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Abstract. Let (M ,g) be a smooth compact Riemannian manifold of dimension n � 3 . We
study the existence of positive weak solutions for the following quasilinear elliptic equation

−(Δp)gu+up−1 = f (x,u,∇gu) in M ,

where (Δp)gu = divg(|∇u|p−2
g ∇u) is the p -Laplacian operator on Riemannian manifold (M ,g)

with 1 < p < n .

1. Introduction

Let (M ,g) be a smooth compact Riemannian manifold of dimension n � 3. We
consider the existence of positive weak solutions for the following quasilinear elliptic
equation

−(Δp)gu+up−1 = f (x,u,∇gu) in M , (1.1)

where (Δp)gu = divg(|∇u|p−2
g ∇u) is the p -Laplacian operator on the Riemannian man-

ifold (M ,g) , 1 < p < n . f : M ×R×R
n → R is continuous and nonnegative.

Problem (1.1) does not have variational structure in general. In bounded domains
of the whole space R

n , such a problem has been extensively studied for the case p = 2,
see for instance [3], [5], [6] etc. A main ingredient in establishing existence results in
[6] is to obtain a priori bound for solutions. This was done by a blow up argument,
where a Liouville theorem was used. The existence of solutions is then obtained by
topological method. For the case p �= 2, the Liouville theorem in the half space is
unknown up to now, so the blow up argument can not be applied in general. Results
for p �= 2 were obtained in convex domains in [1], [11]. The idea is to show maximal
points of solutions remain inside the domain by using moving plane method. Hence, it
needs only to apply Liouville type theorem in the whole space.
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Recently, nonlinear elliptic equations on compact Riemannian manifold have been
brought much attention. Multiple solutions were obtained in [4] for the problem

−ε2Δgu+u = |u|p−2u in M , (1.2)

where (M ,g) is a compact, connected, orientable, Riemannian manifold of class C∞

with Riemannian metric g , dimM = n � 3, 2 < p < 2∗ = 2n
n−2 and Δg is the Laplace-

Beltrami operator. While for zero mass case, similar result was obtained in [14].
In this paper, we are interested in the existence of positive weak solutions for

problem (1.1), that is a C1,α−solution of problem (1.1). Suppose that f : M ×R×
R

n → R is a nonnegative continuous function and satisfies the following condition:

(A) there exist L > 0 and c0 � 1 such that

us−L|η |q � f (x,u,η) � c0u
s +L|η |q

for (x,u,η) ∈ M ×R×R
n , where s ∈ (p−1, p� −1) , q ∈ (p−1, ps/(s+1)) , p� =

p(n−1)/(n− p) .
Our main result is the following.

THEOREM 1.1. If we assume condition (A) holds, then problem (1.1) has at least
one positive weak solution of C 1,α regularity.

In section 2, a priori bound for positive weak solutions of (1.1) is obtained; By
topological methods, we obtain a positive weak solution in section 3 for problem (1.1).

2. A priori estimates

In this section, we establish a priori bound for positive weak solutions of problem
(1.1) by using blow up arguments. Such an argument is based on the Liouville-type
theorem in [12], which is described in Lemma 2.1 as follows, see [12, Corollary II(iii)].
Related works on differential inequalities on Riemannian manifolds can be found in [9]
and [10].

LEMMA 2.1. Assume 1 < p < n. Then the differential inequality Δpv + vs �
0,v � 0 has a positive solution in R

n if and only if s > p� − 1 , where p� = p(n−
1)/(n− p) .

Our main result in this section is the following.

PROPOSITION 2.1. Suppose condition (A) holds. Let u ∈ C 1,α(M ),0 < α <
1 be a positive solution of problem (1.1) . Then there exists a positive constant C
independent of u , such that ‖u‖L∞(M ) � C.

Proof. We argue by contradiction. Suppose that there exists a sequence of positive
solutions {uk} of problem (1.1) such that ‖uk‖L∞(M ) → +∞ as k → ∞ . Since the
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manifold M is compact and uk ∈ C1,α(M ) , we assume that there exist {xk} ⊂ M
such that mk := uk(xk)= maxx∈M uk →+∞ as well as xk → x0 for some point x0 ∈M .

