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ON THE DIRICHLET PROBLEM OF

LANDAU–LIFSHITZ–MAXWELL EQUATIONS
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(Communicated by P. Jr. Ciarlet)

Abstract. We prove the existence and uniqueness of non-trivial stable solutions to Landau-
Lifshitz-Maxwell equations with Dirichlet boundary condition for large anisotropies and small
non-simply connected domains.

1. Introduction

We seek for a solution u = (u1,u2,u3) : Ω → S2 ⊂ R
3 of the Landau-Lifshitz-

Maxwell equations with the Dirichlet boundary condition⎧⎪⎨
⎪⎩
Δu+ |∇u|2u+H− (H ·u)u−λ (Wu(u)− (Wu(u) ·u)u) = 0 in Ω,

u = g on ∂Ω,

curl H = 0, div(H +uχΩ) = 0 in R
3,

(1.1)

where Ω is a non-simply connected bounded domain in R
3 with uniformly C4 bound-

ary, λ > 0 is a parameter, g ∈C3+α0(∂Ω,S2∩{u3 = 0}) (0 < α0 < 1) and χΩ is the
characteristic function of the domain Ω ,

χΩ(x) =

{
1, ∀x ∈Ω,

0, ∀x �∈Ω.

For thin films with in plane magnetization (c.f. [19]), as a first approximation, we can
assume W (u) = u2

3 and denote Wu(u) = (0,0,2u3) .
H is the demagnetizing field generated by the magnetization u and determined

by the Maxwell’s equation. The (1.1) is the Euler-Lagrange equation of the Landau-
Lifshitz energy functional

Eλ (u) =
∫
Ω

[1
2
|∇u|2− 1

2
u ·H +λW(u)

]
dx (1.2)
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on H1
g (Ω,S2) . Here

H1
g (Ω,S2) := {u−g∈ H1

0 (Ω,R3)| u(Ω) ⊂ S2}
is well defined for Ω and g . The boundary conditions are influenced by surface
anisotropy as well as by interface coupling phenomena. The Dirichlet boundary condi-
tion g is induced from the interface magnetization of the adjacent medium (c.f. [19]).

Functional (1.2) was first derived for ferromagnetic problem by Landau and Lif-
shitz [28] in 1935. The equation (1.1) is the static equivalent of the time-dependent
Landau-Lifshitz-Maxwell equations (c.f.[37]-[45])⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

= −u× (u× (Δu−λWu(u)+H))

+ γu× (Δu−λWu(u)+H) in Ω× (0,∞),
u = g on ∂Ω× (0,∞),

u ∈ S2 in Ω× (0,∞),

curlH = 0, div(H +uχΩ) = 0 in R
3.

(1.3)

Here γ � 0 is called the gyromagnetic factor.
Afterhere, a solution u(x) will be expressed in

u(x) = (cosξ (x)cosθ (x),cosξ (x)sinθ (x),sinξ (x)),

where −π/2 � ξ � π/2, θ ∈ S1 = R/(2πZ) and

g(x) = (cosθg(x),sinθg(x),0).

For convenience, we also use the notations:

u(θ ,ξ ) = (cosξ (x)cosθ (x),cosξ (x)sinθ (x),sinξ (x)),
uθ (θ ,ξ ) = (−cosξ sinθ ,cosξ cosθ ,0),
uξ (θ ,ξ ) = (−sinξ cosθ ,−sinξ sinθ ,cosξ ).

In [37], the existence and non-existence of non-trivial stable solutions to Landau-
Lifshitz equation (the first equation of (1.1) with constant H ) with the Dirichlet bound-
ary condition were obtained. This paper is the continuation of [37]. In this paper, we
study the Landau-Lifshitz-Maxwell equations (1.1) in a non-simply connected bounded
domain of R

3 . The existence and uniqueness of non-trivial solution and its stability are
obtained. Precisely, we have:

THEOREM 1. There exists d0 > 0 such that for any non-simply connected domain
Ω if |Ω|� d0 , then there is λ0 > 0 such that for λ > λ0 , there exists a unique solution
(uλ ,Hλ ) ,

uλ (x) = (cosξλ (x)cosθλ (x),cosξλ (x)sinθλ (x),sinξλ (x)) ∈C2+α(Ω),

Hλ ∈C1+α(Ω)∩ (BMO∩Lp)(R3), ∀p ∈ (1,∞),
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(0 < α < 1) to (1.1) corresponding to the homotopy class [θg] of continuous maps
from Ω to S2∩{u3 = 0} . Moreover, θλ is homotopic to θg and

‖ξλ‖Cα (Ω) � C√
λ

,

where the constant C is independent of λ .

A steady state solution uλ (x) is called exponentially asymptotically stable (c.f.[27])
if there are μ0 > 0 and ε,C > 0 such that for all u ∈W 2,2(Ω,S2) , if ‖u−uλ‖W2,2(Ω) �
ε , then there exists a unique global solution (u(x,t),H) of (1.3) with the initial data
u(x,0) = u(x) , and

‖u(x, t)−uλ(x)‖W 2,2(Ω) � Ce−μ0t‖u(x)−uλ (x)‖W 2,2(Ω), ∀t � 0.

