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A BREZIS–NIRENBERG TYPE THEOREM ON LOCAL

MINIMIZERS FOR p(x) –KIRCHHOFF DIRICHLET
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(Communicated by C. -O. Alves)

Abstract. This paper deals with a class of p(x) -Kirchhoff Dirichlet problems possessing a vari-

ational structure which corresponds to the variational functional E defined on W 1,p(x)
0 (Ω) . We

prove a Brezis-Nirenberg type theorem which asserts that every local minimizer of E in the

C1(Ω) topology is also a local minimizer of E in the W 1,p(x)
0 (Ω) topology. Some applications

of this theorem are given.

1. Introduction

The Kirchhoff type equations, characterized by involving the nonlocal term, and
the differential equations with variable exponent are two important research fields hav-
ing wide-ranging application backgrounds. We refer to [2], [3], [6], [10], [11], [15],
[23], [24], [26], [27], [31], [32] and references therein for the former and to [1], [4],
[5], [9], [14], [16]-[19], [22], [28], [29], [30], [33]-[36] and references therein for the
latter. The study of the Kirchhoff type equations with variable exponent is a new and in-
teresting topic (see [12], [13]). In this paper we consider the following p(x)-Kirchhoff
Dirichlet problem:⎧⎨⎩−a

(∫
Ω

|∇u|p(x)

p(x) dx

)
Δp(x)u = b(

∫
ΩF(x,u)dx) f (x,u(x)) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded smooth domain in R
N ,

Δp(x)u = div
(
|∇u(x)|p(x)−2∇u(x)

)
,

F(x,t) =
∫ t

0
f (x,s)ds, for x ∈Ω and t ∈ R,

and p , a , b and f satisfy the following conditions:
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(p0) p ∈C0,β (Ω) for some β ∈ (0,1) and

1 < p− := inf
x∈Ω

p(x) � p+ := sup
x∈Ω

p(x) < +∞;

(a0) a : [0,+∞) → (0,+∞) is continuous;
(b0) b : R → R is continuous;
( f0) f :Ω×R → R is a Carathéodory function, and there exists q ∈C0(Ω) such

that 1 < q(x) < p∗(x) for x ∈Ω and

| f (x,t)| � c1 + c2 |t|q(x)−1 for x ∈Ω and t ∈ R,

where c1 and c2 are positive constants, and

p∗(x) =

⎧⎨⎩
Np(x)

N−p(x) if p(x) < N,

+∞ if p(x) � N.

Define

â(t) =
∫ t

0
a(s)ds, ∀t � 0, b̂(t) =

∫ t

0
b(s)ds, ∀t ∈ R,

E(u) = â

(∫
Ω

|∇u|p(x)

p(x)
dx

)
− b̂

(∫
Ω

F(x,u)dx

)
, ∀u ∈W 1,p(·)

0 (Ω) .

Then E ∈C1
(
W 1,p(·)

0 (Ω) ,R
)

. E is the variational functional corresponding to prob-

lem (1.1). Every critical point of E is just a weak solution of (1.1).
For the usual Laplacian case, that is, when a(t) ≡ 1, b(t) ≡ 1 and p(x) ≡ 2 in

(1.1), Brezis and Nirenberg [8] proved a famous theorem which asserts that every local
minimizer of E in the C1(Ω) topology is also a local minimizer of E in the W 1,2

0 (Ω)
topology. This theorem has been extended to the p -Laplacian case (see [7,21]) and to
the p(x)-Laplacian case (see [17]). A main result of the present paper is the following
theorem which extends the Brezis-Nirenberg’s theorem to the p(x)-Kirchhoff Dirichlet
problem (1.1).

THEOREM 1.1. Let (p0) , (a0) , (b0) and ( f0) hold, and let u0 ∈W 1,p(·)
0 (Ω) be a

local minimizer (resp. a strictly local minimizer) of E in the C1(Ω) topology. Then u0

is a local minimizer (resp. a strictly local minimizer) of E in the W 1,p(·)
0 (Ω) topology.

Theorem 1.1 is also a new result even for the case that p(x) ≡ 2 in (1.1).

