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A BREZIS-NIRENBERG TYPE THEOREM ON LOCAL
MINIMIZERS FOR p(x) ~-KIRCHHOFF DIRICHLET
PROBLEMS AND APPLICATIONS

XIANLING FAN

(Communicated by C. -O. Alves)

Abstract. This paper deals with a class of p(x) -Kirchhoff Dirichlet problems possessing a vari-

ational structure which corresponds to the variational functional £ defined on Wol’p ® (Q). We
prove a Brezis-Nirenberg type theorem which asserts that every local minimizer of E in the

C'(Q) topology is also a local minimizer of E in the WOl o’ (x)(Q) topology. Some applications
of this theorem are given.

1. Introduction

The Kirchhoff type equations, characterized by involving the nonlocal term, and
the differential equations with variable exponent are two important research fields hav-
ing wide-ranging application backgrounds. We refer to [2], [3], [6], [10], [11], [15],
[23], [24], [26], [27], [31], [32] and references therein for the former and to [1], [4],
[51, [9]1, [14], [16]-[19], [22], [28], [29], [30], [33]-[36] and references therein for the
latter. The study of the Kirchhoff type equations with variable exponent is a new and in-
teresting topic (see [12], [13]). In this paper we consider the following p(x)-Kirchhoff
Dirichlet problem:

—a (fg W”\p) dx) it = b (JoF (x,u)dx) f(x,u(x)) in Q, (1.1)
u=0o0ndQ,
where Q is a bounded smooth domain in RV,
Ap(yu = div (\Vu(x)|p(x)72 Vu(x)) ,
Flx,1) = /Otf(x7s)ds7 forxeQands € R,

and p, a, b and f satisfy the following conditions:
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(po) p € C%(Q) for some B € (0,1) and

1< pi= inf p(x) < py = supp(x) < +oo
x€Q x€Q

(ap) a:[0,4e0) — (0,4o0) is continuous;

(bo) b:R — R is continuous;

(fo) f:Q xR — R is a Carathéodory function, and there exists ¢ € C°(Q) such
that 1 < g(x) < p*(x) for x € Q and

1f(x,0)| <cr+cr 197! forxe Qandr € R,

where ¢ and ¢, are positive constants, and

Define
! =N ¢
a) = / als)ds, ¥t >0, b(r) = / b(s)ds, Vi € R,
0 0

p(x) N
E(u)zZi( [V dx) —b(/gF(x,u)dx),VuEWol’p(.) (Q).

o p)

Then E € C! (WO1 P() (Q) ,R) . E is the variational functional corresponding to prob-
lem (1.1). Every critical point of E is just a weak solution of (1.1).

For the usual Laplacian case, that is, when a(z) = 1, b(t) =1 and p(x) =2 in
(1.1), Brezis and Nirenberg [8] proved a famous theorem which asserts that every local
minimizer of E in the C!(Q) topology is also a local minimizer of E in the WOI’Z(Q)
topology. This theorem has been extended to the p-Laplacian case (see [7,21]) and to
the p(x)-Laplacian case (see [17]). A main result of the present paper is the following
theorem which extends the Brezis-Nirenberg’s theorem to the p(x)-Kirchhoff Dirichlet
problem (1.1).

THEOREM 1.1. Let (po), (ao), (bo) and (fy) hold, and let ugp € Wol’p(') (Q) bea
local minimizer (resp. a strictly local minimizer) of E in the C'(Q) topology. Then uy
is a local minimizer (resp. a strictly local minimizer) of E in the Wol’p(')(Q) topology.

Theorem 1.1 is also a new result even for the case that p(x) =2 in (1.1).
It is well known that the fact that ug is a local minimizer of E in the WO1 »0) (Q)
topology is more useful than that u is a local minimizer of E in the C'(Q) topology.

In Section 2 we give the proof of Theorem 1.1. In Section 3 we give some appli-
cations of Theorem 1.1 to the existence and multiplicity for problem (1.1).
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2. Proof of Theorem 1.1

Before proving Theorem 1.1, let us give some preliminaries.
The variable exponent Lebesgue space LP() (Q) is defined by

LrO(Q) = {u | u: Q — R is measurable, / \u|p(x) dx < 00}
Q

with the norm

_ ~inf u |p(x) <1
|u\LP(.)(Q)—\u|p(.)_1n 0'>O|/Q‘E dx<1y.