THEOREM 2. Assume that Ω is not simply connected and |Ω| � d0 as in Theo-
rem 1. Then there exists a λ0 > 0 and for λ � λ0 , there exists a γ0 = γ0(λ ) > 0 such
that, for λ � λ0 and γ ∈ [0,γ0] , the solution (uλ ,Hλ ) obtained in Theorem 1 is ex-
ponentially asymptotically stable steady state solutions of the time-dependent Landau-
Lifshitz-Maxwell equation (1.3) .

To prove the theorems, we first solve the Maxwell’s equation and express H in u
and a Calderón-Zygmund operator. Then we consider the limit case of λ →∞ and get a
solution in the homotopy class [θg] of continuous mappings from Ω to S1 by Schauder
fixed point theorem. We search solutions for large λ in the neighborhood of the limit
case solutions by the Schauder fixed point theorem again. In the last we analyze the
spectrum of the linearized operator in a detailed way by using the Kato’s perturbation
theory (c.f. [25]) and to prove that the solutions are exponentially asymptotically stable
steady state solutions of (1.3) by using nonlinear parabolic equations theory (c.f.[27]).

In [45], we proved the existence of non-trivial stable solutions to Landau-Lifshitz-
Maxwell equations with Neumann boundary condition for large anisotropies and small
domains that are non-simply connected and rotationally invariant around an axis.

Remark that in the Theorem 1 and Theorem 2 of this paper we do not need the
assumption that the domain Ω is rotation invariant as in [45] for Neumann boundary
condition. Moreover the assumption of diam(Ω) � d0 used in [45] is replaced by the
volume |Ω| � d0 .

On the other hand, in [37] and [45], the key estimate

‖ξ‖Cα0(Ω) � C
λ

was obtained by using the Campanato inequality. But for the Dirichlet problem consid-
ered in this paper, the Campanato inequality can not be used, because the right of (5.6)
may be non-zero on the boundary of Ω (c.f. [8]). Here we shall apply [27] Theorem
3.1.3 to (5.6) to get a similar estimate

‖ξ‖Cα0(Ω) � C√
λ

.
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Related works can also be founded in [20], [34], [5], [26], [16], [33], [6], [32],
[14], [15], [18] and [35]-[45] and the papers cited in there. Visintin [34] proved the
existence of a kind of weak solutions to Landau-Lifshitz-Maxwell equations. In two
dimensional case, the existence, uniqueness and partial regularity of (1.3) were consid-
ered in [15]. Also in the two dimension, Gustafson and Shatah studied the existence
and stability of localized periodic solution to the Landau-Lifshitz equation, and Chang,
Shatah, Uhlenbeck studied the well-posedness of the Cauchy problem for Schrödinger
maps (there are not H and the first term in the right of the first equation of (1.3)). In
three dimension, Ball, Taheri and Winter constructed local energy minimizers around a
fixed constant solution to the model of micromagnetics. Their results are different from
mine.

This paper consists of five sections. The Maxwell equation is studied in Section 2.
In Section 3, the Landau-Lifshitz-Maxwell equations are expressed in spherical coor-
dinates. In Section 4, we consider the limit case of λ → ∞ . The main theorems of this
paper are proved in Sections 5-6.

2. Maxwell equations

The magnetization u and the demagnetizing field H are related by the Maxwell’s
equation {

curlH = 0 in R
3,

div(H +uχΩ) = 0 in R
3.

(2.1)

First we recall a lemma proved in [45]. For reader’s convenience, we also give its
proof here.

LEMMA 2.1. There exists a continuous linear map L ,

L2(Ω;R3) 
 u �→ ∇v, v ∈V =
{

v ∈ H1
loc(R

3;R) : ∇v ∈ L2(R3;R3),
∫
Ω

vdx = 0
}

such that H = ∇v = L (u) is the unique solution of (2.1) in V . Moreover, L is
bounded from

H 1(Hardy) to L1(R3),
L∞(Ω) to BMO,

Lp(Ω) to Lp(R3), ∀p ∈ (1,∞).

Proof. From [20], we know that there exists a continuous linear map

L2(Ω;R3) 
 u �→ v ∈ {v ∈ H1
loc(R

3;R) : ∇v ∈ L2(R3;R3),
∫
Ω

vdx = 0}

such that H =∇v = L (u) is the unique solution of (2.1) in V .
Note that from

div(∇v+ χΩu) = 0 in R
3,
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for any domain D ⊃⊃Ω ,

0 =
∫

D
div(∇v+ χΩu)dy =

∫
∂D

∂
∂ν

v(y)dS(y).

Then for any x ∈ R
3 , for any ball BR(x) ⊃⊃Ω , by the Green’s representation formula

v(x) =
∫
∂BR(x)

v(y)
∂
∂ν

1
4π |x− y| −

1
4π |x− y|

∂
∂ν

v(y)dS(y)

−
∫

BR

1
4π |x− y|div(χΩ(y)u(y))dy

=
−1
4π

∫
|ω|=1

v(x+Rω)dω− 1
4πR

∫
∂BR(x)

∂
∂ν

v(y)dS(y)

−
∫

BR

1
4π |x− y|div(χΩ(y)u(y))dy

=
−1
4π

∫
|ω|=1

v(x+Rω)dω−
∫
BR

1
4π |x− y|div(χΩ(y)u(y))dy.

Notice that from ∇v ∈ L2(R3) , we have

lim
R→∞

∇x

∫
|ω|=1

v(x+Rω)dω = 0.