Let ig be the injectivity radius of (M ,g) at the point x0 , that is, ig is the largest
number r > 0 for which any geodesic starting from x0 and of length less than r is
minimizing. The fact M being compact implies ig > 0. Let (U,zi) be normal coor-
dinate system at x0 , taking 0 < δ1 < ig , for any x ∈ Bg(xk,δ1) ⊂ M and k large, by
the exponential map at x0 , we have z = exp−1

x0
(x) ∈ B(zk,δ2) ⊂ U for some δ2 > 0,

Bg(xk,δ1) denotes the ball at the center xk with the radius δ1 on Riemannian manifold
(M ,g) , and B(zk,δ2) denotes the ball at the center zk with the radius δ2 in R

n .
In normal coordinate system (U,zi) , we have

gi j(z) = δi j +O(|z|2), det gi j(z) = 1+O(|z|2).

Set
ũk(z) = uk(expx0

(z))

for z ∈ B(zk,δ2) . Since {uk} is a sequence of positive solutions of problem (1.1), ũk(z)
satisfies the following equation

− 1√
det g(z)

∂
∂ zi

⎛
⎝√

det g(z)gi j(z)
∂ ũk(z)
∂ z j

(
glh(z)

∂ ũk(z)
∂ zl

∂ ũk(z)
∂ zh

) p−2
2

⎞
⎠

+ ũp−1
k (z) = f (expx0

(z), ũk(z),∇gũk(z)). (2.1)

By properties of exponential map, zk = exp−1
x0

(xk) → 0 as k → ∞ . Define

vk(z) = m−1
k ũk(λkz+ zk),

where λk = m(p−1−s)/p
k > 0 , λk → 0 as k→∞ since s > p−1, and mk →∞ as k→∞ .

Then the function vk is well defined in B(0,λ−1
k δ2) , and vk(0) = 1. We also have

∇gvk(z) = m−1
k λk∇gũk(λkz+ zk); (Δp)gvk(z) = m1−p

k λ p
k (Δp)gũk(λkz+ zk)

and vk satisfies

− 1
bk(z)

∂
∂ zi

(
bk(z)a

i j
k
∂vk(z)
∂ z j

(
alh

k (z)
∂vk(z)
∂ zl

∂vk(z)
∂ zh

) p−2
2 )

+λ p
k vp−1

k (z)

= m1−p
k λ p

k f (expx0
(λkz+ zk),mkvk(z),mkλ−1

k ∇g̃k vk(z)))

:= φk(z,vk(z),∇g̃k vk(z)), (2.2)

for z ∈ B(0,λ−1
k δ2) , where g̃k = g(λkz+ zk) is a metric on R

n , g̃k → ξ in C1(B(0,R))
for any R > 0 as k → ∞ , ξ is the standard metric on R

n , and

ai j
k (z) = g̃i j

k = gi j(λkz+ zk) → δi j as k → ∞, (2.3)
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bk(z) =
√

det g̃k =
√

detg(λkz+ zk) → 1 as k → ∞ (2.4)

uniformly in C 1(B(0,R)) for any R > 0. By assumption (A) ,

|φk(z,vk(z),∇g̃k vk(z))| � c0m
1−p
k λ p

k (mk|vk(z)|)s +Lm1−p
k λ p

k (mkλ−1
k )q|∇g̃k vk|q

= c0m
1−p+s
k λ p

k |vk|s +Lm1−p+q
k λ p−q

k |∇g̃k vk|q

for z ∈ B(0,R) for any R > 0. Since q < ps/(s+1) , it yields

|φk(z,vk(z),∇g̃k vk(z))| � c0|vk|s +Lm
−s+ q(s+1)

p
k |∇g̃k vk|q

� c0|vk|s + |∇g̃kvk|q

for z ∈ B(0,R) and k large enough. Applying C1,α regularity result up to boundary
due to Lieberman [8], we obtain that there exists a positive constant C independent of
k such that |∇g̃k vk|L∞(B(0,R)) � C . Hence, for any R > 0, B(0,R) ⊂ B(0,λ−1

k δ2) for k
large, we conclude ‖vk‖C 1,α (B(0,R)) � C for certain C independent of k . Therefore, we

may assume vk → v in C 1,α(B(0,R)) as k → ∞ . By condition (A) ,

φk(z,vk(z),∇g̃k vk(z))−|vk|s � −Lm
−s+ q(s+1)

p
k |∇g̃k vk|q → 0 as k → ∞. (2.5)

Thus, taking limit in (2.2), by (2.3)-(2.5), we obtain

Δpv+ vs � 0, v � 0 in B(0,R),

where Δp is the p−Laplacian in R
n .

Choosing a sequence {Rj} with Rj → +∞ as j → ∞ , by a diagonal procedure,
we see that v satisfies

Δpv+ vs � 0, v � 0 in R
n, v(0) = max v = 1,

where s ∈ (p−1, p�−1) , which contradicts to Lemma 2.1. The assertion follows.