The variable exponent Sobolev space W'7() (Q) is defined by
w0 (@) = {ue 1 (@) | [vul e V) (@)}

with the norm
el @y = lelly piy = el iy + Vel oy -
Denote by WOI"p(') (Q) the closure of Gy (Q) in W) (Q). |Vul (. is an equiv-
alent norm on Wol’p(') (€2). In this paper we denote |ju|| = [Vul, for u € Wol’p(') (Q).

We refer to [5, 14, 20, 25, 34] for the elementary properties of the space W1:»() (Q).
In what follows, for brevity, we shall write X instead of WO1 P0) (Q).

The function u € X is called a (weak) solution of (1.1) if forall v € X,

()
a (/Q Vpu(:) dx) /Q|Vu|1?(x)2Vqudx=b</QF(x,u)dx> /Qf(x’u)‘)dx'

Define
W= [ V;(:)(x) dx, b(u) = /Q F(x,u)dx, Vi € X,

J) =alh(w) =a (/Q |Vp”(|:)(") dx) VueX,

®(u) = b(h(u) = b ( /Q F(x,u)dx> VueX,

E(u)=J(u)—®(u),VueX.

PROPOSITION 2.1. Let (po), (ao), (bo) and (fo) hold. Then the following state-
ments hold:
1) @€ C'([0,%)), a(0) =0, @(t) =a(t) >0 forany t >0, a is strictly increasing on
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2) J,®,E € C'(X), J(0) =®(0) = E(0) = 0. For every u,v € X, there holds

E’(u)v:a</Q Vpu(p )/ IVulP9 2V uVvdx
—b(/QF(x,u)dx)/Qf(x,u)vdx.

Thus, u € X is a (weak) solution of (1.1) if and only if u is a critical point of E.

3) The functional J : X — R is sequentially weakly lower semi-continuous, ® : X —
R is sequentially weakly continuous, and thus E is sequentially weakly lower semi-
continuous.

Proof. The proof of statements 1) and 2) is immediate. Since the function a(z) is
increasing and the convex functional /; is sequentially weakly lower semi-continuous,
we can see that the functional J : X — R is sequentially weakly lower semi-continuous.
Noting that the embedding X — L4 (Q) is compact, we can see that @ is sequentially
weakly continuous. So E : X — R is sequentially weakly lower semi-continuous. [

Now let us give the proof of Theorem 1.1 which is similar to the proof of Theorem
3.1in [17] and is based on the regularity results established in [1,16,19] for the weak
solutions of the variable exponent elliptic equations in divergence form.

PROOF OF THEOREM 1.1. We only consider the case that uy € X is a local
minimizer of E in the C' topology because the proof in the case that uq is a strictly
local minimizer of E in the C! topology is very similar. Now let uy € X be a local
minimizer of E in the C' topology. Then E'(ug)v = 0 for every v € C5 (). Since
Cy(Q) isdensein X, E'(ug)v =0 forevery v € X. Thus, ug is a weak solution of (1.1).
By the regularity results of [1,16,19], uy € C'P1(Q) with some B; € (0,1). Define

Vu—V p(x)

G(u) :/ ‘uiuddx, VueX.
o pl

For € € (0,1), put D, ={u € X : G(u) < €}. Then D; is a bounded, closed and con-

vex subset of X, and it is a neighborhood of g in W,” Q). Since E: X — R is
sequentially weakly lower semi-continuous and D, is a sequentially weakly compact
subset of X, infp, E is achieved at some u; € D,. By the Lagrange multiplier rule,
there exists Ue < 0 such that E'(ug) = u:G'(u¢), that s,

(/ %dx> div(|Viee|[PD2Vue)) (/ F(x,ue dx) J(x,ue)

