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ON AN EIGHTH ORDER OVERDETERMINED

ELLIPTIC BOUNDARY VALUE PROBLEM

SULBHA GOYAL AND VINOD GOYAL

(Communicated by J. -P. Gossez)

Abstract. We consider the overdetermined boundary value problem for the 4-harmonic operator,
Δ4 = Δ(Δ3) , and show that if the solution of the problem exists, then the domain must be an open
N -ball (N � 2) . As a consequence of overdetermined problems mean value results are obtained
for harmonic, biharmonic, triharmonic and 4-harmonic functions.

1. Introduction

In 1971, J. Serrin [20] used the moving plane method also called “reflection method”
and proved that if D is a bounded domain in R

N and u satisfies the overdetermined
problem: ⎧⎨

⎩
Δu = −1 in D,

u = 0, ∂u
∂n = C (constant) on ∂D,

(1)

where Δ is the N -dimensional Laplace operator, ∂
∂n is the outer normal derivative

operator on the boundary and C is a negative constant, then D is a ball of radius N|C|
and that the solution of (1) is given by

u =
(NC)2 − r2

2N
.

A simpler proof of this result based on Hopf maximum principle and Green identities
was presented by Weinberger [22]. Weinberger’s method has been extended by several
authors [5], [9] and [19]. Bennett [5] modified Weinberger’s argument and proved that
if the problem {

Δ2u = −1 in D,

u = ∂u
∂n = 0,Δu = C on ∂D,

has a solution then D is a N -ball of radius [|C|N(N +2)]1/2 and that

u(x) = − 1
2N

[
1
4
(N +2)(NC)2 +

NC
2

r2 +
r4

4(N +2)

]
.
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Later, Dalmasso [9] used Serrin’s method of moving plane and gave alternating proof of
Bennett’s result. Payne and Schaefer [17] considered a number of fourth order problems
and showed, in particular, that if the problem{

Δ2u = 1 in D,

u = Δu = 0, ∂u
∂n = C on ∂D,

has a solution for N = 2 and D is star-shaped then D is an open disk. It was con-
jectured that this result holds for N > 2 and for more general domains. The validity
of this conjecture was proved in [18] by the Serrin reflection method. A new proof of
the conjecture by means of suitably defined auxiliary functions was also presented in
[12]. In [15] the authors considered second, fourth and 2N -th order overdetermined
problems and introduced a new method for determining the geometry of the domain.
First an integral identity equivalent to the problem was obtained and then this integral
dual was used to conclude that the domain must be a N -ball. Authors also conjectured
that if the problem {

Δ3u = −1 in D,

u = ∂u
∂n = Δu = 0, ∂Δu

∂n = −C on ∂D,

where D is a bounded domain in R
N(N > 2) with C6+ε boundary ∂D , has a suffi-

ciently smooth solution in C6(D) , then D is a N -ball. The proof of this problem was
completed in [11].

All these methods have been extensively used to investigate a variety of overdeter-
miend problems. In particular see [1, 2, 15, 16, 19, 23] and references therein.

Here, in this note we consider the eighth order overdetermined elliptic boundary
value problem and use the method of Weinberger [22] and Bennett [5] to show that
if the solution of the problem exists, then the domain is a N -ball (N � 2) . An al-
ternative proof, based on the method of [15], is also obtained. As a consequence of
overdetermined problems mean value type results are obtained for harmonic, bihar-
monic, triharmonic and 4-harmonic functions. We shall use the comma notation for
partial differentiation and the summation convention, i.e., a repeated index in a term
signifies summation over the index from 1 to N .

2. Main result

We prove the following theorem:

THEOREM 1. Let D be a bounded domain in R
N with C8+ε boundary ∂D and

suppose that the eighth order overdetermined problem

Δ4u = −1 in D, (2)

u =
∂u
∂n

= Δu =
∂Δu
∂n

= 0 on ∂D, (3)
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Δ2u = −C (Const) on ∂D, (4)

has a solution u ∈C8(D) . Then D is an open N -ball (N � 2) of radius

R = (|C|N(N +2)(N +4)(N +6))1/4 (5)

and

u(x) = − r8

384N(N +2)(N +4)(N +6)
+

Cr6

96(|C|N(N +2)(N +4)(N +6))1/2

− Cr4

64
+

C(|C|N(N +2)(N +4)(N +6))1/2

96
r2

− C2(N(N +2)(N +4)(N +6))
384

, (6)

where r is the distance of x from the center of D.

