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SOME RESULTS ON WEIGHTED CRITICAL QUASILINEAR PROBLEMS

DONGSHENG KANG

(Communicated by C. L. Tang)

Abstract. In this paper, we are concerned with a kind of quasilinear elliptic problems, which
involves the Caffarelli-Kohn-Nirenberg inequality and critical exponents. By employing varia-
tional methods and analytical techniques, the existence of sign-changing solutions to the problem
is proved.

1. Introduction

In this paper, we investigate the following elliptic problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−div
( |∇u|p−2∇u

|x|ap

)
− μ

|u|p−2u

|x|p(a+1) =
|u|p∗(a,b)−2u

|x|bp∗(a,b) +λ
|u|q−2u

|x|dp∗(a,d) ,

u ∈W 1,p
0,a (Ω) ,

(1.1)

where Ω⊂ R
N is a bounded domain with smooth boundary and

0 ∈Ω, N � 3, λ > 0, 1 < p < N,

0 � μ < μ , μ :=
(N− p

p
−a

)p
,

0 � a <
N− p

p
, a � b, d < a+1, p � q < p∗(a,d),

where

p∗(a,b) :=
Np

N− p(a+1−b)
and p∗(a,d) :=

Np
N− p(a+1−d)

are the critical Hardy-Sobolev exponents and p∗(0,0) = p∗ := Np/(N− p) is the crit-
ical Sobolev exponent. The space W 1,p

0,a (Ω) is the completion of C∞
0 (Ω) with respect

to the norm
(∫

Ω |x|−ap|∇u|p dx
)1/p

.
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By a solution to the problem (1.1), we mean a function u ∈W 1,p
0,a (Ω) such that the

following equality holds for all v ∈W 1,p
0,a (Ω) :

∫
Ω

( |∇u|p−2∇u∇v
|x|ap − μ

|u|p−2uv

|x|p(a+1) −
|u|p∗(a,b)−2uv

|x|bp∗(a,b) −λ
|u|q−2uv

|x|dp∗(a,d)

)
dx = 0.

By the standard elliptic regularity argument, u ∈C1(Ω\ {0}) .
Problem (1.1) is related to the Caffarelli-Kohn-Nirenberg inequality [3]:

(∫
RN

|u|p∗(a,b)

|x|bp∗(a,b) dx

) p
p∗(a,b)

� C
∫

RN

|∇u|p
|x|ap dx , ∀ u ∈C∞

0 (RN) , (1.2)

which is also named as the (weighted or general) Hardy-Sobolev inequality. For the
sharp constants and extremal functions, see [9]. If b = a+ 1, then p∗(a,b) = p and
the following Hardy inequality holds [1] [16]:

∫
RN

|u|p
|x|p(a+1) dx � 1

μ

∫
RN

|∇u|p
|x|ap dx , ∀u ∈C∞

0 (RN) , (1.3)

where μ = (N−p
p −a)p.

We employ the following norm in the space W 1,p
0,a (Ω) for μ < μ :

||u|| = ||u||
W1,p

0,a (Ω) :=
(∫

Ω

( |∇u|p
|x|ap − μ

|u|p
|x|p(a+1)

)
dx

) 1
p

. (1.4)

By (1.3) it is equivalent to the norm (
∫
Ω |x|−ap|∇u|p dx)1/p of the space W 1,p

0,a (Ω) . Ac-
cording to the Hardy inequality, the following best constant is well-defined:

Sμ,a,b := inf
u∈D1,p

a (RN )\{0}

∫
RN

( |∇u|p
|x|ap − μ

|u|p
|x|p(a+1)

)
dx

(∫
RN

|u|p∗(a,b)

|x|bp∗(a,b) dx

) p
p∗(a,b)

,

where the space D1,p
a (RN) is the completion of C∞

0 (RN) with respect to the norm
(
∫
RN |x|−ap|∇u|p dx)1/p . By Lemma 2.1 of this paper, we can also define the following

constant:

Λμ,a,d := inf
u∈W1,p

0,a (Ω)\{0}

∫
Ω

( |∇u|p
|x|ap − μ

|u|p
|x|p(a+1)

)
dx

∫
Ω

|u|p
|x|dp∗(a,d) dx

.

The elliptic problems involving the Hardy and Hardy-Sobolev inequalities have
been studied by many authors, either in bounded domain or in the whole space R

N ,
see [2]-[6], [8]-[10], [15]-[19] and the references therein. Many important results were
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obtained in these publications and the results give us very good insight into these prob-
lems. In particular, when p = 2, a = 0 and μ < (N−2

2 )2 , the problem (1.1) was investi-
gated extensively. On the other hand, we know less about (1.1) when p �= 2, a �= 0 and
μ < μ . Thus it is meaningful for us to study (1.1) deeply.

The purpose of this paper is to investigate the existence of the sign-changing solu-
tions to (1.1). In order to state clearly the conclusions of this paper, we need to explain
some notations. α(μ) and β (μ) (α(μ) < β (μ)) are the zeroes of the function

f (t) = (p−1)t p−(
N− p(a+1)

)
t p−1 + μ , t � 0, 0 � μ < μ .