It is well known that the fact that u0 is a local minimizer of E in the W 1,p(·)
0 (Ω)

topology is more useful than that u0 is a local minimizer of E in the C1(Ω) topology.
In Section 2 we give the proof of Theorem 1.1. In Section 3 we give some appli-

cations of Theorem 1.1 to the existence and multiplicity for problem (1.1).
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2. Proof of Theorem 1.1

Before proving Theorem 1.1, let us give some preliminaries.
The variable exponent Lebesgue space Lp(·) (Ω) is defined by

Lp(·) (Ω) =
{

u | u : Ω→ R is measurable,
∫
Ω
|u|p(x) dx < ∞

}
with the norm

|u|Lp(·)(Ω) = |u|p(·) = inf

{
σ > 0 |

∫
Ω

∣∣∣ uσ ∣∣∣p(x)
dx � 1

}
.

The variable exponent Sobolev space W 1,p(·) (Ω) is defined by

W 1,p(·) (Ω) =
{

u ∈ Lp(·) (Ω) | |∇u| ∈ Lp(·) (Ω)
}

with the norm
‖u‖W 1,p(·)(Ω) = ‖u‖1,p(·) = |u|p(·) + |∇u|p(·) .

Denote by W 1,p(·)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(·) (Ω) . |∇u|p(·) is an equiv-

alent norm on W 1,p(·)
0 (Ω) . In this paper we denote ‖u‖ = |∇u|p(·) for u ∈W 1,p(·)

0 (Ω) .
We refer to [5, 14, 20, 25, 34] for the elementary properties of the space W 1,p(x) (Ω) .

In what follows, for brevity, we shall write X instead of W 1,p(·)
0 (Ω) .

The function u ∈ X is called a (weak) solution of (1.1) if for all v ∈ X ,

a

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω
|∇u|p(x)−2∇u∇vdx = b

(∫
Ω

F(x,u)dx

)∫
Ω

f (x,u)vdx.

Define

I1(u) =
∫
Ω

|∇u|p(x)

p(x)
dx, I2(u) =

∫
Ω

F(x,u)dx, ∀u ∈ X ,

J(u) = â(I1(u)) = â

(∫
Ω

|∇u|p(x)

p(x)
dx

)
, ∀u ∈ X ,

Φ(u) = b̂(I2(u)) = b̂

(∫
Ω

F(x,u)dx

)
, ∀u ∈ X ,

E(u) = J(u)−Φ(u), ∀u ∈ X .

PROPOSITION 2.1. Let (p0) , (a0) , (b0) and ( f0) hold. Then the following state-
ments hold:
1) â ∈C1([0,∞)) , â(0) = 0 , â′(t) = a(t) > 0 for any t � 0 , â is strictly increasing on
[0,∞); b̂ ∈C1(R) , b̂(0) = 0 .
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2) J,Φ,E ∈C1(X) , J(0) = Φ(0) = E(0) = 0 . For every u,v ∈ X , there holds

E ′(u)v = a

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω
|∇u|p(x)−2∇u∇vdx

−b

(∫
Ω

F(x,u)dx

)∫
Ω

f (x,u)vdx.

Thus, u ∈ X is a (weak) solution of (1.1) if and only if u is a critical point of E .

3) The functional J : X → R is sequentially weakly lower semi-continuous, Φ : X →
R is sequentially weakly continuous, and thus E is sequentially weakly lower semi-
continuous.

Proof. The proof of statements 1) and 2) is immediate. Since the function â(t) is
increasing and the convex functional I1 is sequentially weakly lower semi-continuous,
we can see that the functional J : X →R is sequentially weakly lower semi-continuous.
Noting that the embedding X ↪→ Lq(x)(Ω) is compact, we can see that Φ is sequentially
weakly continuous. So E : X →R is sequentially weakly lower semi-continuous. �

Now let us give the proof of Theorem 1.1 which is similar to the proof of Theorem
3.1 in [17] and is based on the regularity results established in [1,16,19] for the weak
solutions of the variable exponent elliptic equations in divergence form.

PROOF OF THEOREM 1.1. We only consider the case that u0 ∈ X is a local
minimizer of E in the C1 topology because the proof in the case that u0 is a strictly
local minimizer of E in the C1 topology is very similar. Now let u0 ∈ X be a local
minimizer of E in the C1 topology. Then E ′(u0)v = 0 for every v ∈ C∞

0 (Ω) . Since
C∞

0 (Ω) is dense in X , E ′(u0)v = 0 for every v∈X . Thus, u0 is a weak solution of (1.1).
By the regularity results of [1,16,19], u0 ∈C1,β1(Ω) with some β1 ∈ (0,1) . Define

G(u) =
∫
Ω

|∇u−∇u0|p(x)

p(x)
dx, ∀u ∈ X .