Proof. First we prove the following lemmas.

LEMMA 1. If u ∈C8(D) is the solution of the problem (2) , (3) and (4) , then

∫
D

udx = −NVC2

N +8
, (7)

where V denotes the volume of D.

Proof. We note that if u satisfies (2) and r denotes the distance from x to the fixed
origin of D , then

Δ4(r
∂u
∂ r

) = r
∂
∂ r

Δ4u+8Δ4u = −8. (8)

With the help of (8), we get

∫
D

(− r
∂u
∂ r

+8u
)
dx =

∫
D

[
r
∂u
∂ r

Δ4u−uΔ4(r∂u
∂ r

)]
dx

=
∫
∂D

[
r
∂u
∂ r

∂Δ3u
∂n

−Δ3u
∂
∂n

(
r
∂u
∂ r

)
+

(
r
∂Δu
∂ r

+2Δu
)∂Δ2u
∂n

−Δ2u
∂
∂n

(
r
∂Δu
∂ r

+2Δu
)]

ds

=
∫
∂D

[
r
∂ r
∂n

∂u
∂n

∂Δ3u
∂n

−Δ3u
∂
∂n

(
r
∂ r
∂n

∂u
∂n

)
+

(
r
∂ r
∂n

∂Δu
∂n

+2Δu
)∂Δ2u
∂n

−Δ2u
∂
∂n

(
r
∂ r
∂n

∂Δu
∂n

+2Δu
)]

ds
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=
∫
∂D

[
−Δ3u

(∂u
∂n

∂
∂n

(
r
∂ r
∂n

)
+ r

∂ r
∂n

∂ 2u
∂n2

)

−Δ2u
(
r
∂ r
∂n

∂ 2Δu
∂n2 +

∂Δu
∂n

∂
∂n

(
r
∂ r
∂n

)
+2

∂Δu
∂n

)]
ds, (9)

where in the second equality we used the Green identity for the 4-Laplacian and in
the last equality we used the fact that ∂u

∂n = Δu = ∂Δu
∂n = 0 on the boundary. Now since

u = ∂u
∂n = 0 on ∂D , we have ∂ 2u

∂n2 =Δu . Also, in view of, Δu = ∂Δu
∂n = 0 on the boundary,

we observe that ∂ 2Δu
∂n2 = Δ2u . Consequently (9) reduces to

∫
D

(
−r

∂u
∂ r

+8u

)
dx = −C2

∫
∂D

r
∂ r
∂n

ds = −C2NV, (10)

by the second Green identity, where V is the volume of D and N is the number of
dimensions. Furthermore,

∫
D

r
∂u
∂ r

dx =
∫

D
grad (

r2

2
) grad u dx

= −
∫

D
uΔ(

r2

2
)dx = −N

∫
D

udx, (11)

where we used the Green’s first identity and the fact that u = 0 on ∂D . Consequently,
by (10) and (11), we get (7), which completes the proof of Lemma 1. �

LEMMA 2. The function A defined by

A = (Δu),i j (Δu),i j−(Δu),i (Δ2u),i−1
4
(Δ2u)2 +

1
2
ΔuΔ3u+

u
2

+Δα

attains its maximum value on ∂D provided the function α(x) satisfies:

Δ2α =
3
2

N−2
N +2

(Δ2u),i (Δ2u),i in D, (12)

Δα = −N +6
N +8

C2 on ∂D, (13)

∂α
∂n

= − 2NVC2

S(N +8)
on ∂D, (14)

where S is the surface area of D.

Proof. First, we show that the problem (12), (13) and (14) has a solution. Clearly,
if α is a solution, α+constant is also a solution. We assert that for fixed Δ2α and Δα
there is a unique ∂α

∂n to ensure the existence of α . To show this, we let

β (x) = Δα +
N +6
N +8

C2.
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Then β satisfies the Dirichlet problem{
Δβ = 3

2
N−2
N+2 (Δ2u),i (Δ2u),i in D,

β = 0 on ∂D.