The following constants are well defined and will be used in this paper:

δ := N−p
p −a,

τ0 := N−p(a+1)
N−p(a+1−b) ,

N′ := p(a+1+ p(a+1)−dp∗(a,d)
p−1 ),

N′′ := p(a+1+(p−1)(p(a+1)−dp∗(a,d))),

q1 := max
{

p, N−dp∗(a,d)−(p−1)(β (μ)−δ )
δ , N−dp∗(a,d)−(p−1)(δ−α(μ)

δ
}
,

q2 := max
{

p, N−dp∗(a,d)−(β (μ)−δ )
δ , N−dp∗(a,d)−(δ−α(μ)

δ
}
,

μ1 :=
(
δ + p(a+1)−dp∗(a,d)

p−1

)p−1(δ +dp∗(a,d)− p(a+1)),

μ2 :=
(
δ − p(a+1)−dp∗(a,d)

p−1

)p−1(δ + p(a+1)−dp∗(a,d)),

μ3 :=
(
δ + p(a+1)−dp∗(a,d)

)p−1(δ +(p−1)(dp∗(a,d)− p(a+1))
)
,

μ4 :=
(
δ − p(a+1)+dp∗(a,d)

)p−1(δ +(p−1)(p(a+1)−dp∗(a,d))
)
.

The main result of this paper is summarized in the following theorem, which is
new when 0 < a < (N − p)/p and 0 < μ < μ . We can verify that the sets used in
Theorem 1.1 for the parameters μ and q are not empty.

THEOREM 1.1. Assume that one of the following conditions holds:

(i) 1 < p < 2, 0 � μ < μ and q1 < q < p∗(a,d).
(ii) 2 � p < N, 0 � μ < μ and q2 < q < p∗(a,d).
(iii) 1 < p < 2, q = p, 0 < λ < Λμ,a,d, N > N′ and 0 � μ < min{μ1, μ2}.
(iv) 2 � p < N, q = p, 0 < λ < Λμ,a,d , N > N′′ and 0 � μ < min{μ3, μ4}.

Then the problem (1.1) has one pair of sign-changing solutions ±u(x) , satisfying∫
Ω

( |u|p∗(a,b)−p

|x|bp∗(a,b) + λ
|u|q−p

|x|dp∗(a,d)

)
v(u)p−1u = 0 ,

where v(u) is the first eigenfunction of the weighted eigenvalue problem⎧⎪⎪⎨
⎪⎪⎩

−div
( |∇v|p−2∇v

|x|ap

)
− μ

|v|p−2v

|x|p(a+1) = γ
( |u|p∗(a,b)−p

|x|bp∗(a,b) +λ
|u|q−p

|x|dp∗(a,d)

)
|v|p−2v,

v ∈W 1,p
0,a (Ω).
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REMARK 1.1. It is known that S0,a,b has the explicit minimizers ([9]):

V (x) = Cεa− N−p
p

(
1 +

( |x|
ε

) p(a+1)−bp∗(a,b)
p−1

)− N−p(a+1)
p(a+1)−bp∗(a,b)

,

where C > 0 is a particular constant and ε > 0 is an arbitrary constant. On the other
hand, when 0 � a < N−p

p and 0 � μ < μ , the extremals of Sμ,a,b and the existence and
properties of positive solutions to (1.1) were investigated in [10] and [11].

This paper is organized as follows. In Section 2 some preliminary results are
established. In Section 3 the asymptotic properties of the extremal functions related to
Sμ,a,b are investigated. At last, we verify Theorem 1.1 in Section 4. In the following
argument, η = O(ετ )(τ > 0) means that there exists positive constant C such that
|η | � Cετ for ε > 0 small enough, o(εt) means |o(εt)|/εt → 0 as ε → 0 and o(1)
stands for a generic infinitesimal value. We always denote the positive constants as C
and omit dx in integrals for convenience.

2. Preliminary results

We summarize some required results.

LEMMA 2.1. Suppose a � d < a+1, p � q � p∗(a,d) , 0 � μ < μ . Then:

(i) there exists a constant C > 0 such that

(∫
Ω

|u|q
|x|dp∗(a,d)

)p/q

� C
∫
Ω

( |∇u|p
|x|ap − μ

|u|p
|x|p(a+1)

)
, ∀ u ∈W 1,p

0,a (Ω) ;

(ii) the embedding W 1,p
0,a (Ω) ↪→ Lq(Ω, |x|−dp∗(a,d)) is compact if p � q < p∗(a,d) .

Proof. The statement (i) can be proved by employing the Hölder inequality, (1.2)
and the equivalent norm (1.4) of W 1,p

0,a (Ω) . The proof of (ii) can be found in [21].

LEMMA 2.2. ([10],[22]) Let us suppose:

0 � a <
N− p

p
, a � b < a+1, and 0 � μ < μ .

Then the best constant Sμ,a,b is achieved in R
N by the radial functions

Vε(x) := ε−δ Up,μ(ε−1x) = ε−δ Up,μ(ε−1|x|) , ∀ε > 0 ,

that satisfy

∫
RN

( |∇Vε(x)|p
|x|ap − μ

|Vε(x)|p
|x|p(a+1)

)
=

∫
RN

|Vε(x)|p∗(a,b)

|x|bp∗(a,b) = (Sμ,a,b)
p∗(a,b)

p∗(a,b)−p .
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The function Up,μ(x) = Up,μ(|x|) is the unique radial solution of the limiting problem:

⎧⎪⎨
⎪⎩

−div

( |∇u|p−2∇u
|x|ap

)
− μ

up−1

|x|p(a+1) =
up∗(a,b)−1

|x|bp∗(a,b) in R
N\{0},

u ∈ D1, p
a (RN), u > 0 in R

N\{0},
(2.1)

satisfying

Up,μ(1) =
(
p∗(a,b)(μ − μ)/p

) 1
p∗(a,b)−p .