So

∇v(x) =
−1
4π

∇
∫

R3

1
|x− y|div(χΩ(y)u(y))dy

=
1
4π

∇
∫
Ω

u(y) ·∇ 1
|x− y|dy.

We have (see [30, Theorem 2.6.2]),

∇v(x) = L (u) = Au(x)χΩ(x)− lim
ρ→0

1
4π

∫
Ω\Bρ (x)

∇x(u(y) ·∇x
1

|x− y|)dy,

for u ∈Cα
loc(Ω) , where A = (Ajk) jk is a constant matrix

Ajk =
−1
4π

∫
∂B1(0)

ν j(y)∂k
1

|− y|dS(y).

It is easy to check that L −A is a Calderón-Zygmund operator ([31, Chapter 7]). Then
it is bounded from

H 1(Hardy) to L1(R3),
L∞(Ω) to BMO,

Lp(Ω) to Lp(R3), ∀p ∈ (1,∞).

Thus the same is true for L . �
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3. Expressing Landau-Lifshitz-Maxwell equations in spherical coordinates

Denote

u(x) = (cosξ (x)cosθ (x),cosξ (x)sinθ (x),sinξ (x)),

where −π/2 � ξ � π/2, θ ∈ S1 = R/(2πZ) and

g(x) = (cosθg(x),sinθg(x),0).

For convenience, we also use the notations:

u(θ ,ξ ) = (cosξ (x)cosθ (x),cosξ (x)sinθ (x),sinξ (x)),
uθ (θ ,ξ ) = (−cosξ sinθ ,cosξ cosθ ,0),
uξ (θ ,ξ ) = (−sinξ cosθ ,−sinξ sinθ ,cosξ ),

and etc. By these notations, the energy functional Eλ is rewritten as

Eλ (θ ,ξ ) =
∫
Ω

[1
2
|∇ξ |2 +

cos2 ξ
2

|∇θ |2 − 1
2
u(θ ,ξ ) ·∇v+λ sin2 ξ

]
dx. (3.1)

The Euler-Lagrange equation of (3.1) can be written as⎧⎨
⎩Δξ − (λ − |∇θ |2

2
)sin2ξ +uξ (θ ,ξ ) ·∇v = 0 in Ω,

ξ = 0 on ∂Ω,

(3.2)

and ⎧⎪⎨
⎪⎩

div(cos2 ξ∇θ )+uθ(θ ,ξ ) ·∇v = 0 in Ω,

θ = θg on ∂Ω,

Δv = (−1)div{u(θ ,ξ )χΩ} on R
3.

(3.3)

4. Limit case

Let λ → ∞ in (3.1) and consider the limit functional

E∞(θ ) =
∫
Ω

[1
2
|∇θ |2− 1

2
u(θ ,0) ·∇v

]
dx.

Its critical points are the maps to S1 which satisfy⎧⎪⎨
⎪⎩
Δθ +uθ(θ ,0) ·∇v = 0 in Ω,

θ = θg on ∂Ω,

Δv = (−1)div{u(θ ,0)χΩ} on R
3.

(4.1)
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LEMMA 4.1. Assume that ∂Ω is uniformly C2 . There is a constant d0 > 0 such
that if Ω is not simply connected, |Ω| � d0 , then in the homotopy class [θg] of con-
tinuous mappings from Ω into S1 there exists a unique solution θ∗ ∈C1+α(Ω,S1) and
∇v∗ ∈ Lp(R3)∩BMO(R3) (1 < ∀p < ∞) to (4.1) .

Proof. Step 1: Existence. A classical proof of existence can be obtained by apply-
ing the direct method of calculus of variations to the minimization problem. Here we
give another proof that can provide higher regularity.

For any given ∇v ∈ Lp(R3)∩L2(R3)(1 < p <∞) , there is a minimizing sequence
of E∞ which converges to a minimizer θ of E∞ . Let Θ denote the map from ∇v ∈
Lp(R3)∩L2(R3) to θ by {

Δθ +uθ (θ ,0) ·∇v = 0 in Ω,

θ = θg on ∂Ω.

Note that Δθ ∈ Lp(Ω) (1 < p < ∞). From [27, Theorem 3.1.1], θ ∈W 2,p(Ω) . By the
Sobolev embedding theorem ([1]), for any α ∈ (0,1) , θ ∈C1+α(Ω) .

For any ∇v1 and ∇v2 ∈ Lp(R3)∩L2(R3) , let θi = Θ(∇vi) ( i = 1,2). Then∫
Ω
|∇(θ1 −θ2)|2dx

=
∫
Ω
(θ1 −θ2)

{
(uθ (θ1,0)−uθ(θ2,0)) ·∇v1

+uθ (θ2,0) · (∇v1−∇v2)
}
dx

� ‖∇v1‖L3/2(Ω)‖θ1−θ2‖2
L6(Ω) +‖∇(v1− v2)‖L2(Ω)‖θ1−θ2‖L2(Ω). (4.2)

From the Sobolev inequality and the Poincaré inequality,

‖θ1−θ2‖2
L6(Ω) � C1‖∇(θ1 −θ2)‖2

L2(Ω),

‖θ1−θ2‖L2(Ω) � C|Ω|1/3‖∇(θ1 −θ2)‖L2(Ω),
(4.3)

where the constants C1 , C are independent of Ω . See [17], we may take

C1 = (
1
3π

)1/2(
3

Γ(5/2)
)1/3.