Thus, a unique β is guaranteed and by the maximum principle β < 0 in D . To deter-
mine α , we have ⎧⎨

⎩
Δα = β (x)− N+6

N+8C
2 in D,

∂α
∂n = − 2NVC2

S(N+8) on ∂D.

Integrating the equation over D and using the second Green identity, we have

∫
∂D

∂α
∂n

ds =
∫

D
βdx− N +6

N +8
C2V, (15)

or, (−2NVC2

S(N +8)

)
S =

∫
D
βdx− N +6

N +8
C2V. (16)

Remember that
∫
Dβdx is uniquely determined by 3

2
N−2
N+2 (Δ2u),i (Δ2u),i , so for fixed

Δ2α and Δα there is only one
(
− 2NVC2

S(N+8)

)
, given by the relation (15) above, to ensure

the existence of α . Now we compute

ΔA = 2(Δu),i jk (Δu),i jk +2(Δu),i j (Δ2u),i j−2(Δu),i j (Δ2u),i j−(Δu),i (Δ3u),i

− (Δ2u),i (Δ2u),i−1
2
Δ2uΔ3u− 1

2
(Δ2u),i (Δ2u),i

− 1
2
Δu+

1
2
Δ2uΔ3u+(Δu),i (Δ3u),i +

Δu
2

+Δ2α

= 2(Δu),i jk (Δu),i jk−3
2
(Δ2u),i (Δ2u),i +

3
2

N−2
N +2

(Δ2u),i (Δ2u),i

= 2
(
(Δu),i jk (Δu),i jk− 3

N +2
(Δ2u),i (Δ2u),i

)
. (17)

To show that the righthand side of (17) is nonnegative we observe, as in [5], that for an
arbitrary real number γ ,

∑
i, j,k

[
(Δu),i jk−γ{(Δ2u),i δ jk +(Δ2u), j δik +(Δ2u),k δi j}

]2 � 0. (18)

This inequality reduces to

(Δu),i jk (Δu),i jk−6γ(Δ2u),i (Δ2u),i +3γ2(N +2)(Δ2u),i (Δ2u),i � 0, (19)

and the discriminant condition for the quadratic expression in γ is

ΔA = (Δu),i jk (Δu),i jk− 3
N +2

(Δ2u),i (Δ2u),i � 0.
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Hence A is subharmonic in D and consequently attains its maximum value on ∂D .
This proves Lemma 2.

Next, we show that A is constant in D . We note by the boundary conditions (3),
(4) and (13) that

A = C2− C2

4
− N +6

N +8
C2 = − NC2

4(N +8)
on ∂D. (20)

Now integrating A on D

∫
D

Adx = −7
4

∫
D

udx+
∫
∂D

∂α
∂n

ds = − NC2

4(N +8)
V, (21)

where we have used Lemma 1, Green identities and the boundary condition (14). Hence,
by (20) and (21),

A ≡− NC2

4(N +8)
in D.

This implies that ΔA vanishes identically in D and therefore

(Δu),i jk (Δu),i jk− 3
N +2

(Δ2u),i (Δ2u),i≡ 0 in D. (22)

Hence, each term of the sum in (18) vanishes when γ = 1
N+2 . By differentiating each

term by xk and adding, we get

(Δu),i jkk = (Δ2u),i j =
1

N +2

[
2(Δ2u),i j +Δ3uδi j

]
, (23)

or,

(Δ2u),i j =
Δ3u
N

δi j. (24)

Taking Laplacian of both the sides,

(Δ3u),i j = − 1
N
δi j.

Integrating, for a suitable choice of origin, we find that

Δ3u =
1

2N
(A1 − r2), (25)

where A1 is an arbitrary constant. Now (24) and (25) yield

(Δ2u),i j =
1

2N2 (A1 − r2)δi j. (26)

Again integrating and using the fact that Δ2u = −C on ∂D , we see that

r4 −6A1r
2 −24N2A2r−24N2(A3 +C) = 0, (27)
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where A2 and A3 are constants. (27) implies that r = constant on ∂D . Thus, D is a
ball with its center at the origin.