REMARK 2.1. By a result in [2] and [13], we know that the solution u in Propo-
sition 2.1 is actually a C1,α−solution.

3. Proof of Theorem 1.1

In order to prove the existence of positive weak solutions for problem (1.1), we
use a version of a theorem of Krasnoselskii [7] about the existence of fixed points on
compact operators defined in a cone.

LEMMA 3.1. (Krasnoselskii) Let C be a cone in a Banach space and T : C → C
a compact operator such that T(0) = 0 . Assume that there exists 0 < r < R, such that:

(a) u �= tTu for 0 � t � 1 , u ∈ C , ‖u‖ = r .
(b) There exists a compact map H : [0,1]×BR → C , such that:
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(b1) H(0,u) = Tu for ‖u‖ = R,
(b2) H(t,u) �= u for ‖u‖ = R and t � 0 ,
(b3) there exists t0 > 0 , such that for t � t0 ,H(t,u) = u has no solution in B(0,R) .
Then

iX (T,Br) = 1, iX(T,BR) = 1, iX(T,D) = −1,

where D = {u ∈ X : r < ‖u‖ < R} . So T has a fixed point in D.

PROOF OF THEOREM 1.1: Let C1,α(M ) be a Banach space equipped with the
usual norm ‖ · ‖C1,α .

For each function v ∈C1(M ) , we know that the problem:

−(Δp)gK(v)+K(v)p−1 = v in M

has a unique weak solution K(v) . A bootstrap argument implies that K(v) ∈ L∞(M ) ,
whence by results in [2] and [13], we find K(v) ∈ C1,α(M ) . By Lemma 2.4 in [15],
K : C1(M ) →C1,α(M ) is continuous.

Define N : C1,α(M ) →C1(M ) by N(u) = f (x,u,∇gu) . The continuity of f and
the compactness of the inclusion C1,α(M ) → C1(M ) imply that N is compact. Let
T = K ◦N . Then, T is also compact.

Let X := {u ∈ E : u � 0} be a cone in E = C 1,α(M ) . We will show T has a
nontrivial fixed point in X . For this purpose, we will use Lemma 3.1. Now, we verify
conditions of Lemma 3.1.

By condition (A) , N(0) = 0. Hence, T (0) = K ◦N(0) = 0. By the maximum
principle, T (u) > 0 for u ∈ X \ {0} . The fact T (u) ∈C1,α(M ) implies T (X) ⊂ X .

Now, we verify (a). Let u ∈ X \ {0} be a solution of u = tTu for some t ∈ [0,1] ,
namely,

−(Δp)gu+up−1 = t p−1 f (x,u,∇gu) in M . (3.1)

Multiplying by u and integrating by part, we obtain
∫

M
(|∇gu|p +up)dμg (3.2)

= t p−1
∫

M
f (x,u,∇gu)dμg �

∫
M

f (x,u,∇gu)dμg

� c0

∫
M

|u|s+1 dμg +L
∫

M
|∇u|qudμg

� C
(∫

M
|u|p dμg

) s+1
p

+C
(∫

M
|∇u|p dμg

) q
p
(∫

M
|u| p

p−q dμg

) p−q
p

� ‖u‖s+1
W1,p(M ) +‖u‖q+1

W1,p(M ). (3.3)

Since s+ 1 > p, q+ 1 > p , it follows that there exists a positive number σ such that
‖u‖W1,p(M ) � σ . Hence, ‖u‖C1,α(M ) � Cσ . Choose r < Cσ , condition (a) follows.

Next, we verify condition (b) .
Define H : [0,1]×X → X by H(t,u) = K(N(u+ t)) . Then, H is compact. Ap-

parently, (b1) holds.
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Now, we show condition (b2) .
For 0 � t � 1, the equation H(t,u) = Tu is equivalent to the equation

−(Δp)gu+(u+ t)p−1 = f (x,u+ t,∇g(u+ t)) in M . (3.4)

By Proposition 2.1, solutions of (3.4) are uniformly bounded, i.e. ‖u + t‖C 1,α � C
for some C > 0. Therefore, ‖u‖C 1,α � C . So we may choose R > C > 0 such that
for ‖u‖C 1,α = R, t � 0, H(t,u) �= Tu , i.e. condition (b2) holds. Proposition 2.1 also
implies (b3) .

By Lemma 3.1, T has a fixed point u in D = {u ∈ X : r < ‖u‖C 1,α < R} . The
fixed point u is a positive weak solution of problem (1.1). The proof is complete.
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