= —Uediv(| Ve — Vio|PY 72 (Vug — Vig)). (2.1

Arguing by contradiction, assume that ug is not a local minimizer of E in the
Wol’p(x) (Q) topology. Then for each ¢ € (0,1), ue # up and E(ue) < E(ug). Note
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that ug — up in Wol’p(x) (Q) as € — 0. Below we shall prove that u; — ugy in C'(Q)
as € — 0, which contradicts with the fact that uy is a local minimizer of E in the C!
topology. Writing:

p(x) p(x)
a de =agp and a de = dg,
o pl) o p)

b (/QF(x,uo)dx) — by and b(/gF(x,ug)dx> — b,

then (2.1) becomes
—div [ag IVite PO "2Vig — e |Vt — Vig| P92 (Vitg — Vuo)] — bef(x,ue).  (22)
Note that ag — ag > 0 and b — by as € — 0. Without loss of generality, we can

assume a; > 1ag and |bg| < |bo| + 1.
Dividing both sides of (2.2) by a — U, yields

1
- div{ [ag\Vug\p(x)_2Vu8 — Ue| Ve — Vug|PH 2 (Vi — Vuo)] }
e — Ue

be
= Sxue). (2.3)

ag — Ue

Define A : Q x RV — RN and B, : Q x R—R by

Aclxm) = [acln 17720 = peln = Vo P21 — Vo)

ag — Ue

Be(x,1) = e f(x,1).

ag — Ue

Then u, is a weak solution of the following problem:

(Fopte-stna
We can verify that A, and B, satisfy the following conditions:
Ac(r,m)n = e3P — ey, Vx € Q, n € RY, 2.5)
Ae(x,m)| <es NP e, VxeQ, n e RY, (2.6)
Be(x,0)| < cr4cst]997 Ve Q, 1 R, (2.7)

where ¢; is a positive constant independent of € € (0,1).



542 XIANLING FAN

The verification of (2.6) and (2.7) is simple, here we only give the proof of (2.5).
By the definition of A¢(x,n),

Ae(x,m)n = [(ag|n|p(")_2r, — el |P®-2n)

dag €

— pe (N — Vug|P 72 (1 — Vug) — [n[PW)2n) [ n

= — P& _ T
ag_ug[(ae He) M| pel],

where T = (|1 — Vuo|?™~2(n — Vug) — |n|?®~21)n . In the proof of Theorem 3.1 in
[17], it was proved that

1
T < 5 l" e,

where c is a generic positive constant independent of €. Thus we have

l X
Ag(x,m)n > [(as—ﬂa)‘n‘p(x)_‘Ha‘(ihﬂp()-l-C)]

ag — Ue
1

1
> —|(ag+ = P _ ¢
ag—l—\,ug\[( £ z‘ﬂemn‘ | e ]

1
2 §|n|p(X) -G,

and so (2.5) is proved.
It follows from Theorem 4.1 in [19] that ue € L7(Q) and [ug[;~(q) < ¢ be-

cause ||ugHW01‘p(x) @ is bounded uniformly for € € (0,1), where ¢ is a positive con-

stant independent of &. Furthermore, by Theorem 4.4 in [19], u; € C%%(Q) and
(|t || co.q @ S ¢ where oy € (0,1) and ¢ are positive constants independent of &.
In addition, by Lemma 4.1 in [16], there exists & > 0 such that 1, € W1P®)(1+)(Q).

Below we shall use Theorem 1.2 from [16] to prove that there exist o € (0,1) and
a positive constant ¢ independent of € such that ||ug|| cla@) S ¢ for sufficiently small
€ > 0 for the following two cases, respectively.

Casei): ue € [—1,0].

Noting that ug satisfies the equation

b
—div(| Vo [P 2Vug) = = £(x,uq), 2.8)
ag
then (2.2) is equivalent to the following

— div { IVite [P 2Vt — 2 Wit — Vitg| P02 (Vitp — Vig) — B& |Vuop(x)_2Vuo}
dg dg

_ 'ugbof(x,uo).
ao

=% fleue)

€ dag
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Denote A¢ : Q x RY — RV and B, : Q x R—R by

Aelr,m) = 0170210 = B — Vg P02 0y — Fug) — 2wty P29,
t t

_ Uebo

agag

Be(x,1) = 2—§f<x,r> Fx,).