For ε ∈ (0,1), put Dε = {u ∈ X : G(u) � ε}. Then Dε is a bounded, closed and con-

vex subset of X , and it is a neighborhood of u0 in W 1,p(x)
0 (Ω) . Since E : X → R is

sequentially weakly lower semi-continuous and Dε is a sequentially weakly compact
subset of X , infDε E is achieved at some uε ∈ Dε . By the Lagrange multiplier rule,
there exists με � 0 such that E ′(uε) = μεG′(uε), that is,

−a

(∫
Ω

|∇uε |p(x)

p(x)
dx

)
div(|∇uε |p(x)−2∇uε))−b

(∫
Ω

F(x,uε)dx

)
f (x,uε )

= −μεdiv(|∇uε −∇u0|p(x)−2(∇uε −∇u0)). (2.1)

Arguing by contradiction, assume that u0 is not a local minimizer of E in the

W 1,p(x)
0 (Ω) topology. Then for each ε ∈ (0,1), uε 	= u0 and E(uε) < E(u0). Note
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that uε → u0 in W 1,p(x)
0 (Ω) as ε → 0. Below we shall prove that uε → u0 in C1(Ω)

as ε → 0, which contradicts with the fact that u0 is a local minimizer of E in the C1

topology. Writing:

a

(∫
Ω

|∇u0|p(x)

p(x)
dx

)
= a0 and a

(∫
Ω

|∇uε |p(x)

p(x)
dx

)
= aε ,

b

(∫
Ω

F(x,u0)dx

)
= b0 and b

(∫
Ω

F(x,uε )dx

)
= bε ,

then (2.1) becomes

−div
[
aε |∇uε |p(x)−2∇uε − με |∇uε −∇u0|p(x)−2(∇uε −∇u0)

]
= bε f (x,uε ). (2.2)

Note that aε → a0 > 0 and bε → b0 as ε → 0. Without loss of generality, we can
assume aε � 1

2a0 and |bε | � |b0|+1.
Dividing both sides of (2.2) by aε − με , yields

−div

{
1

aε − με

[
aε |∇uε |p(x)−2∇uε − με |∇uε −∇u0|p(x)−2(∇uε −∇u0)

]}
=

bε
aε − με

f (x,uε ). (2.3)

Define Aε :Ω×R
N → R

N and Bε : Ω×R→R by

Aε(x,η) =
1

aε − με

[
aε |η |p(x)−2η− με |η−∇u0|p(x)−2(η−∇u0)

]
,

Bε(x,t) =
bε

aε − με
f (x, t).

Then uε is a weak solution of the following problem:{−divAε(x,∇u) = Bε(x,u) in Ω,
u = 0 on ∂Ω.

(2.4)

We can verify that Aε and Bε satisfy the following conditions:

Aε(x,η)η � c3 |η |p(x)− c4, ∀x ∈Ω, η ∈ R
N , (2.5)

|Aε(x,η)| � c5 |η |p(x)−1 + c6, ∀x ∈Ω, η ∈ R
N , (2.6)

|Bε(x,t)| � c7 + c8 |t|q(x)−1 , ∀x ∈Ω, t ∈ R, (2.7)

where ci is a positive constant independent of ε ∈ (0,1).
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The verification of (2.6) and (2.7) is simple, here we only give the proof of (2.5).
By the definition of Aε(x,η),

Aε(x,η)η =
1

aε − με

[
(aε |η |p(x)−2η− με |η |p(x)−2η)

− με(|η−∇u0|p(x)−2(η−∇u0)−|η |p(x)−2η)
]
η

=:
1

aε − με
[(aε − με)|η |p(x) − μεΓ],

where Γ= (|η−∇u0|p(x)−2(η−∇u0)−|η |p(x)−2η)η . In the proof of Theorem 3.1 in
[17], it was proved that

|Γ| � 1
2
|η |p(x) + c,

where c is a generic positive constant independent of ε. Thus we have

Aε(x,η)η � 1
aε − με

[(aε − με)|η |p(x)−|με |(1
2
|η |p(x) + c)]

� 1
aε + |με | [(aε +

1
2
|με |)|η |p(x) − c |με |]

� 1
2
|η |p(x)− c,

and so (2.5) is proved.
It follows from Theorem 4.1 in [19] that uε ∈ L∞(Ω) and |uε |L∞(Ω) � c be-

cause ‖uε‖W
1,p(x)
0 (Ω)

is bounded uniformly for ε ∈ (0,1), where c is a positive con-

stant independent of ε. Furthermore, by Theorem 4.4 in [19], uε ∈ C0,α1(Ω) and
‖uε‖C0,α1 (Ω) � c, where α1 ∈ (0,1) and c are positive constants independent of ε .