On the other hand, we have∫
R3

|∇v|2dx = (−1)
∫
Ω

u(θ ,ξ ) ·∇vdx

� |Ω|1/2(
∫
Ω
|∇v|2dx)1/2.

So we have
‖∇v‖L2(R3) � |Ω|1/2 (4.4)

and
‖∇v‖L3/2(Ω) � |Ω|1/6‖∇v‖L2(Ω) � |Ω|2/3. (4.5)
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From (4.2), (4.3) and (4.5), there is d0 > 0 such that if |Ω| � d0 , then

∫
Ω
|∇(θ1 −θ2)|2dx � C‖∇(v1− v2)‖2

L2(Ω) (4.6)

which implies that Θ is a continuous map from L2(R3)∩Lp(R3) to C1+α(Ω,S1) .
Let [θg] denote the homotopy class of θg in Cα(Ω,S1) . Note that [θg] is convex

and closed. From Lemma 2.1, ∇v ∈ Lp(R3)∩BMO(R3) for p ∈ (1,∞) , then the map
ΘL u(θ ,0) is continuous from θ ∈ [θg] to [θg] , and ΘL u([θg],0) is pre-compact in
[θg] ⊂Cα(Ω,S1) . Then by the Schauder fixed point theorem, we proved the existence
of solutions to (4.1).

Step 2: Uniqueness. Because,
∫

R3
|∇(v1− v2)|2dx = (−1)

∫
Ω
(u(θ1,0)−u(θ2,0)) ·∇(v1− v2)dx,

we have

(∫
R3

|∇(v1− v2)|2dx
)1/2

�
(∫

Ω
|u(θ1,0)−u(θ2,0)|2dx

)1/2

� |Ω|1/3
(∫

Ω
|u(θ1,0)−u(θ2,0)|6dx

)1/6

� 2C1|Ω|1/3‖∇(θ1 −θ2)‖L2(Ω).

From (4.6), we have

(∫
Ω
|∇(θ1 −θ2)|2dx

)1/2
� CC1|Ω|1/3

(∫
Ω
|∇(θ1 −θ2)|2dx

)1/2
.

So there is d0 > 0 such that if |Ω| � d0 , then θ1 = θ2 . �

LEMMA 4.2. Assume that ∂Ω is uniformly C4 . Then the solution obtained in
Lemma 4.1 satisfies

∇v∗ ∈C3+α(Ω), θ∗ ∈C3+α(Ω).

Here the derivatives on the boundary ∂Ω take the inner limit of the derivatives in Ω
respectively.

Proof. Since u∗(x) = (cosθ∗(x),sinθ∗(x),0) ∈ W 1,p(Ω) , by [1, Theorem 4.26],
there is an extension U∗ ∈W 1,p(BR) of u∗ for BR ⊃⊃Ω , and

‖U∗‖W1,p(BR) � C‖u∗‖W1,p(Ω),

where C is independent of u∗ .
Consider the equation

ΔV = (−1)div(U∗χBR) in R
3. (4.7)
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By elliptic equation theory ([17]), we have

‖V‖
W2,p

loc (R3) � C‖U∗‖W1,p(BR) � C‖u∗‖W1,p(Ω).

Since on Ω , (−1)div (U∗χBR) = (−1)div(u∗χΩ) = Δv∗ , we have ∇v∗ ∈W 1,p(Ω) , and
from (4.1), θ∗ ∈W 3,p(Ω) and so is u∗ . Using [1, Theorem 4.26] and (4.7) again,

‖U∗‖W3,p(BR) � C‖u∗‖W3,p(Ω), V ∈W 4,p(R3),

so ∇v∗ ∈ W 4,p(Ω) , and from the Sobolev inequality, ∇v∗ ∈ C3+α(Ω) . From (4.1),
θ∗ ∈C3+α(Ω) . �

5. Proof of Theorem 1

Let α0 ∈ (0,1) and define

M(θ∗,∇v∗) =
{
(θ ,∇v)| θ ∈C1+α0(Ω), θ |∂Ω = θg,

θ ∈ [θg], ‖θ −θ∗‖C1+α0 (Ω) � 1,

v ∈V, ∇v ∈Cα0(Ω), ‖∇v−∇v∗‖Cα0 (Ω) � 1
}
.

LEMMA 5.1. Let ∂Ω be uniformly C2 . For any given (θ ,∇v) ∈ M(θ∗,∇v∗) ,
there exists a continuous map Ξλ such that ξλ = Ξλ (θ ,∇v) is a solution to (3.2)
which satisfies,

‖ξλ‖W2,q(Ω) � C1, ∀q ∈ (1,∞) (5.1)

and

‖ξλ‖W1,q(Ω) � C2√
λ

, (5.2)

‖ξλ‖Cα (Ω) � C2√
λ

, (5.3)

provided λ is large enough. Here the constants Ci =Ci(‖θ‖C1+α0 (Ω),‖∇v‖Cα0 (Ω)) (i =
1,2) are independent of λ .

Proof. Let η := ξ +C/λ , where C is a constant to be determined in the proof.
The equation for η is written as⎧⎪⎪⎨

⎪⎪⎩
(−1)Δη = −(λ − |∇θ |2

2
)sin2(η− C

λ
)+uξ (θ ,η− C

λ
) ·∇v in Ω,

η =
C
λ

on ∂Ω.