Furthermore, Up,μ have the following properties:

lim
r→0

rα(μ)Up,μ(r) = C1, lim
r→0

rα(μ)+1 |U ′
p,μ(r)| = C1α(μ),

lim
r→+∞

rβ (μ)Up,μ(r) = C2, lim
r→+∞

rβ (μ)+1 |U ′
p,μ(r)| = C2β (μ),

where Ci(i = 1,2) are positive constants and α(μ) and β (μ) are zeroes of the function

f (t) = (p−1)t p−(
N− p(a+1)

)
t p−1 + μ , t � 0,

that satisfy

0 � α(μ) <
N− p(a+1)

p
< β (μ) <

N− p(a+1)
p−1

. (2.2)

Furthermore, there exist positive constants C3 = C3(μ , p,a,b) and C4 = C4(μ , p,a,b)
such that

C3 � Up,μ(x)
(|x| α(μ)

δ + |x| β(μ)
δ

)δ � C4.

We mention that the properties of positive solutions to (1.1) were investigated in a
recent paper [11] and the following results are already known.

LEMMA 2.3. ([11]) Suppose 1 < p < N and 0 < μ < μ . Assume that u ∈
W 1,p

0,a (Ω) is a positive solution to the problem (1.1) . Then:

(i) there exists some constants ρ > 0 small and C > 0 , such that

u(x) � C |x|−α(μ), ∀x ∈ Bρ(0)\ {0} ;

(ii) u ∈ Lr(Ω, |x|−bp∗(a,b)) , ∀r ∈(
1, N τ0

α(μ)

)
;

(iii) |x|−a |∇u| ∈ Lr(Ω, |x|−bp∗(a,b)) , r ∈(
1, N τ0

α(μ)+a+1

)
.
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3. Asymptotic property of the extremal function

Let Vε(x) be the functions in Lemma 2.2. Take ρ > 0 small enough such that
Bρ(0) ⊂ Ω, ϕ(x) ∈ C∞

0 (Ω) , 0 � ϕ(x) � 1 , ϕ(x) = 1 for |x| � ρ
2 and ϕ(x) = 0

for |x| � ρ . Setting uε(x) = ϕ(x)Vε(x) , we have the following estimates.

LEMMA 3.1. ([12]) As ε → 0 we have:

∫
RN

( |∇uε |p
|x|ap − μ

up
ε

|x|p(a+1)

)
= (Sμ,a,b)

p∗(a,b)
p∗(a,b)−p +O(εβ (μ)p+p(a+1)−N),

∫
Ω

up∗(a,b)
ε

|x|bp∗(a,b) = (Sμ,a,b)
p∗(a,b)

p∗(a,b)−p +O(ε(β (μ)+b)p∗(a,b)−N),

∫
Ω

uq
ε

|x|dp∗(a,d) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CεN−dp∗(a,d)−qδ ,
N−dp∗(a,d)

β (μ) < q < p∗(a,d),

Cεq(β (μ)−δ )| lnε|, q = N−dp∗(a,d)
β (μ) ,

Cεq(β (μ)−δ ), 1 � q < N−dp∗(a,d)
β (μ) ,∫

Ω

uq
ε

|x|dp∗(a,d) → 0 , 1 � q < p∗(a,d).

LEMMA 3.2. Suppose 0 < μ < μ and 0 < q � p∗(a,b)− 1. Assume that u ∈
W 1,p

0,a (Ω) is a positive solution of the problem (1.1) . Then as ε → 0 we have

∫
Ω

|∇u||∇uε |p−1

|x|ap =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O(ε p−1+δ−α(μ)), α(μ)+ (p−1)β (μ) > pδ ,

O(ε p−1+δ−α(μ)| lnε|), α(μ)+ (p−1)β (μ) = pδ ,

O(ε(p−1)(β (μ)−δ+1)), α(μ)+ (p−1)β (μ) < pδ ,

(3.1)

∫
Ω

|∇u|p−1|∇uε |
|x|ap =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O(ε1+(p−1)(δ−α(μ))), (p−1)α(μ)+β (μ) > pδ ,

O(ε1+β (μ)−δ | lnε|), (p−1)α(μ)+β (μ) = pδ ,

O(ε1+β (μ)−δ ), (p−1)α(μ)+β (μ) < pδ ,

(3.2)

∫
Ω

uuq
ε

|x|bp∗(a,b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(εNτ0−qδ−α(μ)), α(μ)+qβ (μ) > Nτ0,

O(εq(β (μ)−δ )| lnε|), α(μ)+qβ (μ) = Nτ0,

O(εq(β (μ)−δ )), α(μ)+qβ (μ) < Nτ0,

(3.3)

∫
Ω

uquε
|x|bp∗(a,b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(εNτ0−δ−qα(μ)), qα(μ)+β (μ) > Nτ0,

O(εβ (μ)−δ | lnε|), qα(μ)+β (μ) = Nτ0,

O(εβ (μ)−δ ), qα(μ)+β (μ) < Nτ0,

(3.4)
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∫
Ω

uup−1
ε

|x|p(a+1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(εδ−α(μ)), α(μ)+ (p−1)β (μ) > pδ ,

O(εδ−α(μ)| lnε|), α(μ)+ (p−1)β (μ) = pδ ,

O(ε(p−1)(β (μ)−δ )), α(μ)+ (p−1)β (μ) < pδ ,

(3.5)

∫
Ω

up−1 uε
|x|p(a+1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(ε(p−1)(δ−α(μ))), (p−1)α(μ)+β (μ) > pδ ,

O(εβ (μ)−δ | lnε|), (p−1)α(μ)+β (μ) = pδ ,

O(εβ (μ)−δ ), (p−1)α(μ)+β (μ) < pδ .