In addition, by Lemma 4.1 in [16], there exists δ0 > 0 such that uε ∈W 1,p(x)(1+δ0)(Ω).
Below we shall use Theorem 1.2 from [16] to prove that there exist α ∈ (0,1) and

a positive constant c independent of ε such that ‖uε‖C1,α (Ω) � c for sufficiently small
ε > 0 for the following two cases, respectively.

Case i): με ∈ [−1,0].
Noting that u0 satisfies the equation

−div(|∇u0|p(x)−2∇u0) =
b0

a0
f (x,u0), (2.8)

then (2.2) is equivalent to the following

−div

{
|∇uε |p(x)−2∇uε − με

aε
|∇uε −∇u0|p(x)−2(∇uε −∇u0)− με

aε
|∇u0|p(x)−2∇u0

}
=

bε
aε

f (x,uε )− μεb0

aεa0
f (x,u0).
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Denote Aε : Ω×R
N → R

N and Bε :Ω×R→R by

Aε(x,η) = |η |p(x)−2η− με
aε

|η−∇u0|p(x)−2(η−∇u0)− με
aε

|∇u0|p(x)−2∇u0,

Bε(x,t) =
bε
aε

f (x,t)− μεb0

aεa0
f (x,u0).

Then uε is a weak solution of the following problem:{−divAε(x,∇u) = Bε(x,u) in Ω,
u = 0 on ∂Ω.

(2.9)

We can prove that, for x,y∈Ω, η ∈R
N\{0}, ξ ∈R

N , t ∈R, the following statements
are true:

Aε(x,0) = 0, (2.10)
N

∑
i, j=1

∂ (Aε ) j

∂ηi
(x,η)ξiξ j � c1 |η |p(x)−2 |ξ |2 , (2.11)

N

∑
i, j=1

∣∣∣∣∂ (Aε) j

∂ηi
(x,η)

∣∣∣∣ |η | � c2(1+ |η |p(x)−1), (2.12)

∣∣Bε (x,t)
∣∣� c3 + c4 |t|q(x)−1 , (2.13)

where ci is a positive constant independent of ε , and for sufficiently small δ > 0,
there exists a positive constant Cδ , depending on p+, p− and δ , but independent of
με ∈ [−1,0], such that∣∣Aε(x,η)−Aε(y,η)

∣∣� Cδ |x− y|β (1+ |η |pxy−1+δ ), (2.14)

where pxy = max{p(x), p(y)}.
Here we omit the proof of (2.10)-(2.14). The proof of (2.10)-(2.13) is immediate

(see [7]), and the proof of (2.14) is similar to the proof of (3.15) in [17].
By Theorem 1.2 in [16], under the conditions (2.10)-(2.14), there exist α ∈ (0,1)

and a positive constant c independent of ε such that uε ∈C1,α(Ω) and ‖uε‖C1,α (Ω) � c.

From this and uε → u0 in W 1,p(x)
0 (Ω) it follows that uε → u0 in C1(Ω) as ε → 0.

Case ii): μ < −1.
Set vε = uε−u0. Then from (2.2) and (2.8) we know that vε satisfies the equation

−div[
1

|με | |∇vε +∇u0|p(x)−2(∇vε +∇u0)

+
1
aε

|∇vε |p(x)−2∇vε − 1
|με | |∇u0|p(x)−2∇u0]

=
bε

aε |με | f (x,vε +u0)− b0

|με |a0
f (x,u0).
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Define

Ãε(x,η) =
1

|με | |η +∇u0|p(x)−2(η +∇u0)+
1
aε

|η |p(x)−2η− 1
|με | |∇u0|p(x)−2∇u0,

B̃ε(x,t) =
bε

aε |με | f (x,t +u0)− b0

|με |a0
f (x,u0).