(5.4)

Let

F(η) = −(λ − |∇θ |2
2

)sin2(η− C
λ

)+uξ (θ ,η− C
λ

) ·∇v.
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It is easy to check that there exists a constant C = C(‖θ‖C1+α0 (Ω),‖∇v‖Cα0 (Ω)) and
λ0(> 0) such that

F(0) � 0 and F(
2C
λ

) � 0

for λ � λ0 . From [4], there exists a non-negative solution ηλ to (5.4) which satisfies

0 � ηλ � 2C
λ

,

provided λ � λ0 . Let ξλ = ηλ − C
λ . Thus ξλ is a solution of (3.2) and

−C
λ

� ξλ � C
λ

, (5.5)

provided λ � λ0 .
Rewrite (3.2) as

−Δξ +2λξ = λ (2ξ − sin2ξ )+
|∇θ |2

2
sin2ξ +uξ (θ ,ξ ) ·∇v, (5.6)

and use [27, Theorem 3.1.3] to obtain ∀q ∈ (1,∞) :

‖ξ‖W1,q(Ω) � C√
λ

(λ‖2ξ − sin2ξ‖Lq(Ω) +‖∇θ‖2
Lq(Ω) +‖∇v‖Lq(Ω)),

‖ξ‖W2,q(Ω) � C(λ‖2ξ − sin2ξ‖Lq(Ω) +‖∇θ‖2
Lq(Ω) +‖∇v‖Lq(Ω)).

Note that for any δ > 0, there exists λ (δ ) > 0 such that

‖2ξλ − sin2ξλ‖Lq(Ω) � δ
λ
‖ξλ‖Lq(Ω),

provided λ � λ (δ ) . So we have (5.1)-(5.2).
Using (5.2) for q > 3 and the Sobolev embedding theorem, we get (5.3) with

α � 1− 3
q . �

LEMMA 5.2. Assume that ∂Ω is uniformly C4 . There exists d0 > 0 such that if
|Ω| � d0 , then for ξλ = Ξλ (θ ,∇v) obtained in Lemma 5.1, there exists a continuous
map Θ such that (θ ,∇v) = Θ(ξλ ) is a solution to (3.3) . Moreover, there is λ0 > 0
such that

‖θ −θ∗‖C2+α0 (Ω), ‖∇v −∇v∗‖C1+α0 (Ω)

are bounded provided that λ � λ0 and

‖θ −θ∗‖C1+α0 (Ω) → 0 and ‖∇v −∇v∗‖Cα0 (Ω) → 0 as λ → ∞ (5.7)

uniformly for (θ ,∇v) ∈ M(θ∗,∇v∗) .
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Proof. The proof of existence part is similar to Lemma 4.1. Moreover, as in the
proof of Lemma 4.2, if (θ ,∇v) ∈ C1+α(Ω)× Lp(R3) (1 < p < ∞) is a solution to
(3.3), then u(θ ,ξλ ) ∈W 1,p(Ω) , and for BR ⊃⊃Ω , there is an extension U ∈W 1,p(BR)
of u . From the Maxwell equation

ΔV = (−1)div(UχBR) in R
3,

we have V ∈ W 2,p(R3) . So ∇v ∈ W 1,p(Ω) , and from (3.3), θ ∈ W 3,p(Ω) . By the
Sobolev embedding theorem, θ ∈ C2+α0(Ω) . Noting that u(θ ,ξλ ) ∈ W 2,p(Ω) , by
using the Maxwell equation again, we have V ∈W 3,p(R3) and ∇v ∈W 2,p(Ω) . Then
∇v ∈C1+α0(Ω) .

So we only need to prove (5.7). From (3.3) and (4.1), we obtain the equations for
θ −θ∗ :⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

div(cos2 ξλ∇(θ −θ∗))

= −∇cos2 ξλ ·∇θ∗ +(1− cos2 ξλ )Δθ∗ +(uθ (θ ,0)−uθ(θ ,ξλ )) ·∇v

+(uθ (θ∗,0)−uθ (θ ,0)) ·∇v−uθ (θ∗,0) · (∇v −∇v∗) in Ω,

θ −θ∗ = 0 on ∂Ω,

(5.8)

and the equation for v − v∗ ,∫
R3

|∇(v − v∗)|2dx = (−1)
∫
Ω
(u(θ ,ξλ )−u(θ∗,0)) ·∇(v − v∗)dx. (5.9)

Multiplying (5.8) by θ − θ∗ , by standard elliptic equation theory as well as (5.9)
and Lemma 5.1, as in the proof of Lemma 4.1, we can prove that there exists d0 > 0
such that if |Ω| � d0 then

‖∇(θ −θ∗)‖L2(Ω) → 0 as λ → ∞, (5.10)

uniformly for (θ ,∇v) ∈ M(θ∗,∇v∗) . Using (5.9) again, we have

‖∇v −∇v∗‖L2(R3) → 0 as λ → ∞, (5.11)

uniformly for (θ ,∇v) ∈ M(θ∗,∇v∗) .
As in the Lemma 4.1-4.2, we can prove that for λ large enough,