(3.6)

Proof. The statements (3.1)-(3.6) can be verified by the Hölder inequality, Lemma
2.3 and Lemma 3.1. For simplicity we only prove (3.1). Note that the following equality
is useful:

Nτ0 +bp∗(a,b) = N. (3.7)

VERIFICATION OF (3.1). Assume that α(μ) + (p− 1)β (μ) > pδ . By taking
τ > 0 small we deduce that

N +
bp∗(a,b)

Nτ0
α(μ)+a+1 − τ−1

< ((a+1)(p−1)+β (μ)(p−1))
Nτ0

α(μ)+a+1 − τ
Nτ0

α(μ)+a+1 − τ−1
.

Consequently,

∫
Ω

|∇u||∇uε |p−1

|x|ap

�
(∫

Ω

(|x|−a|∇u|)
Nτ0

α(μ)+a+1−τ

|x|bp∗(a,b)

) 1
Nτ0

α(μ)+a+1
−τ

×
(∫

Ω
|x|

bp∗(a,b)
Nτ0

α(μ)+a+1
−τ−1

(
|x|−a(p−1)|∇uε |p−1

) Nτ0
α(μ)+a+1

−τ
Nτ0

α(μ)+a+1
−τ−1

) Nτ0
α(μ)+a+1

−τ−1

Nτ0
α(μ)+a+1

−τ

� Cε−( N−p
p )(p−1)

(∫ ρ
ε

0
ε

bp∗(a,b)
Nτ0

α(μ)+a+1
−τ−1

+N

r

bp∗(a,b)
Nτ0

α(μ)+a+1
−τ−1

+N−1

×
(
r−(a+1)(p−1)(r α(μ)

δ + r
β(μ)
δ

)−δ (p−1)
) Nτ0

α(μ)+a+1
−τ

Nτ0
α(μ)+a+1

−τ−1
dr

) Nτ0
α(μ)+a+1

−τ−1

Nτ0
α(μ)+a+1

−τ

� Cε−( N−p
p )(p−1)

(∫ 1

0
+

∫ ρ
ε

1

) Nτ0
α(μ)+a+1

−τ−1

Nτ0
α(μ)+a+1

−τ

� Cε−( N−p
p )(p−1)

(
O

(
ε

bp∗(a,b)
Nτ0

α(μ)+a+1
−τ−1

+N)
+O

(
ε

bp∗(a,b)
Nτ0

α(μ)+a+1
−τ−1

+N)) Nτ0
α(μ)+a+1 −τ−1

Nτ0
α(μ)+a+1

−τ
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� Cε
−( N−p

p )(p−1)+N−(α(μ)+a+1)− (α(μ)+a+1)τ
Nτ0

α(μ)+a+1
−τ

� Cε
(p−1)+(δ−α(μ))− (α(μ)+a+1)τ

Nτ0
α(μ)+a+1 −τ

.

Since τ is arbitrary, taking the limit as τ → 0 we have

∫
Ω

|∇u||∇uε |p−1

|x|ap � Cε(p−1)+(δ−α(μ)).

Assume that α(μ)+ (p−1)β (μ) < pδ . By taking τ > 0 small we deduce that

N +
bp∗(a,b)

Nτ0
α(μ)+a+1 − τ−1

> ((a+1)(p−1)+β (μ)(p−1))
Nτ0

α(μ)+a+1 − τ
Nτ0

α(μ)+a+1 − τ−1
.

By direct calculation we have

∫
Ω

|∇u||∇uε |p−1

|x|ap

�
(∫

Ω

(|x|−a|∇u|)
Nτ0

α(μ)+a+1−τ

|x|bp∗(a,b)

) 1
Nτ0

α(μ)+a+1
−τ

×
(∫

Ω
|x|

bp∗(a,b)
Nτ0

α(μ)+a+1
−τ−1

(
|x|−a(p−1)|∇uε |p−1

) Nτ0
α(μ)+a+1

−τ
Nτ0

α(μ)+a+1
−τ−1

) Nτ0
α(μ)+a+1

−τ−1

Nτ0
α(μ)+a+1

−τ

� Cε−( N−p
p )(p−1)

(∫ ρ
ε

0
ε

bp∗(a,b)
Nτ0

α(μ)+a+1
−τ−1

+N

r

bp∗(a,b)
Nτ0

α(μ)+a+1
−τ−1

+N−1

×
(
r−(a+1)(p−1)(r α(μ)

δ + r
β(μ)
δ

)−δ (p−1)
) Nτ0

α(μ)+a+1
−τ

Nτ0
α(μ)+a+1

−τ−1
dr

) Nτ0
α(μ)+a+1

−τ−1

Nτ0
α(μ)+a+1

−τ

� Cε−( N−p
p )(p−1)+(a+1)(p−1)+β (μ)(p−1)

= O(ε(p−1)(β (μ)−δ+1)).

If α(μ)+ (p−1)β (μ) = pδ , by repeating the above argument we have

∫
Ω

|∇u||∇uε |p−1

|x|ap = O(ε(p−1)(β (μ)−δ+1)| lnε|).

The proof of this lemma is thus completed.

4. Existence of sign-changing solutions

In this section, we investigate the sign-changing solutions to the problem (1.1).
We have to overcome the singularity of the positive solutions to (1.1).
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For ν � 0 small and u ∈W 1,p
0,a (Ω), we define

Jν(u) =
1
p
‖u‖p− 1

p∗(a,b)−ν

∫
Ω

|u|p∗(a,b)−ν

|x|bp∗(a,b) − λ
q

∫
Ω

|u|q
|x|dp∗(a,d) , (4.1)

Λν = {u ∈W 1,p
0,a (Ω) ; 〈J′ν(u) , u〉 = 0 , u �≡ 0}, (4.2)

c1,ν = inf
u∈Λν

Jν(u) . (4.3)

Then Jν ∈C1(W 1,p
0,a (Ω), R). Moreover, for ν ′ > 0 small enough, there exists α0 > 0

such that the following lower bound holds:

c1,ν � α0, ∀ν ∈ [0 , ν ′ ].