Then vε is a solution of the following problem:{−divÃε(x,∇v) = B̃ε(x,v) in Ω,
v = 0 on ∂Ω.

Analogously to the case i), we can prove that Ãε and B̃ε satisfy the corresponding
conditions (2.10)-(2.14). So by Theorem 1.2 in [16], vε ∈C1,α(Ω) and ‖vε‖C1,α (Ω) � c,

furthermore vε → 0 in C1(Ω), that is uε → u0 in C1(Ω) as ε → 0. The proof of
Theorem 1.1 is complete. �

REMARK 2.1. From the proof of Theorem 1.1 we see that, the fact that aε , as ε→
0+ , is bounded from below by a positive constant, which is guaranteed by condition
(a0) , plays an important role. Sometimes, it is possible to encounter the case that
condition (a0) is not satisfied at t = 0. It is obvious that, if we replace condition (a0)
by the following condition

(a0)′ a : (0,+∞) → (0,+∞) is continuous and a ∈ L1(0,t) for any t > 0,
then the conclusion of Theorem 1.1 is valid for u0 ∈ X\{0} . If we replace condition
(a0) by the following condition

(a0)′+ a satisfies (a0)′ and liminft→0+ a(t) > 0,
then the conclusion of Theorem 1.1 is also valid for u0 = 0, namely, Theorem 1.1
is valid if condition (a0) in Theorem 1.1 is replaced by the weaker condition (a0)′+ .
Note that condition (a0)′+ implies that â ∈C0([0,+∞)) , â ∈ C1((0,+∞)) , â(0) = 0,
â′(t) = a(t) > 0 for any t > 0, and â is strictly increasing on [0,+∞) . A typical
example of the function a satisfying condition (a0)′+ is the function a(t) = tα for
t > 0, where α ∈ (−1,0) .

REMARK 2.2. Problem (1.1), which is considered in Theorem 1.1, it possesses
Dirichlet boundary value condition. It is easy to see that the same assertion as in Theo-
rem 1.1 is also true for the corresponding Neumann boundary value problems.

3. Applications of Theorem 1.1

Let us continue to use the notations as in Sections 1 and 2.
For two real numbers s < t , define D[s,t] := {u ∈ X : s � u(x) � t for a.e. x ∈Ω} .

THEOREM 3.1. Let (p0) , (a0)′+ , (b0) and ( f0) hold. Suppose that the following
conditions are satisfied:

( f1) f (x, t) = 0 for x ∈Ω and t � 0 ;
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(a1) there exist positive constants α , M and C such that â(t) � Ctα for t � M;
(b1) b(t) � 0 for t ∈ R;
( f2) there exist 0 < ξ < η such that F(x,ξ ) � F(x,t) for x ∈Ω and t ∈ [ξ ,η ] .

Then problem (1.1) has a nonnegative solution u0 such that u0(x) ∈ [0,ξ ] for x ∈Ω ,
u0 is a global minimizer of the restriction of E on D[0,η] and a local minimizer of E

(in the W 1,p(·)
0 (Ω) topology).

Proof. Let r0 > 0 be fixed. Then D[−r0,η] is a convex and sequentially weakly
closed subset of X . It is obvious that there exists a positive constant C1 such that
b̂(
∫
ΩF(x,u)dx) � C1 for u ∈ D[−r0,η] . It follows from (a1) that for ‖u‖ large enough,

â

(∫
Ω

|∇u|p(x)

p(x)
dx

)
� â

(
1
p+

‖u‖p−
)

� C

(
1
p+

)α
‖u‖α p− .

Thus we have
E(u) → +∞ as u ∈ D[−r0,η] and ‖u‖→ ∞,

that is, E is coercive on D[−r0,η] . Since E is sequentially weakly lower semi-continuous,
there exists u0 ∈ D[−r0,η] such that E(u0) = infu∈D[−r0,η] E(u) .

We claim that
0 � u0(x) � ξ for x ∈Ω. (3.1)

To see this, define

u1(x) =
{

u0(x) if u0(x) � 0,
0 if u0(x) < 0,

and u2(x) =
{

u0(x) if u0(x) � ξ ,
ξ if u0(x) > ξ .

It is sufficient to show that u0 = u1 and u0 = u2 . Here we only give the proof of u0 = u2

because the proof of u0 = u1 is similar and simpler. Obviously, u2 ∈D[−r0,η] , and thus,
E(u0) � E(u2) , that is,

â(I1(u0))− â(I1(u2)) � b̂(I2(u0))− b̂(I2(u2)) .