‖θ −θ∗‖C2+α0 (Ω), ‖∇v −∇v∗‖C1+α0 (Ω)

are bounded uniformly for (θ ,∇v) ∈ M(θ∗,∇v∗) . So we have (5.7). �
From Lemma 5.1-5.2, we obtain

LEMMA 5.3. ΘΞλ (M(θ∗,∇v∗)) is pre-compact in M(θ∗,∇v∗) and ΘΞλ is con-
tinuous provided λ is large enough.
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LEMMA 5.4. For any given (θ ,∇v) ∈ M(θ∗,∇v∗) , if θ ∈ C3+α0(Ω) and ∇v ∈
C1+α0(Ω) , then the solution ξλ = Ξλ (θ ,∇v) of (3.2) obtained in Lemma 5.1 satisfies

‖ξλ‖C2+α0 (Ω) � C3, (5.12)

and
lim
λ→∞

‖ξλ‖C2(Ω) = 0, (5.13)

where the constant C3 = C3(‖θ‖C2+α0 (Ω),‖∇v‖C1+α0 (Ω)) is independent of λ .

Proof. Take the derivative ∂ j = ∂
∂x j

in the equation (3.2), and rewrite it as

−Δ∂ jξ +2λ∂ jξ = 2λ (1− cos2ξ )∂ jξ +∇θ ·∇∂ jθ sin2ξ + |∇θ |2(cos2ξ )∂ jξ
+ ∂ juξ (θ ,ξ ) ·∇v+uξ(θ ,ξ ) ·∇∂ jv =: f in Ω,

ξ = 0 on ∂Ω.
(5.14)

Applying [27, Theorem 3.1.3] to (5.14), we have for any q ∈ (1,∞) , there is λ0(q) > 0
such that for λ � λ0 ,

‖∂ jξ‖W2,q(Ω) � C‖ f‖Lq(Ω).

By the Sobolev embedding theorem, we get (5.12). (5.2) and (5.12) imply (5.13). �
PROOF OF THEOREM 1. From Lemma 5.3 and Schauder fixed point theorem,

ΘΞλ has a fixed point (θλ ,∇vλ ) in M(θ∗,∇v∗) for large λ . Then we obtain a solution
(θλ ,ξλ ) and vλ to (3.2)-(3.3) which has the properties stated in Theorem 1 by Lemma
5.1-5.3 and Lemma 5.4. �

6. Proof of Theorem 2

The time developing Landau-Lifshitz-Maxwell equations (1.3) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tθ =
1

cos2 ξ
{div(cos2 ξ∇θ )+uθ(θ ,ξ ) ·∇v}

− γ
cosξ

{Δξ +(
|∇θ |2

2
−λ )sin2ξ +uξ (θ ,ξ ) ·∇v} in Ω×R

+,

∂tξ = Δξ +(
|∇θ |2

2
−λ )sin2ξ +uξ (θ ,ξ ) ·∇v

+
γ

cosξ
{div(cos2 ξ∇θ )+uθ(θ ,ξ ) ·∇v} in Ω×R

+,

θ = θg, ξ = 0 on ∂Ω×R
+,

div{∇v+ χΩu(θ ,ξ )} = 0 in R
3×R

+.

(6.1)

For simplicity, we denote the solution (θλ ,ξλ ) obtained in Section 4 by (θ ,ξ )
and

∇v = L (u(θ ,ξ )).
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The linearized operator Aλ of the right terms of (6.1) is written as

Aλ =
(

a11 a12

a21 a22

)
,

where

a11 = Δ+
∇cos2 ξ ·∇

cos2 ξ
− γ sin2ξ

cosξ
∇θ ·∇

+
1

cos2 ξ
{
uθθ (θ ,ξ ) ·∇v+uθ(θ ,ξ ) ·L (uθ (θ ,ξ )·)}

− γ
cosξ

{
uξθ (θ ,ξ ) ·∇v+uξ (θ ,ξ ) ·L (uθ (θ ,ξ )·)},

a12 =
2

cos2 ξ
∇ξ ·∇θ − 2sinξ

cosξ
∇θ ·∇

+
1

cos2 ξ
{
uθξ (θ ,ξ ) ·∇v+uθ(θ ,ξ ) ·L (uξ (θ ,ξ )·)}

+
2sinξ
cos3 ξ

uθ (θ ,ξ ) ·∇v

− γ sinξ
cos2 ξ

{
Δξ +(

|∇θ |2
2

−λ )sin2ξ +uξ (θ ,ξ ) ·∇v
}

− γ
cosξ

(Δ+(|∇θ |2−2λ )cos2ξ )

− γ
cosξ

{
uξξ (θ ,ξ ) ·∇v+uξ(θ ,ξ ) ·L (uξ (θ ,ξ )·)},

a21 = sin2ξ∇θ ·∇+
γ

cosξ
(cos2 ξΔ+∇cos2 ξ ·∇)+uξθ(θ ,ξ ) ·∇v

+uξ (θ ,ξ ) ·L (uθ (θ ,ξ )·)
+

γ
cosξ

{
uθθ (θ ,ξ ) ·∇v+uθ(θ ,ξ ) ·L (uθ (θ ,ξ )·)},

a22 = Δ+(|∇θ |2−2λ )cos2ξ +uξξ (θ ,ξ ) ·∇v+uξ (θ ,ξ ) ·L (uξ (θ ,ξ )·)
+

γ
cosξ

{− sin2ξΔθ −2cos2ξ∇ξ ·∇θ − sin2ξ∇θ ·∇}
+
γ sinξ
cos2 ξ

div(cos2 ξ∇θ )+ γuθ(θ ,0) ·L (uξ (θ ,ξ )·).