We recall the following existence result related to the positive solutions of (1.1).

LEMMA 4.1. ([10]) Suppose N � 3, λ > 0, a � b,d < a+1, 0 � μ < μ . As-
sume that one of the following conditions holds:

(i) q = p , 0 < λ < Λμ,a,d , N � p2(a+1)+ (1− p)dp∗(a,d) and

0 � μ < μ̃ :=
N− (p2(a+1)+ (1− p)dp∗(a,d))

p

(N−dp∗(a,d)
p

)p−1
.

(ii) λ > 0, q̃ < q < p∗(a,d), where

q̃ := max

{
p ,

N−dp∗(a,d)
β (μ)

,
p(2N−dp∗(a,d)− p(a+1+β (μ)))

N− p(a+1)

}
.

Then the problem (1.1) has a mountain-pass-type positive solution u1 ∈ Λ0 .

It should be mentioned that the solution u1 has the following property [20]:

J0(u1) = sup
t∈R

J0(t u1) = c1,0 := inf
u∈Λ0

J0(u).

LEMMA 4.2. ([10]) For ε > 0 small enough, there exists a constant C > 0 such
that

sup
t�0

J0(tuε) �
(1

p
− 1

p∗(a,b)

)
(Sμ,a,b)

p∗(a,b)
p∗(a,b)−p −C

∫
Ω

uq
ε

|x|dp∗(a,d) +O
(
ε p(β (μ)−δ )).

To obtain the sign-changing solutions, we employ the min-max principle ([7]). To
this end, let B ⊂ W 1,p

0,a (Ω) be a closed symmetric set. Then the Krasnoselski genus
i(B) is well defined. Fix ρ > 0 and define

Sρ =
{
u|u ∈W 1,p

0,a (Ω), ‖u‖ = ρ
}
,

H =
{
h|h : W 1,p

0,a (Ω) →W 1,p
0,a (Ω) is an odd homeomorphism

}
,

F2 =
{
B|B ⊂W 1,p

0,a (Ω) is closed symmetric , i(h(B)∩Sρ ) � 2 , ∀h ∈ H
}
.

The following result in the sub-critical case can be obtained by the min-max prin-
ciple ([7]) and the proof is omitted for simplicity.
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LEMMA 4.3. There is a ν∗ > 0, such that for every ν ∈ (0 , ν∗), the problem⎧⎪⎪⎨
⎪⎪⎩

−div
( |∇u|p−2∇u

|x|ap

)
− μ

|u|p−2u

|x|p(a+1) =
|u|p∗(a,b)−2−νu

|x|bp∗(a,b) +λ
|u|q−2u

|x|dp∗(a,d) ,

u ∈W 1,p
0,a (Ω),

(4.4)

has a pair of sign-changing solutions ±u2,ν satisfying

∫
Ω

( |u2,ν |p∗(a,b)−p−ν

|x|bp∗(a,b) + λ
|u2,ν |q−p

|x|dp∗(a,d)

)
v(u2,ν)p−1u2,ν = 0 ,

where v(u2,ν) is the first eigenfunction of the weighted eigenvalue problem⎧⎪⎪⎨
⎪⎪⎩

−div
( |∇v|p−2∇v

|x|ap

)
− μ

|v|p−2v

|x|p(a+1) = γ
( |u2,ν |p∗(a,b)−p−ν

|x|bp∗(a,b) +λ
|u2,ν |q−p

|x|dp∗(a,d)

)
|v|p−2v,

v ∈W 1,p
0,a (Ω).

Furthermore,
c2,ν := inf

A∈F2
sup
w∈A

Jν(w) = Jν(u2,ν) .

Note that the sets in Theorem 1.1 for the parameters q and μ are smaller than
those in Lemma 4.1 respectively. Thus under the assumptions of Theorem 1.1 we can
get a positive solution u1 to (1.1). Furthermore, we have the following estimate for the
sub-critical problem (4.4).

LEMMA 4.4. Under the assumptions of Theorem 1.1, there exist σ > 0 and
ν∗∗ > 0 such that

c2,ν � c1,ν+
(1

p
− 1

p∗(a,b)

)(
Sμ,a,b

) p∗(a,b)
p∗(a,b)−p −σ , ∀ν ∈ (0 , ν∗∗) . (4.5)

Proof. Arguing as in [8] and [18], we have that c1,ν → c1,0 and c2,ν → c2,0 as
ν → 0.

The following elementary inequalities are well known: ∀r ∈ [1 , +∞), there exists
a constant C = C(r) > 0 such that

|A+B|r � |A|r +B|r +C ( |A|r−1 |B|+ |A|B|r−1) , ∀A, B ∈ R ,

|A+B|r � |A|r + |B|r −C ( |A|r−1 |B|+ |A| |B|r−1) , ∀A, B ∈ R .