It follows from ( f2) that I2(u0) � I2(u2) . By (b1) , b̂ is nondecreasing, so b̂(I2(u0)) �
b̂(I2(u2)) and consequently, â(I1(u0)) � â(I1(u2)) . Setting

Ω1 := {x ∈Ω : u0(x) � ξ} and Ω2 := {x ∈Ω : ξ < u0(x) � η},
then ∇u0(x) = ∇u2(x) for x ∈ Ω1 , and ∇u2(x) = 0 for x ∈ Ω2 . It is obvious that
I1(u0) � I1(u2) and â(I1(u0)) � â(I1(u2)) . Thus we have that â(I1(u0)) = â(I1(u2)) ,
and consequently, I1(u0) = I1(u2) , that is

∫
Ω

|∇u0|p(x)

p(x)
dx =

∫
Ω

|∇u2|p(x)

p(x)
dx.

Since ∫
Ω1

|∇u0|p(x)

p(x)
dx =

∫
Ω1

|∇u2|p(x)

p(x)
dx,
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we have that ∫
Ω2

|∇u0|p(x)

p(x)
dx =

∫
Ω2

|∇u2|p(x)

p(x)
dx = 0.

From this it follows that∫
Ω

|∇u0−∇u2|p(x)

p(x)
dx =

∫
Ω1

|∇u0−∇u2|p(x)

p(x)
dx+

∫
Ω2

|∇u0−∇u2|p(x)

p(x)
dx

= 0+
∫
Ω2

|∇u0|p(x)

p(x)
dx = 0,

and thus u0 = u2 . The claim (3.1) is proved.
The statement (3.1) implies that u0 is a global minimizer of the restriction of E on

D[0,η] and a local minimizer u0 of E in the C1 topology. By Theorem 1.1 and Remark

2.1, u0 is a local minimizer of E in the W 1,p(·)
0 (Ω) topology. �

THEOREM 3.2. Let (p0) , (a0)′ , (a1) , (b0) , (b1) , ( f0) and ( f1) hold. Suppose
that the following conditions are satisfied:

(a2) there exist positive constants δ1 , e1 and α1 such that â(t) � e1tα1 for t ∈ [0,δ1];

(b2) there exist positive constants δ2 , e2 and β1 such that b̂(t) � e2tβ1 for t ∈ [0,δ2];
( f3) for every n ∈ N , there exist ξn,ηn ∈ R with 0 < ξn < ηn and limn→∞ηn = 0 such
that

F(x,ξ n) � F(x, t) for x ∈Ω and t ∈ [ξ n,ηn];

( f4) there exist a non-empty open set U ⊂ Ω , a positive constant L and a sequence
{τn} with τn > 0 and limn→∞ τn = 0 , such that

lim
n→∞

ess infx∈UF(x,τn)
τr
n

= +∞

and
ess infx∈U

(
inft∈[0,τn]F(x,t)

)
� −L · ess infx∈UF(x,τn),

where r = α1 p−
β1

.

Then problem (1.1) has a sequence {un} of non-trivial nonnegative solutions such
that un is a local minimizer of E , E(un) < 0 , limn→∞E(un) = 0, limn→∞ |un|L∞(Ω) = 0
and limn→∞ ‖un‖ = 0 .

Proof. From Theorem 3.1 we know that, for every n ∈ N , there exists un ∈ D[0,ξn]
such that E(un) = infu∈D[0,ηn] E(u) . We shall prove that E(un) < 0. Now let n ∈ N

be fixed. Choose a compact set K ⊂ U such that 0 < |K| = (L + 1) |U\K| . Define
a function v ∈ X such that v(x) = 1 if x ∈ K ; v(x) = 0 if x ∈ Ω\U ; v(x) ∈ [0,1] if
x ∈U\K .