Decompose the operator Aλ into Aλ and the perturbation G :

G = Aλ −Aλ
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=

⎛
⎜⎜⎜⎜⎜⎜⎝

∇cos2 ξ ·∇
cos2 ξ − γ sin2ξ∇θ ·∇

cosξ

⎧⎪⎪⎨
⎪⎪⎩

− sin2ξ∇θ ·∇
cos2 ξ

− γΔ
cosξ

+
2γλ
cosξ

(cos2ξ + sin2 ξ )

⎫⎪⎪⎬
⎪⎪⎭

G21 − γ sin2ξ∇θ ·∇
cosξ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (6.2)

where
G21 = a21−uξ (θ ,ξ ) ·L (uθ (θ ,ξ )·)

We consider the spectrum of the operator Aλ as the perturbation one of the op-
erator Aλ . As in [37], [45], following Propositions 5.1-5.3 can be proved in the same
way.

PROPOSITION 6.1. Let T = β I−Aλ . For δ > 0 , there exist β > 0 , λ0 = λ0(δ ) ,
and for λ � λ0 there exists γ0(λ ) > 0 such that for λ � λ0 and γ ∈ [0,γ0] , we have

‖GΦ‖H � δ 1/2((β +1)‖Φ‖H +‖TΦ‖H) for Φ ∈ D(T ).

That is, G is T -bounded with T -bound b : b � δ 1/2 .

For j = 1,2, let

Yj =
{(

θ
ξ

)
∈W j,2(Ω,R2) :

(
θ
ξ

)
=

(
θg

0

)
on ∂Ω

}
,

where Yj are endowed with the norm and inner product of W j,2(Ω,R2) . Note that Yj

are Hilbert spaces. As in [37], [35], we have

PROPOSITION 6.2. There exist d0 > 0 , λ0 > 0 , and for λ � λ0 there exists
γ0(λ ) > 0 such that Aλ : D(Aλ )(⊂ L2(Ω,R2)) → L2(Ω,R2) is a sectorial operator
with D(Aλ ) = Y2 , provided that |Ω| � d0 , λ � λ0 and γ ∈ [0,γ0(λ )] . Moreover the
norm of Y2 is equivalent to the graph norm of Aλ ,

∥∥∥(
θ
ξ

)∥∥∥
Y2
∼

∥∥∥(
θ
ξ

)∥∥∥
L2(Ω,R2)

+
∥∥∥Aλ

(
θ
ξ

)∥∥∥
L2(Ω,R2)

,

and for any μ ∈ ρ(Aλ ) , (μ−Aλ )−1 is compact.

Let μ1(λ ),μ2(λ ), . . . ,μk(λ ), . . . and

(φ
λ
k ,ψλ

k ) ∈W 1,2
0 (Ω)×W1,2

0 (Ω), ‖φλk ‖2
L2(Ω) +‖ψλ

k ‖2
L2(Ω) = 1, k = 1,2, . . .

denote the eigenvalues and eigenfunctions of Aλ , respectively. Assume

Reμ1(λ ) � Reμ2(λ ) � . . . � Reμk(λ ) � . . . .
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PROPOSITION 6.3. There exist d0 > 0 , λ0 > 0 , γ > 0 and C > 0 such that
Reμk(λ ) � −C provided that |Ω| � d0 , λ � λ0 and γ ∈ [0, γ ] . Moreover, if there
is {λ j} j such that

limsup
λ j→∞

Reμk(λ j) < ∞,

then
limsup
λ j→∞

λ j

∫
Ω
(ψλ j

k )2dx < ∞.

The eigenvalue problem for Aλ can be written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δφ +
2

cos2 ξ
(∇ξ ·∇θ )ψ− γ

cosξ
(|∇θ |2(cos2ξ )ψ)

− γ sinξ
cos2 ξ

(
Δξ +

|∇θ |2
2

sin2ξ
)
ψ

+
1

cos2 ξ
{uθθ (θ ,ξ ) ·∇vφ +uθ (θ ,ξ ) ·L (uθ (θ ,ξ )φ)}

− γ
cosξ

{uξθ (θ ,ξ ) ·∇vφ +uξ (θ ,ξ ) ·L (uθ (θ ,ξ )φ)}

+
1

cos2 ξ
{uθξ (θ ,ξ ) ·∇vψ+uθ (θ ,ξ ) ·L (uξ (θ ,ξ )ψ)}

+
2sinξ
cos3 ξ

uθ (θ ,ξ ) ·∇vψ− γ sinξ
cos2 ξ

{uξ (θ ,ξ ) ·∇vψ}

− γ
cosξ

{
uξξ (θ ,ξ ) ·∇vψ+uξ (θ ,ξ ) ·L (uξ (θ ,ξ )ψ)

}
= −μφ in Ω,

φ = 0 on ∂Ω,

(6.3)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δψ+(|∇θ |2−2λ )(cos2ξ )ψ

+
γ

cosξ
(−sin2ξΔθ −2cos2ξ∇ξ ·∇θ )ψ

+
γ sinξ
cos2 ξ

div(cos2 ξ∇θ )ψ+uξ (θ ,ξ ) ·L (uθ (θ ,ξ )φ)

+ (uξξ (θ ,ξ ) ·∇v)ψ+uξ (θ ,ξ ) ·L (uξ (θ ,ξ )ψ)

+ γuθ (θ ,0) ·L (uξ (θ ,ξ )ψ)

= −μψ in Ω,

ψ = 0 on ∂Ω.