Set Γε =span{uε , u1}, where uε and u1 are the functions defined as in Lemmas
3.1 and 4.1. Then Γε ∈ F2 and

c2,ν � sup
w∈Γε

Jν(w) = sup
A,B∈R

Jν(Au1 +Buε) .
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Consequently,

Jν(Au1 +Buε)

=
1
p
‖Au1 +Buε‖p− λ

q

∫
Ω

|Au1 +Buε |q
|x|dp∗(a,d) − 1

p∗(a,b)−ν

∫
Ω

|Au1 +Buε |p∗(a,b)−ν

|x|bp∗(a,b)

� Jν(Au1)+ Jν(Buε)

+ C|A|p−1|B|
∫
Ω
|x|−ap|∇u1|p−1|∇uε |+C|A||B|p−1

∫
Ω
|x|−ap|∇u1||∇uε |p−1

+C|A|p∗(a,b)−1−ν |B|
∫
Ω

up∗(a,b)−1−ν
1 uε
|x|bp∗(a,b) +C|A||B|p∗(a,b)−1−ν

∫
Ω

u1u
p∗(a,b)−1−ν
ε

|x|bp∗(a,b)

+C|A|p−1|B|
∫
Ω

up−1
1 uε

|x|p(a+1) + C|A||B|p−1
∫
Ω

u1u
p−1
ε

|x|p(a+1)

+C|A|q−1|B|
∫
Ω

uq−1
1 uε

|x|dp∗(a,d) + C|A||B|q−1
∫
Ω

u1u
q−1
ε

|x|dp∗(a,d)

� Jν(Au1)+ Jν(Buε)

+C(|A|p + |B|p)(εβ (μ)−δ + ε(p−1)(β (μ)−δ ) + εα(μ)−δ + ε(p−1)(α(μ)−δ ))| lnε|
+C

(|A|p∗(a,b)−ν + |B|p∗(a,b)−ν)(εβ (μ)−δ + εδ−α(μ))| lnε|
+C(|A|q + |B|q)(εβ (μ)−δ + εδ−α(μ))| lnε| .

By the above estimates we get that

lim
A,B→∞

Jν(Au1 +Buε) = −∞ for small enough ε > 0.

Therefore we may assume that A and B are in bounded sets. From Lemmas 3.1, 3.2
and 4.3 it follows that

Jν(Au1 +Buε)
� Jν(Au1)+ Jν(Buε)

+C
(
ε(p−1)(β (μ)−δ ) + εβ (μ)−δ + ε(p−1)(δ−α(μ)) + εδ−α(μ))| lnε|

� c1,ν + J0(Buε)

+C
(
ε(p−1)(β (μ)−δ ) + εβ (μ)−δ + ε(p−1)(δ−α(μ)) + εδ−α(μ))| lnε|+ I1

� c1,ν +
( 1

p
− 1

p∗(a,b)

)(
Sμ,a,b

) p∗(a,b)
p∗(a,b)−p −C

∫
Ω

uq
ε

|x|dp∗(a,d)

+ C
(
ε(p−1)(β (μ)−δ ) + εβ (μ)−δ + ε(p−1)(δ−α(μ)) + εδ−α(μ))| lnε|+ I1,

where

I1 :=
|B|p∗(a,b)

p∗(a,b)

∫
Ω

up∗(a,b)
ε

|x|bp∗(a,b) − |B|p∗(a,b)−ν

p∗(a,b)−ν

∫
Ω

up∗(a,b)−ν
ε

|x|bp∗(a,b) .
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(i). Assume that 1 < p < 2 and q > q1, where

q1 = max
{
p, N−dp∗(a,d)−(p−1)(β (μ)−δ )

δ , N−dp∗(a,d)−(p−1)(δ−α(μ)
δ

}
.

Then

N−dp∗(a,d)−qδ < (p−1)(β (μ)− δ ) < β (μ)− δ ,

N−dp∗(a,d)−qδ < (p−1)(δ −α(μ)) < δ −α(μ).

Since
N−dp∗(a,d)− (p−1)(β (μ)− δ )

δ
>

N−dp∗(a,d)
β (μ)

,

from Lemma 3.1 it follows that there exists a constant σ > 0 such that

C
(
ε(p−1)(β (μ)−δ ) + εβ (μ)−δ + ε(p−1)(δ−α(μ)) + εδ−α(μ))| lnε|

−C
∫
Ω

uq
ε

|x|dp∗(a,d) � −2σ . (4.6)

Choose ν∗∗ > 0 small enough such that I1 < σ for 0 < ν < ν∗∗. Then

c2,ν � Jν(Au1 +Buε) � c1,ν+
(1

p
− 1

p∗(a,b)

)(
Sμ,a,b

) p∗(a,b)
p∗(a,b)−p −σ , ∀ν ∈ (0, ν∗∗).

(ii). Assume that p � 2 and q > q2, where

q2 = max
{

p, N−dp∗(a,d)−(β (μ)−δ )
δ , N−dp∗(a,d)−(δ−α(μ)

δ
}
.

Then

N−dp∗(a,d)−qδ < β (μ)− δ < (p−1)(β (μ)− δ ),
N−dp∗(a,d)−qδ < δ −α(μ) < (p−1)(δ −α(μ)).

Since
N−dp∗(a,d)− (β (μ)− δ )

δ
>

N−dp∗(a,d)
β (μ)

,

from Lemma 3.1 it follows that (4.6) for some constant σ > 0. Choose ν∗∗ > 0 small
enough such that I1 < σ for 0 < ν < ν∗∗. Therefore (4.5) holds.

(iii). 1 < p < 2, q = p and 0 < λ < Λμ,a,d . Discussing as above we also have

Jν(Au1 +Buε) � c1,ν +
(1

p
− 1

p∗(a,b)

)(
Sμ,a,b

) p∗(a,b)
p∗(a,b)−p −C

∫
Ω

up
ε

|x|dp∗(a,d)

+ C
(
ε(p−1)(δ−α(μ)) + ε(p−1)(β (μ)−δ ))| lnε|+ I1.

