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STABILITY OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH

OSCILLATING COEFFICIENTS AND DISTRIBUTED DELAYS

MICHAEL I. GIL’

Abstract. We consider the scalar equation

ẋ(t)+
m

∑
j=1

aj(t)
∫ h

0
x(t − s)dr j(s) = 0 (h = const > 0, ẋ = dx/dt),

where r j(s) are nondecreasing functions. Besides, we do not require that aj(t) are positive for
all t � 0 . So the function

z+
m

∑
j=1

aj(t)
∫ h

0
e−zsdr j(s)

can have zeros in the right-hand plane for some t � 0 . It is proved that the considered equation
is exponentially stable, provided aj(t) = bj + c j(t) , where bj are positive constants, such that

all the zeros of the function z +∑m
j=1 bj

∫ h
0 e−zsdr j(s) are in the open left-hand plane, and the

integrals
∫ t
0 c j(s)ds ( j = 1, ...,m) are sufficiently small for all t > 0 .
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