Then u, is a weak solution of the following problem:

{ —divAg (x, Vi) = Be(x,u) in Q,

u=0 onJdQ. (2.9)

We can prove that, for x,y € Q, n € R¥\{0}, £ € RV, ¢ € R, the following statements
are true:

Ae(x,0) =0, (2.10)

Y 3(Ae); o
) g,j,)’(x,méiéj%ln”” 2[gP, 2.11)
i,j=1 i
< a(ZE)/ p(x)—1
2 g emInl a1+ n|"0, (2.12)
i,j=1 i

|Be (x,1)| < 3+ ca|t]70 7, (2.13)

where ¢; is a positive constant independent of €, and for sufficiently small 6 > 0,
there exists a positive constant Cs, depending on p4, p_ and 0, but independent of
Ue € [—1,0], such that

|Ae(x,1) — Ae (1, 1)| < Cs lx—ylP (14 |n|Po~172), (2.14)

where pyy = max{p(x),p(y)}.

Here we omit the proof of (2.10)-(2.14). The proof of (2.10)-(2.13) is immediate
(see [7]), and the proof of (2.14) is similar to the proof of (3.15) in [17].

By Theorem 1.2 in [16], under the conditions (2.10)-(2.14), there exist o € (0, 1)
and a positive constant ¢ independentof & such that ue € C-*(Q) and ||ue|c1.0g) < c-

From this and uz — ug in Wohp(x) (Q) it follows that u — ug in C'(Q) as € — 0.
Caseii): u < —1.
Set v¢ = ue —ug. Then from (2.2) and (2.8) we know that v, satisfies the equation

1

BT

Ve + Vg |PX) =2 (Vv 4 Vug)

1 1
+— ‘va ‘p(x)72va e \Vuo\l’(’”*zVuo}
ae

| e |

f(x,vg +u0) - mfﬁf(x,uo).

be

ac | ue|
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Define
= 1 (12 L -2 1 (12
Ae(x,m) = — [0+ Vuo|" 72 (n + Vug) + — P70 — — Ve[ Vu,
| e | ag | e |
Bolot) = —2 et ug) — —2 £, )
o ae‘.ue| ’ 0 ‘.Ue|a0 o

Then v¢ is a solution of the following problem:

—divA¢ (x,Vv) = Be(x,v) in Q,
v=0 on dQ.

Analogously to the case i), we can prove that A¢ and B satisfy the corresponding
conditions (2.10)-(2.14). So by Theorem 1.2 in [16], ve € C1%(Q) and ||ve lereg) < ¢
furthermore v, — 0 in C'(Q), that is u; — up in C'(Q) as &€ — 0. The proof of
Theorem 1.1 is complete. [

REMARK 2.1. From the proof of Theorem 1.1 we see that, the fact that a., as € —
0", is bounded from below by a positive constant, which is guaranteed by condition
(ap), plays an important role. Sometimes, it is possible to encounter the case that
condition (ag) is not satisfied at + = 0. It is obvious that, if we replace condition (ag)
by the following condition

(ap) a: (0,4e0) — (0,+o0) is continuous and a € L!(0,¢) forany ¢ > 0,
then the conclusion of Theorem 1.1 is valid for uy € X\{0}. If we replace condition
(ap) by the following condition

(ao)', a satisfies (ap)" and liminf,_o; a(t) >0,
then the conclusion of Theorem 1.1 is also valid for uy = 0, namely, Theorem 1.1
is valid if condition (ag) in Theorem 1.1 is replaced by the weaker condition (ap)’, .
Note that condition (ag)’, implies that @ € C°([0,+)), @ € C((0,+<)), a(0) =0,
a(tr) = a(tr) >0 for any r > 0, and a is strictly increasing on [0,+o). A typical
example of the function a satisfying condition (ag)’, is the function a(r) = t* for
t >0, where o € (—1,0).

REMARK 2.2. Problem (1.1), which is considered in Theorem 1.1, it possesses
Dirichlet boundary value condition. It is easy to see that the same assertion as in Theo-
rem 1.1 is also true for the corresponding Neumann boundary value problems.