If (p−1)(β (μ)− δ ) > N−dp∗(a,d)− pδ , then

β (μ) > δ +
p(a+1)−dp∗(a,d)

p−1
>

N−dp∗(a,d)
p

.
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If (p−1)(δ −α(μ)) > N−dp∗(a,d)− pδ , then

α(μ) < δ − p(a+1)−dp∗(a,d)
p−1

< δ .

On the other hand, it’s easy to verify that the function

f (t) = (p−1)t p−(
N− p(a+1)

)
t p−1 + μ , t � 0,

has the unique minimal point δ . Furthermore, f (t) is decreasing on the interval (0,δ )
and is increasing on the interval (δ ,+∞) .

If
N > Ñ := p((p+1)(a+1)−dp∗(a,d)),

then
δ +dp∗(a,d)− p(a+1) > 0.

Furthermore,

δ +
p(a+1)−dp∗(a,d)

p−1
< β (μ),

which is equivalent to

f
(
δ +

p(a+1)−dp∗(a,d)
p−1

)
< f

(
β (μ)

)
= 0,

and it is equivalent to
0 � μ < μ1,

where
μ1 =

(
δ + p(a+1)−dp∗(a,d)

p−1

)p−1(δ +dp∗(a,d)− p(a+1)).

If

N > N′ = p(a+1+
p(a+1)−dp∗(a,d)

p−1
),

then

0 < δ − p(a+1)−dp∗(a,d)
p−1

< δ .

Hence

δ − p(a+1)−dp∗(a,d)
p−1

> α(μ),

which is equivalent to

f
(
δ − p(a+1)−dp∗(a,d)

p−1

)
< f

(
α(μ)

)
= 0,

and it is equivalent to
0 � μ < μ2,
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where
μ2 =

(
δ − p(a+1)−dp∗(a,d)

p−1

)p−1(δ + p(a+1)−dp∗(a,d)).

Now we choose N and μ such that

N > max
{
Ñ, N′} = N′ and 0 � μ < min{μ1, μ2}.

Then taking ε small we have

C
(
ε(p−1)(δ−α(μ)) + ε(p−1)(β (μ)−δ ))| lnε|−C

∫
Ω

up
ε

|x|dp∗(a,d) � −2σ

for some constant σ > 0. Choose ν∗∗ > 0 small enough such that I1 < σ for 0 <
ν < ν∗∗. Thus (4.5) holds.

(iv). p � 2, q = p and 0 < λ < Λμ,a,d. Discussing as above we also have

Jν(Au1 +Buε) � c1,ν +
(1

p
− 1

p∗(a,b)

)(
Sμ,a,b

) p∗(a,b)
p∗(a,b)−p

+C
(
εβ (μ)−δ + εδ−α(μ))| lnε|−C

∫
Ω

up
ε

|x|dp∗(a,d) + I1.

If β (μ)− δ > N−dp∗(a,d)− pδ , then

β (μ) > δ + p(a+1)−dp∗(a,d) >
N−dp∗(a,d)

p
.

Assume that N > N′′ = p(a+1+(p−1)(p(a+1)−dp∗(a,d))). Then

δ +(p−1)(dp∗(a,d)− p(a+1)) > 0.

Furthermore,
δ + p(a+1)−dp∗(a,d) < β (μ),

which is equivalent to

f
(
δ + p(a+1)−dp∗(a,d)

)
< f

(
β (μ)

)
= 0,

and it is equivalent to
0 � μ < μ3,

where

μ3 =
(
δ + p(a+1)−dp∗(a,d)

)p−1(δ +(p−1)(dp∗(a,d)− p(a+1))).

If δ −α(μ) > N−dp∗(a,d)− pδ , then

α(μ) < δ − p(a+1)+dp∗(a,d) < δ .

Assume N > N := p((p+1)(a+1)−dp∗(a,d)) . Then

0 < δ − p(a+1)+dp∗(a,d) < δ .
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Consequently,
δ − p(a+1)+dp∗(a,d) > α(μ),

which is equivalent to

f
(
δ − p(a+1)+dp∗(a,d)

)
< f

(
α(μ)

)
= 0,

and it is equivalent to
0 � μ < μ4,

where

μ4 =
(
δ − p(a+1)+dp∗(a,d)

)p−1
(δ +(p−1)(p(a+1)−dp∗(a,d))).

Now we choose N and μ such that

N > max
{

N′′,N
}

= N′′ and 0 � μ < min{μ3,μ4}.

Taking ε small we have

C
(
ε(p−1)(δ−α(μ)) + ε(p−1)(β (μ)−δ ))| lnε|−C

∫
Ω

up
ε

|x|dp∗(a,d) � −2σ

for some constant σ > 0. Choose ν∗∗ > 0 small enough such that I1 < σ for 0 <
ν < ν∗∗. Therefore (4.5) holds.

The proof of the lemma is completed.

PROOF OF THEOREM 1.1. Set ν0 = min{ν ′,ν∗,ν∗∗} . From the fact c1,ν → c1,0

as ν → 0 and by Lemma 4.4 it follows that c2,ν is bounded uniformly in ν ∈ (0 , ν0) .
Let u2,ν be the solution obtained in Lemma 4.3. Then there exists a constant C > 0
such that

‖u2,ν‖ � C , ∀ν ∈ (0 , ν0) . (4.7)

Define u±(x)=max{±u(x) , 0} respectively for any u∈W 1,p
0,a (Ω), then u± ∈W 1,p

0,a (Ω).

