Define u* (x) =max {+u(x), 0} respectively forany u € W, ”(Q), then u* € W, (Q).
By (4.6) we can find v,, — 0 such that for some u € WOI.’QP(Q),

uy,, — u® weakly in W, P(Q).

For convenience, we denote u3 v, , Jy,, C1,v,, C2,v, and Ay, as uy, Jy, €14, €2, and A,
respectively. Since uf € Ay, Ju(uF) > ¢1,. From Lemma 4.4 it follows that

)+ (1) = D) = 2 < crat (£ = =) (Sya) P —
n\Uy n\Uy ) =JInUn) =C2n X Clpn » (a b) w.a,b

for n large. Necessarily,

p*(ab)

ey (Snas) T o

Jnla ")g(p p*(a,b)
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By (4.6) and the fact that ;" € A, we derive

< |t |P" (@b)
1

Dl
S Jo Jxfpr*(@b) SC

for some positive constants C; and C,.

Now we study the convergence of {u;"}. Note that {u;} is bounded in Wol_;f (Q).

By Lemma 2.1 and the concentration compactness theorem ([13],[14]) and lip to a
subsequence, we have that u — u* strongly in WOl P(Q) for some u € WOl P(Q) and

u™ # 0. Therefore u changes signin Q , u, — u weakly in Wolf(Q) and u is a

solution of (1.1). Since ¢3, — c20 as n— oo, itis easy to verify that {u,} isactually a

PS§ sequence for Jy atlevel ¢y . From lim ¢y, = ¢ and by standard arguments we
n—s00

can show that a subsequence of {u,} converges strongly to u in W()lap(Q) Therefore
¢20 = Jo(u). The proof of Theorem 1.1 is completed. [
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