3. Applications of Theorem 1.1

Let us continue to use the notations as in Sections 1 and 2.
For two real numbers s <7, define Dy, :={u € X : s <u(x) <t forae. x € Q}.

THEOREM 3.1. Let (po), (o)., (bo) and (fo) hold. Suppose that the following
conditions are satisfied:
(f1) fx,1) =0 for xe Qand t <0;
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(a1) there exist positive constants o, M and C such that a(t) > Ct* fort > M;

(b1) b(t) >0 fort eR;

(f2) there exist 0 < & < such that F(x,&) > F(x,t) for x€ Q and t € [§,7].
Then problem (1.1) has a nonnegative solution uqy such that ug(x) € [0,&] for x € Q,
ug is a global minimizer of the restriction of E on Djgy and a local minimizer of E

(in the Wol’p(')(Q) topology).

Proof. Let ro > 0 be fixed. Then D, ) is a convex and sequentially weakly
closed subset of X. It is obvious that there exists a positive constant C; such that
b(foF(x,u)dx) < C for u € D|_, - It follows from (a;) that for [|u|| large enough,

\Vj p(x) 1 1 a
al [ >a(—||u||P)>c(—) -
o p) 2 P+

Thus we have

E(u) — 4o asu € D[_ and Hu” %%

70,1)
thatis, E is coerciveon D|_, p1. Since E is sequentially weakly lower semi-continuous,
there exists ug € D|_, ] such that E(ug) = infyep E(u).

We claim that

[=ro:m]

0<up(x) <& forxe Q. 3.1

To see this, define

uo(x) if up(x) >0, up(x) if up(x) <&,
ul(x):{ 0O ifug(x)<0, and y(x) = { 05 ifug(x)>’é

It is sufficient to show that 1y = u; and ug = u, . Here we only give the proof of uy = u;
because the proof of 1y = u; is similar and simpler. Obviously, u; € D[,,M] , and thus,
E(uo) < E(uz) , that is,

@(I(uo)) = @(1(u2)) < b ((u0)) = b (a(w2))
It follows from (f2) that L (ug) < L(u2). By (b1), b is nondecreasing, so E(Iz(uo)) <
b (L (up)) and consequently, a(I1(ug)) < a(l1(uz)). Setting
Q:={xeQ:up(x) <&} and Qy:={xeQ:& <up(x) <n},

then Vup(x) = Vup(x) for x € Q;, and Vuy(x) =0 for x € Q,. It is obvious that
I (uo) > I (up) and a(I;(ug)) > a (I (uz)). Thus we have that a(I1(ug)) = a(l, (u2)),
and consequently, I (u9) = I (u2), that is

p(x) p(x)
/ 7|Vu0| dx = 7|Vu2\ dx.
o px) e px)
Since ” ”
px px
/ |VI/L()| dx — \Vu2| dx,
o pi) o p)
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p(x) px)
/ o7 dx:/ Nl ™ 4o,
o, p) o p

From this it follows that

we have that

Ve — Vi |PO) Ve — Vi, [P Ve — Vi, P&
/—‘ uo— Vil [ N ViolT7 [ o= Viel™7
Q p(x) Q p(x) o) p(x)

\v4 p(x)
_oy [ V™,
@ pl)

and thus up = u. The claim (3.1) is proved.
The statement (3.1) implies that uq is a global minimizer of the restriction of £ on
Dyo ) and a local minimizer uo of E in the C! topology. By Theorem 1.1 and Remark

2.1, ug is a local minimizer of E in the Wol’p(') (Q) topology. O

THEOREM 3.2. Let (pg), (ao)’, (a1), (bo), (b1), (fo) and (f1) hold. Suppose
that the following conditions are satisfied:
(ap) there exist positive constants 81, e and oy such that a(t) < eyt™ fort € 0,61];
extPr for 1 €0,8);

(f3) for every n € N, there exist £,,n, € R with 0 < &, <1, and lim, N, =0 such
that

<
(by) there exist positive constants &y, e, and By such that b(t) >

F(x,&,) > F(x,t) forx € Qandt € [&,,n,);

(fa) there exist a non-empty open set U C Q, a positive constant L and a sequence
{t} with 1, > 0 and lim, . T, = 0, such that

ess infoepF (%, Tn)

= +oo
n—oco T}:

and
ess infocy (inﬁe[oﬁn]F(x,t)) > —L-ess infocy F(x,Tn),

where r = ab’:’ .