By (4.6) we can find νn → 0 such that for some u ∈W 1,p
0,a (Ω) ,

u±2,νn
⇀ u± weakly in W 1,p

0,a (Ω) .

For convenience, we denote u2,νn , Jνn , c1,νn , c2,νn and Λνn as un, Jn, c1,n, c2,n and Λn

respectively. Since u±n ∈ Λn, Jn(u±n ) � c1,n . From Lemma 4.4 it follows that

Jn(u+
n )+ Jn(u−n ) = Jn(un) = c2,n � c1,n +

(1
p
− 1

p∗(a,b)

)(
Sμ,a,b

) p∗(a,b)
p∗(a,b)−p −σ

for n large. Necessarily,

Jn(u±n ) �
(1

p
− 1

p∗(a,b)

)(
Sμ,a,b

) p∗(a,b)
p∗(a,b)−p −σ .
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By (4.6) and the fact that u±n ∈ Λn we derive

C1 �
∫
Ω

|u±n |p
∗(a,b)

|x|bp∗(a,b) � C2

for some positive constants C1 and C2 .

Now we study the convergence of {u±n } . Note that {u±n } is bounded in W 1,p
0,a (Ω).

By Lemma 2.1 and the concentration compactness theorem ([13],[14]) and up to a
subsequence, we have that u±n → u± strongly in W 1,p

0,a (Ω) for some u ∈W 1,p
0,a (Ω) and

u± �≡ 0 . Therefore u changes sign in Ω , un ⇀ u weakly in W 1,p
0,a (Ω) and u is a

solution of (1.1). Since c2,n → c2,0 as n→∞, it is easy to verify that {un} is actually a
PS sequence for J0 at level c2,0 . From lim

n→∞
c1,n = c1,0 and by standard arguments we

can show that a subsequence of {un} converges strongly to u in W 1,p
0,a (Ω). Therefore

c2,0 = J0(u) . The proof of Theorem 1.1 is completed. �

Acknowledgements. The author acknowledges the anonymous referee for carefully
reading this paper and making many useful comments.

RE F ER EN C ES

[1] B. ABDELLAOUI AND I. PERAL, The effect of Harnack inequality on the existence and nonexistence
results for quasilinear parabolic equations related to Caffarelli-Kohn-Nirenberg inequalities, NoDEA
Nonlinear Differential Equations Appl., 14 (2007), 335–360.

[2] R. ASSUNCAO, P. CARRIAO AND O. MIYAGAKI, Subcritical perturbations of a singular quasilinear
elliptic equation involving the critical Hardy-Sobolev exponent, Nonlinear Anal., 66 (2007), 1351–
1364.

[3] L. CAFFARELLI, R. KOHN AND L. NIRENBERG, First order interpolation inequality with weights,
Compos. Math., 53 (1984), 259–275.

[4] D. CAO AND P. HAN, Solutions to critical elliptic equations with multi-singular inverse square po-
tentials, J. Differential Equations, 224 (2006), 332–372.

[5] F. CATRINA AND Z. WANG, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, exis-
tence (and nonexistence), and symmetry of extermal functions, Comm. Pure Appl. Math., 54 (2001),
229–258.

[6] V. FELLI AND M. SCHNEIDER, Compactness and existence results for degenerate critical elliptic
equations, Commun. Contemp. Math., 7 (2005), 37–73.

[7] N. GHOUSSOUB, Duality and perturbation methods in critical point theory, Combridge University
Press, Combridge, UK, 1993.

[8] N. GHOUSSOUB AND C. YUAN, Multiple solutions for quasi-linear PDEs involving the critical
Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703–5743.

[9] T. HORIUCHI, Best constant in weighted Sobolev inequality with weights being powers of distance
from the origin, J. Inequal. Appl., 1 (1997), 275–292.

[10] D. KANG, Positive solutions to the weighted critical quasilinear problems, Appl. Math. Comput., 213
(2009), 432–439.

[11] D. KANG, Some properties of solutions to the singular quasilinear problem, Nonlinear Anal., 72
(2010), 682–688.

[12] D. KANG, Y. HUANG AND S. LIU, Asymptotic estimates on the extremal functions of a quasilinear
elliptic problem, J. South Central. Univ. Natl., 27, 4 (2008), 96–101.

[13] P. L. LIONS, The concentration compactness principle in the calculus of variations, the limit case(I),
Rev. Mat. Iberoamericana, 1, 1 (1985), 145–201.

[14] P. L. LIONS, The concentration compactness principle in the calculus of variations, the limit case(II),
Rev. Mat. Iberoamericana, 1, 2 (1985), 45–121.



WEIGHTED CRITICAL QUASILINEAR PROBLEMS 535

[15] K. SANDEEP, On the first eigenfunction of a perturbed Hardy-Sobolev operator, NoDEA Nonlinear
Differential Equations Appl., 10 (2003), 223–253.

[16] S. SECCHI, D. SMETS AND M. WILLEM, Remarks on a Hardy-Sobolev inequality, C. R. Acad. Sci.
Paris Sr. I Math., 336 (2003), 811–815.

[17] D. SMETS, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans.
Amer. Math. Soc., 357 (2005), 2909–2938.

[18] G. TARANTELLO, Nodal solutions of semilinear elliptic equations with critical exponent, Differential
Integral Equations, 5 (1992), 25–42.

[19] S. TERRACINI,On positive entire solutions to a class of equations with singular coefficient and critical
exponent, Adv. Differential Equations, 1 (1996), 241–264.

[20] M. WILLEM, Minimax Theorems, Birkhäuser, Boston, 1996.
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