When D is a N -ball, to determine the solution of the problem we use the particular
solution

u = − r8

384N(N +2)(N +4)(N +6)
+B1r

6 +B2r
4 +B3r

2 +B4, (28)

of (2) where B1,B2,B3 and B4 are constants. Using the boundary conditions (3) and
(4) it is easily checked that the radius R of the ball and the solution of the problem are
given respectively by (5) and (6). This completes the proof of Theorem 1. �

As a consequence of Theorem 1 we derive the following corollary.

COROLLARY 1. Let D be a bounded domain in R
N(N � 2) with C8+ε boundary

∂D of positive Gaussian curvature and suppose there is a constant M such that∫
D

B(1+Pu) = −M
∫
∂D

∂ΔB
∂n

ds, (29)

for every function B satisfying⎧⎨
⎩
Δ4B = PB in D,

B = ∂B
∂n = ΔB = 0 on ∂D,

(30)

where the function P � 0 and u ∈C8(D) is the solution of the boundary value problem{
Δ4u = −1 in D,

u = ∂u
∂n = Δu = ∂Δu

∂n = 0 on ∂D,
(31)

then D is a N -ball.

Proof. From the Green identity for the 4-harmonic operator, (30) and (31) it fol-
lows that ∫

D
B(1+Pu)dx =

∫
∂D

Δ2u
∂ΔB
∂n

ds. (32)

We see from (29) that ∫
∂D

(Δ2u+M)
∂ΔB
∂n

ds = 0. (33)

Now we choose B ∈C8(D) to be the solution of{
Δ4B = PB in D,

B = ∂B
∂n = ΔB = 0, ∂ΔB

∂n = Δ2u+M on ∂D.

It is immediate from (33) that

Δ2u = −M on ∂D.

Hence, Theorem 1 implies that D is an open N -ball (N � 2) . This completes the proof
of Corollary 1.
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3. Alternative proof

An alternative proof of Theorem 1 can be given by reformulating the problem in
an equivalent integral form. An integral dual for (2), (3) and (4) is

−
∫

D
Fdx = C

∫
∂D

∂ΔF
∂n

ds, (34)

where F is any function satisfying{
Δ4F = 0 in D,

F = ∂F
∂n = ΔF = 0 on ∂D.

(35)

The equality (34) is a consequence of

∫
∂D

∂ΔF
∂n

(Δ2u+C)ds =
∫

D
Fdx+C

∫
∂D

∂ΔF
∂n

ds, (36)

which is obtained from the Green identity for 4-Laplacian. Now letting F = xiu,i−8u
in (34), it is immediate that (7) holds true.

We define the function λ such that{
Δλ = −1 in D,

λ = 0 on ∂D,
(37)

and let A be as in Lemma 2. Then ΔA � 0 and from the second Green identity, (20)
and (21) we deduce that ∫

D
λΔAdx = 0. (38)

Since λ > 0, we conclude that

ΔA = Δu,i jk (Δu),i jk− 3
N +2

(Δ2u),i (Δ2u),i = 0, (39)

in D . Consequently, as in the proof of Theorem 1, it follows that the set D is a N -ball
(N � 2) . �

4. Mean value type results

As a consequence of overdetermined boundary value problems we derive Mean
value type results for harmonic, biharmonic, triharmonic and 4-harmonic functions.

In [15] it was shown that the second order over-determined boundary value prob-
lem

Δu = −1 in D, (40)

u = 0,
∂u
∂n

= −C (C is a const.) on ∂D, (41)
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is equivalent to ∫
D

hdx = C
∫
∂D

hds, (42)

for all functions h harmonic in D and that D is a N -ball of radius R = NC .
By circumferential mean value theorem of harmonic functions

h0 =
1

WNRN−1

∫
∂D

hds, (43)

where h0 is the value of h at the center of D and WN is the surface area of the unit
sphere in N -dimensions. Since C = R

N , from (42) and (43)

h0 =
N

WNRN

∫
D

hdx, (44)

which is the well-known areal mean value result for harmonic functions. �

It was shown in [20, 22] that the solution u of (40) and (41) when D is an open
N -ball of radius R = NC is given by

u(x) =
R2− r2

2N
,

where r is the distance of x from the center of the ball and that∫
D

udx =
C2NV
N +2

.