Define
hk = ess infx∈UF(x,τk) for each k ∈ N,
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d :=
(L+1)
|K|

(
2e1

e2

) 1
β1

(∫
Ω

|∇v|p(x)

p(x)
dx

)α1
β1

. (3.2)

By ( f4) , there exists k ∈ N large enough such that:

τk � min{ηn,1}, hk > d(τk)r,∫
Ω

|∇(τkv)|p(x)

p(x)
dx � δ1 and

∣∣∣∣∫ΩF(x,τkv)dx

∣∣∣∣� δ2. (3.3)

Then by (a2),

â

(∫
Ω

|∇(τkv)|p(x)

p(x)
dx

)
� e1

(∫
Ω

|∇(τkv)|p(x)

p(x)
dx

)α1

� e1(τk)α1 p−

(∫
Ω

|∇v|p(x)

p(x)
dx

)α1

, (3.4)

by ( f4) , ∫
Ω

F(x,τkv)dx =
∫

K
F(x,τkv)dx+

∫
U\K

F(x,τkv)dx

� hk |K|−Lhk |U\K|= hk

L+1
|K| , (3.5)

and by (b2) ,

b̂

(∫
Ω

F(x,τkv)dx

)
� e2

(∫
Ω

F(x,τkv)dx

)β1

� e2

(
hk

L+1
|K|
)β1

> e2

(
d(τk)r

L+1
|K|
)β1

. (3.6)

From (3.2) and r = α1 p−
β1

, we obtain

b̂

(∫
Ω

F(x,τkv)dx

)
> 2â

(∫
Ω

|∇(τkv)|p(x)

p(x)
dx

)
(3.7)

and consequently,

E(τkv) = â

(∫
Ω

|∇(τkv)|p(x)

p(x)
dx

)
− b̂

(∫
Ω

F(x,τkv)dx

)
< −1

2
b̂

(∫
Ω

F(x,τkv)dx

)
< 0.

Since 0 � τkv(x) � τk � ηn , we have E(un) � E(τkv) < 0. This implies that
un 	= 0 because E(0) = 0. By Remark 2.1, Theorem 1.1 is valid for un 	= 0 when
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condition (a0) is replaced by (a0)′ , and thus un is a local minimizer of E and is a
solution of problem (1.1).

Since |un|L∞(Ω) � ξn , we have |un|L∞(Ω) → 0 as n → ∞ , and consequently,

b̂

(∫
Ω

F(x,un)dx

)
→ 0 as n → ∞.

Noting that E(un) < 0 and â

(∫
Ω

|∇un|p(x)

p(x) dx

)
> 0, we have

â

(∫
Ω

|∇un|p(x)

p(x)
dx

)
→ 0 as n → ∞.

From this we obtain that
∫
Ω

|∇un|p(x)

p(x) dx→ 0, ‖un‖→ 0 and E(un)→ 0 as n→∞ . �

REMARK 3.1. Theorem 3.2 is a generalization of the main results established in
[23] and [13]. In [23] and [13] the Kirchhoff Dirichlet problem:{

−
(
a+b

∫
Ω |∇u|2 dx

)
Δu = λ f (x,u) in Ω,

u = 0 on ∂Ω,

and the p(x)-Kirchhoff Dirichlet problem:{
−
(
a+b

∫
Ω

1
p(x) |∇u|p(x) dx

)
div
(
|∇u|p(x)−2∇u

)
= f (x,u) in Ω,

u = 0 on ∂Ω,

were considered respectively, where a and b are positive constants. In [23] an example
of the function f satisfying the corresponding conditions ( f3) and ( f4) was given.

In Theorem 3.2, the function f (x,t) is oscillatory near t = 0. Similarly, we can
consider the case that the function f (x,t) is oscillatory at infinity, and obtain the fol-
lowing theorem.

THEOREM 3.3. Let (p0) (a0)′ , (a1) , (b0) , (b1) , ( f0) and ( f1) hold. Suppose
that the following conditions are satisfied:

(a3) there exist positive constants M1 , e1 and α1 such that â(t) � e1tα1 for t � M1 ;

(b3) there exist positive constants M2 , e2 and β1 such that b̂(t) � e2tβ1 for t � M2 ;

( f5) for every n ∈ N , there exist ξn,ηn ∈ R with 0 < ξn < ηn and limn→∞ηn = +∞
such that

F(x,ξ n) � F(x, t) for x ∈Ω and t ∈ [ξ n,ηn];

( f6) there exist a non-empty open set U ⊂ Ω , a positive constant L and a sequence
{τn} with τn > 0 and limn→∞ τn = +∞ , such that

lim
n→∞

ess infx∈UF(x,τn)
τr
n

= +∞
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and
ess infx∈U

(
inft∈[0,τn]F(x,t)

)
� −L · ess infx∈UF(x,τn),

where r = α1 p−
β1

. Then problem (1.1) has a sequence {un} of non-trivial nonnegative
solutions such that un is a local minimizer of E , E(un) < 0 , limn→∞E(un) = −∞ ,
limn→∞ |un|L∞(Ω) = ∞ and limn→∞ ‖un‖ = ∞ .