Then problem (1.1) has a sequence {u,} of non-trivial nonnegative solutions such
that uy is a local minimizer of E, E(uy) <0, limy—e E () = 0, 1imy—co [tn| = () = 0
and lim,_e ||us]] = 0.

Proof. From Theorem 3.1 we know that, for every n € N, there exists u, € D[O,én]
such that E(u,) = infuepy, - E(u). We shall prove that E(u,) <0. Now let n € N
be fixed. Choose a compact set K C U such that 0 < |K| = (L+ 1) |[U\K|. Define
a function v € X such that v(x) =1 if x € K; v(x) =0 if x € Q\U; v(x) € [0,1] if
xeU\K.

Define

hy = ess infyey F(x, i) for each k € N,
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Ea) (@)ﬁ o
- Kl \e o px)

y (fa), there exists k € N large enough such that:

=8

T < mm{nn, 1} hy > d(’L'k) N

V()|
/ %dxg o1 and /F(x, Tv)dx
p(x) Q

R )

< 8.

Then by (ay),

ay
Vy|? (x)
<ey(m)MP- | dx|
) <g »0) )

by (fa).
/F(x,Tkv)dx:/F(x,Tkv)dx+/ F(x,v)dx
Q K U\K
h
> Iy |K| — Liy |[U\K| = K|,
¢ K|~ L JU\K| = £ 1k
and by (b,),

B Iy B
F( F( > K
(/ (x ’L'kv)dx> e (/ (x ’L'kv)dx> e <L—|—l | )

d(Tk)r Bl
K .
”<L+1|>

From (3.2) and r = ﬁ , we obtain

b \Y px)
([ nas) >aa [ IV,
? o p)
and consequently,

E(v) =c7< A wd)a —Z(/QF(JC, Tkv)dx>
< —Eb (/ F(x Tkv)dx) <0.

547

(3.2)

(3.3)

34

(3.5)

(3.6)

3.7

Since 0 < Tv(x) < T < Ny, we have E(u,) < E(7v) < 0. This implies that
u, # 0 because E(0) = 0. By Remark 2.1, Theorem 1.1 is valid for u, # 0 when
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condition (ag) is replaced by (ag)’, and thus u, is a local minimizer of E and is a

solution of problem (1.1).
Since |uy,| 1=(Q) < &y, we have |uy| =) — 0 as n — oo, and consequently,

Z(/ F(x,un)dx> — 0 as n— oo
Q

|V

Uy |
p(x)

\v4 p(x)
a ‘de — 0 as n— oo,
o px)

~ (x)
Noting that E(u,) < 0 and a (fg ' dx) > 0, we have

[Vua|? (x)
p(x)

From this we obtain that [ dx— 0, ||uy]| — 0 and E(u,) 0 asn—e. O

REMARK 3.1. Theorem 3.2 is a generalization of the main results established in
[23] and [13]. In [23] and [13] the Kirchhoff Dirichlet problem:

- <a+be\Vu\2dx> Au=Af(x,u) in Q,
u=0o0ndQ,

and the p(x)-Kirchhoff Dirichlet problem:

{ — (a—l—bfg ﬁ V[P dx) div (|Vu|p(x)72 Vu) = f(x,u) inQ,
u=0o0ndQ,

were considered respectively, where a and b are positive constants. In [23] an example
of the function f satisfying the corresponding conditions (f3) and (f1) was given.

In Theorem 3.2, the function f(x,#) is oscillatory near + = 0. Similarly, we can
consider the case that the function f(x,7) is oscillatory at infinity, and obtain the fol-
lowing theorem.