One immediately concludes that u also satisfies the mean value property

1
V

∫
D

udx =
2u(0)
N +2

. � (45)

Next, the fourth order overdetermined problem

Δ2u = 1 in D, (46)

u =
∂u
∂n

= 0 on ∂D, (47)

Δu = C on ∂D, (48)

was proved in [15] to be equivalent to

∫
D

Bdx = −C
∫
∂D

∂B
∂n

ds, (49)

for all biharmonic functions B such that

Δ2B = 0 in D, (50)

B = 0 on ∂D, (51)
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and that D is an N -ball of radius R , where C = R2

N(N+2) . From (49)

∫
D

Bdx = −C
∫
∂D

∂B
∂n

ds = −C
∫

D
ΔBdx = −C

WNRN

N
ΔB0, (52)

where ΔB0 is the value of the harmonic function ΔB at the center of D .
Also by [8], we have, for any biharmonic function B ,

1
WNRN−1

∫
∂D

Bds = B0 +
R2

2N
ΔB0. (53)

Since B = 0 on ∂D , we conclude from (52) and (53)

N
WNRN

∫
D

Bdx =
2

N +2
B0, (54)

which is the areal mean value result for biharmonic functions satisfying the equalities
(50) and (51). �

REMARK 1. For N = 2 Nicolesco [13] obtained the mean value result for bihar-
monic functions in the form

B0 =
2

πR2

∫
D

Bdx− 1
2πR

∫
∂D

Bds. (55)

If B = 0 on ∂D (54) agrees with (55) in case N = 2. However, if B �= 0 on ∂D then
(55) implies (54).

To obtain a mean value result for triharmonic functions we observe from [15] that
the problem

Δ3u = −1 in D, (56)

u =
∂u
∂n

= Δu = 0 on ∂D, (57)

∂Δu
∂n

= −C on ∂D, (58)

is equivalent to ∫
D

tdx = C
∫
∂D

Δtds, (59)

for all triharmonic functions t such that

Δ3t = 0 in D, (60)

t =
∂ t
∂n

= 0 on ∂D, (61)

and that D is a N -ball of radius R = (CN(N +2)(N +4))1/3 .
Since Δt is biharmonic, we get by [8]
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1
RN−1WN

∫
∂D

Δtds = Δt0 +
R2

2N
Δ2t0. (62)

Multiplying (62) by RN−1 and integrating with respect to R from 0 to R ,

∫
D
Δtdx = WN

RN

N
(Δt0 +

R2

2(N +2)
Δ2t0). (63)

By Green identity and the fact that ∂ t
∂n = 0 on ∂D , (63) reduces to

Δt0 = − R2

2(N +2)
Δ2t0. (64)

Also from [8] for a triharmonic function t , we have

1
WNRN−1

∫
∂D

tds = t0 +
R2

2N
Δt0 +

R4

8N(N +2)
Δ2t0. (65)

Since t = 0 on ∂D , (65) with the help of (64) yields

Δt0 = −4N
R2 t0. (66)

Now (59), with the help of (62), (64) and (66) reduces to

N
WNRN

∫
D

tdx =
8

(N +2)(N +4)
t0, (67)

which is the areal mean value result for triharmonic functions satisfying (60) and (61)
subject to (59). �

In [11] it was shown that for the overdetermined problem (56), (57) and (58),

N
WNRN

∫
D

udx =
NC2

N +6
, (68)

and that

u(x) = − r6

48N(N +2)(N +4)
+

(
C2

N(N +2)(N +4)

)1/3
r4

16

− (
C4N(N +2)(N +4)

)1/3 r2

16
+

C2N(N +2)(N +4)
48

, (69)

where D is an open N -ball of radius R given by

R = {CN(N +2)(N +4)}1/3, (70)

and r is the distance of x from the center of D .
From (68), (69) and (70) it is easily seen that the solutions of (56), (57) and (58)

also satisfy the areal mean value property
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N
WNRN

∫
D

udx =
48u(0)

(N +2)(N +4)(N +6)
. � (71)

If N = 2, a different mean value result can also be derived from (55) for trihar-
monic functions t .