(6.4)

LEMMA 6.4. Suppose there is {λ j} j such that

limsup
λ j→∞

Reμk(λ j) < ∞.
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Then there exist λ0 > 0 and γ > 0 such that

‖ψλ j
k ‖Cα (Ω) � C√

λ j
, (6.5)

‖ψλ j
k ‖C2+α (Ω) � C, (6.6)

and
‖φλ j

k ‖C2+α (Ω) � C, (6.7)

provided λ j � λ0 and γ ∈ [0, γ ] , where the constant C only depends on k and the
C2+α(Ω) norm of (ξ ,θ ) .

Proof. Step 1. Since φ , ψ ∈ L2(Ω) , from Lemma 2.1 we have

L (uθ (θ ,ξ )φ), L (uξ (θ ,ξ )ψ) ∈ L2(R3).

From (6.3)-(6.4) and [27, Theorem 3.1.3], we get φ , ψ ∈W 2,2(Ω) . Since Ω is regular,
by the Sobolev embedding theorem, φ , ψ ∈ Cα(Ω) for some α ∈ (0,1) . So, from
Lemma 2.1, we have for p ∈ (1,∞)

L (uθ (θ ,ξ )φ), L (uξ (θ ,ξ )ψ) ∈ Lp(R3).

By using (6.3)-(6.4) and [27, Theorem 3.1.3] again, we obtain

φ , ψ ∈W 2,p(Ω), ∀p ∈ (1,∞) (6.8)

and there is constant C such that

‖φ‖W 2,p(Ω), ‖ψ‖W2,p(Ω) � C uniformly for λ j � λ0 .

By the Sobolev embedding theorem,

φ , ψ ∈C1+α(Ω).

As in the proof of Lemma 4.2, we have

L (uθ (θ ,ξ )φ), L (uξ (θ ,ξ )ψ) ∈C1+α(Ω). (6.9)

Considering the equations for ∂xiφ and ∂xiψ , similarly we have φ , ψ ∈C2+α(Ω) and

‖φ‖C2+α (Ω), ‖ψ‖C2+α(Ω)

are bounded uniformly for λ j � λ0 .
Step 2. Applying [27, Theorem 3.1.3] to (6.4), we obtain that for all q ∈ (1,∞) ,

there exist γ > 0 and λ0 > 0 such that for γ ∈ [0, γ ] and λ j � λ0 ,

‖ψ‖W1,q(Ω) � C√
λ j

, (6.10)

where the constant C is independent of λ j , γ . By the Sobolev embedding theorem we
get (6.5). �
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LEMMA 6.5. Assume |Ω| � d0 . There exist λ0 > 0 and γ > 0 , such that for
λ � λ0 , γ ∈ [0, γ ] ,

Reμ1(λ ) � μ0(> 0),

where μ0 is independent of λ .

Proof. If not, there is {λ j} j such that

limsup
λ j→∞

Reμ1(λ j) < μ0.

From Lemma 6.4, (6.3) and (6.4) converge to the eigenvalue problem⎧⎪⎨
⎪⎩
Δφ +uθθ(θ∗,0) · (∇v∗)φ +uθ (θ∗,0)− γ(0,0,1) ·h = −μφ in Ω,

h = L (uθ (θ∗,0)φ), (0,0,1) ·h = 0 in Ω,

φ = 0 on ∂Ω.

(6.11)

Integrating over Ω and using

−
∫
Ω
φuθ (θ∗,0) ·hdx =

∫
R3

|h|2dx,

we have

Reμ
∫
Ω
φ2dx = Re

∫
Ω
|∇φ |2dx−φ2uθθ (θ∗,0) ·∇v∗dx+

∫
R3

|h|2dx

�
∫
Ω
|∇φ |2dx− (

∫
Ω
|∇v∗|3/2dx)2/3(

∫
Ω
|φ |6dx)1/3 +

∫
R3

|h|2dx

� c0

∫
Ω
φ2dx

provided that |Ω| � d0 and d0 is small enough, where c0 > 0 is a constant. Taking
μ0 = c0/2, we get a contradiction. So we proved this lemma. �

PROOF OF THEOREM 2. For fixed λ � λ0 , we can choose γ ∈ (0, γ ) such that γλ
is small enough. By a perturbation argument (c.f. [25]), we have that for |Ω| � d0 and
for fixed λ � λ0 , there exists γ0(λ ) > 0 such that for γ ∈ [0,γ0(λ )] , the eigenvalues
{μk(λ )}k of operator Aλ have same behavior as Aλ . Then

Re(μ1(λ )) � μ0

2
.

By using the result of the Proposition 6.2 and [27] (p.295, the remark behind the proof
of Theorem 8.1.1), we have the local existence of solutions to (6.1) with initial data in
a neighborhood of the steady state solutions obtained in the Theorem 1. Moreover by
using [27, Theorem 9.1.2], the solutions which satisfy the conditions in the Theorem 2
are exponentially asymptotically stable. �
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