THEOREM 3.3. Let (po) (ao)’, (a1), (bo), (b1), (fo) and (f1) hold. Suppose
that the following conditions are satisfied:

<et™ fort>M;;
(b3) there exist positive constants My, ey and By such that b(t) > eytP for t > M, ;

(f5) for every n € N, there exist £;,1, € R with 0 < &, <1, and limy Ny = +
such that

(a3) there exist positive constants My, e; and a; such that a(t)

F(x,E,) > F(x,t) forx € Qandt e [E,,n,];

(fo) there exist a non-empty open set U C Q, a positive constant L and a sequence
{T} with 7, > 0 and lim,_... T, = oo, such that

lim &5 infocy F (x,Tn)

r
—00
n Tn

= +o0
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and

ess infocy (inﬁe[oﬁn]F(x,t)) > —L-ess infocy F(x,Tn),
where r = ab’; =. Then problem (1.1) has a sequence {u,} of non-trivial nonnegative
solutions such that w, is a local minimizer of E, E(u,) <0, lim,_e E(uy) = —oo,

lim, e |un\Lw(Q) = oo and limy_e ||up|| = .

Proof. Let K, v, h; and d be as in the proof of Theorem 3.2. Then, similar
to the proof of Theorem 3.2, (3.5) holds, and consequently, for sufficiently large k&,
Jo F(x,mv)dx > M, . By (fs), there exists ko € N such that for k > ko,

p(x)
I > d(z), / %dx > M, and / Flo,av)dx =M. (3.8)
Q P Q

x)

For every k > kg, similar to the proof of Theorem 3.2, we can obtain (3.4), (3.6) and
(3.7), and consequently,

E(tv) = 3(/9 %dx) ~b (/QF(x, Tkv)dx>

1/\ 1 d r Bl
<-3b (/QF(x, Tkv)dx) <-se ( L(:f)l |K> . (3.9)

The statement (3.9) shows that E(1;v) < 0 for every k > k¢ and E(7;v) — —oo as
k — oo. Since lim,_,..N, = 4o, for every k > ko, there exists n; € N such that 7 <
Ny, - By Theorem 3.1, there exists u,, € D[Oén/\] such that E(uy,, ) = infueD[On ]E(u)
] - ] nk
Thus E(uy,, ) < E(7v) <0 and E(u,,) — —oo as k — oo. This shows that u,, # 0, uy,,
is a local minimizer of £, [|un, || — o and |uy, |, o) — o as k—eo. O

The following theorem provides a simple example of applying Theorem 1.1 and
the mountain pass theorem in combination.

THEOREM 3.4. Let (po), (ao)’,, (bo) and (fo) hold. Suppose that the following
conditions are satisfied:

(f7) there exists 8 > 0 such that F(x,t) <0 for x€ Q and t € [-8,0];

(bs) b(t) <O for t <O0;

(E1) there exists u. € Wol’p(') (Q) such that E(u,) <0;

(E») E satisfies the (P.S). condition for every ¢ > 0.
Then problem (1.1) has a mountain pass type solution with positive energy.

Proof. We know E(0) =0. For any u € WOI"p(') () \{0} with [ul;q) <6, we

. AP
obtain from (ao) that @ < Jo %dx) > 0 and from (f7) and (b4) that

B(/QF(x,u)dx> <0,
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and consequently, E(u) > 0. This shows that O is a strictly local minimizer of E
in the C°(Q) topology, and hence 0 is a strictly local minimizer of E in the C!(Q)
topology. By Theorem 1.1 and Remark 2.1, O is a strictly local minimizer of E in the

WOI"p(') (Q) topology. Thus there exists 7 > 0 such that E(u) > 0 for every u € X\{0}
with |Jul] < r.

We claim that infj,—. E(u) > 0. To prove this claim, arguing by contradiction,
assume that there exists a sequence {u,} C X with |lu,|| = r such that E(u,) — 0
as n — co. We may assume that u, — ug weakly in X. Since E is sequentially
weakly lower semi-continuous, we have that E(ug) = 0 and hence up = 0. Since
@ is sequentially weakly continuous, we have that ®(u,) — ®(0) = 0, and hence
J(un) = E(uy) +P(u,) — 0. It follows from this that u, — 0 in X which contradicts
with |Ju,|| =r.

In virtue of conditions (E;) and (E3), we can apply the mountain pass theorem
and complete the proof of Theorem 3.4. [

REMARK 3.2. Itis easy to give some sufficient conditions in order that conditions
(E1) and (E;) hold.
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