For biharmonic Δt , (55) can be written as

Δt0 =
2

πR2

∫
D
Δtdx− 1

2πR

∫
∂D

Δtds, (72)

where R is the radius of the disc D . Since ∂ t
∂n is zero on ∂D , (72) reduces to

C
∫
∂D

Δtds = −2πRCΔt0. (73)

Also, for t equal to zero on ∂D , we get from (65),

R2

4
Δt0 = −t0− R4

64
Δ2t0. (74)

Hence, by virtue of (73), (74) and C = R3

48 , (59) yields

6
πR2

∫
D

tdx = t0 +
R4

64
Δ2t0, (75)

which is the mean value result for N = 2. �

Lastly, we consider the 4-harmonic problem (2), (3) and (4) which is equivalent
to (34) where F is 4-harmonic function that satisfies (35) and D is a N -ball of radius
R = [CN(N +2)(N +4)(N +6)]1/4 .

For 4-harmonic function F we get from [8],

1
WNRN−1

∫
∂D

Fds = F0 +
R2

2N
ΔF0 +

R4

8N(N +2)
Δ2F0

+
R6

48N(N +2)(N +4)
Δ3F0. (76)

Since F = 0 on ∂D , hence

−F0− R2

2N
ΔF0 =

R4

8N(N +2)
Δ2F0 +

R6

48N(N +2)(N +4)
Δ3F0. (77)

Δ2F is biharmonic, therefore, by [8],

1
WNRN−1

∫
∂D

Δ2Fds = Δ2F0 +
R2

2N
Δ3F0. (78)

Multiplying by RN−1 and integrating with respect to R from 0 to R ,
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1
WN

∫
D
Δ2Fdx =

RNΔ2F0

N
+

RN+2

2N(N +2)
Δ3F0. (79)

By Green identity and (79), (34) reduces to

− N
WNRN

∫
D

Fdx = C[Δ2F0 +
R2Δ3F0

2(N +2)
]. (80)

From [8], since ΔF is triharmonic

1
WNRN−1

∫
∂D

ΔFds = ΔF0 +
R2

2N
Δ2F0 +

R4

8N(N +2)
Δ3F0. (81)

For ΔF = 0 on ∂D , we get

ΔF0 +
R2

2N
Δ2F0 +

R4

8N(N +2)
Δ3F0 = 0. (82)

Multiplying (81) by RN−1 and integrating with respect to R from 0 to R ,

1
WN

∫
D
ΔFdx =

RN

N
ΔF0 +

RN+2

2N(N +2)
Δ2F0 +

RN+4

8N(N +2)(N +4)
Δ3F0. (83)

Green identity and ∂F
∂n = 0 on ∂D , reduce it to

ΔF0 +
R2

2(N +2)
Δ2F0 +

R4Δ3F0

8(N +2)(N +4)
= 0. (84)

By (82) and (84)

Δ2F0 = −4(N +2)
R2 ΔF0. (85)

From (82) with the help (85)

Δ3F0 =
8(N +2)(N +4)

R4 ΔF0. (86)

Using (85) and (86) in (80), we get

− N
WNRN

∫
D

Fdx = C
8
R2ΔF0. (87)

From (77) by (85) and (86)

−F0 =
R2

6N
ΔF0. (88)

Finally, from (87) and (88)
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N
WNRN

∫
D

Fdx =
48F0

(N +2)(N +4)(N +6)
, (89)

where we have used

C =
R4

N(N +2)(N +4)(N +6)
.

The equality (89) is the areal mean value result for 4-harmonic functions F which
satisfy (35) subject to (34).

Likewise, it is an immediate conclusion from (6) and (7) that the solutions u of
the problem (2), (3) and (4) are subject to the areal mean value property

N
WNRN

∫
D

udx =
384u(0)

(N +2)(N +4)(N +6)(N +8)
. � (90)
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