Proof. Let K , v , hk and d be as in the proof of Theorem 3.2. Then, similar
to the proof of Theorem 3.2, (3.5) holds, and consequently, for sufficiently large k ,∫
ΩF(x,τkv)dx � M2 . By ( f6) , there exists k0 ∈ N such that for k � k0 ,

hk > d(τk)r,
∫
Ω

|∇(τkv)|p(x)

p(x)
dx � M1 and

∫
Ω

F(x,τkv)dx � M2. (3.8)

For every k � k0 , similar to the proof of Theorem 3.2, we can obtain (3.4), (3.6) and
(3.7), and consequently,

E(τkv) = â

(∫
Ω

|∇(τkv)|p(x)

p(x)
dx

)
− b̂

(∫
Ω

F(x,τkv)dx

)

< −1
2
b̂

(∫
Ω

F(x,τkv)dx

)
� −1

2
e2

(
d(τk)r

L+1
|K|
)β1

. (3.9)

The statement (3.9) shows that E(τkv) < 0 for every k � k0 and E(τkv)→−∞ as
k → ∞ . Since limn→∞ηn = +∞ , for every k � k0 , there exists nk ∈ N such that τk <
ηnk . By Theorem 3.1, there exists unk ∈ D[0,ξnk ] such that E(unk) = infu∈D[0,ηnk ] E(u) .
Thus E(unk) � E(τkv) < 0 and E(unk) →−∞ as k → ∞ . This shows that unk 	= 0, unk

is a local minimizer of E ,
∥∥unk

∥∥→ ∞ and
∣∣unk

∣∣
L∞(Ω) → ∞ as k → ∞ . �

The following theorem provides a simple example of applying Theorem 1.1 and
the mountain pass theorem in combination.

THEOREM 3.4. Let (p0) , (a0)′+ , (b0) and ( f0) hold. Suppose that the following
conditions are satisfied:

( f7) there exists δ > 0 such that F(x,t) � 0 for x ∈Ω and t ∈ [−δ ,δ ];
(b4) b̂(t) � 0 for t � 0 ;

(E1) there exists u∗ ∈W 1,p(·)
0 (Ω) such that E(u∗) < 0 ;

(E2) E satisfies the (P.S)c condition for every c > 0 .
Then problem (1.1) has a mountain pass type solution with positive energy.

Proof. We know E(0) = 0. For any u ∈W 1,p(·)
0 (Ω)\{0} with |u|L∞(Ω) � δ , we

obtain from (a0) that â

(∫
Ω

|∇u|p(x)

p(x) dx

)
> 0 and from ( f7) and (b4) that

b̂

(∫
Ω

F(x,u)dx

)
� 0,
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and consequently, E(u) > 0. This shows that 0 is a strictly local minimizer of E
in the C0(Ω) topology, and hence 0 is a strictly local minimizer of E in the C1(Ω)
topology. By Theorem 1.1 and Remark 2.1, 0 is a strictly local minimizer of E in the

W 1,p(·)
0 (Ω) topology. Thus there exists r > 0 such that E(u) > 0 for every u ∈ X\{0}

with ‖u‖ � r .
We claim that inf‖u‖=r E(u) > 0. To prove this claim, arguing by contradiction,

assume that there exists a sequence {un} ⊂ X with ‖un‖ = r such that E(un) → 0
as n → ∞ . We may assume that un ⇀ u0 weakly in X . Since E is sequentially
weakly lower semi-continuous, we have that E(u0) = 0 and hence u0 = 0. Since
Φ is sequentially weakly continuous, we have that Φ(un) → Φ(0) = 0, and hence
J(un) = E(un)+Φ(un) → 0. It follows from this that un → 0 in X which contradicts
with ‖un‖ = r .

In virtue of conditions (E1) and (E2) , we can apply the mountain pass theorem
and complete the proof of Theorem 3.4. �

REMARK 3.2. It is easy to give some sufficient conditions in order that conditions
(E1) and (E2) hold.
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