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Abstract. We consider the scalar equation

ẋ(t)+
m

∑
j=1

aj(t)
∫ h

0
x(t − s)dr j(s) = 0 (h = const > 0, ẋ = dx/dt),

where r j(s) are nondecreasing functions. Besides, we do not require that aj(t) are positive for
all t � 0 . So the function

z+
m

∑
j=1

aj(t)
∫ h

0
e−zsdr j(s)

can have zeros in the right-hand plane for some t � 0 . It is proved that the considered equation
is exponentially stable, provided aj(t) = bj + c j(t) , where bj are positive constants, such that

all the zeros of the function z +∑m
j=1 bj

∫ h
0 e−zsdr j(s) are in the open left-hand plane, and the

integrals
∫ t
0 c j(s)ds ( j = 1, ...,m) are sufficiently small for all t > 0 .

1. Introduction and statement of the main result

The present paper deals with the equation

ẋ(t)+
m

∑
j=1

a j(t)
∫ h

0
x(t− s)dr j(s) = 0 (t > 0, h = const > 0, ẋ = dx/dt), (1.1)

where r j(s) are nondecreasing functions having finite variations var(r j) , and a j(t) are
piece-wise continuous real functions bounded on [0,∞) .

The literature on the first order linear functional differential equations is very rich,
cf. [1, 5, 7, 9, 11, 12, 15] and references therein, but mainly, the coefficients in (1.1)
are assumed to be positive. The papers [2, 3, 16] are devoted to stability properties
of differential equations with several (not distributed) delays and an arbitrary number
of positive and negative coefficients. In particular, the papers [2, 3] give us explicit
stability tests in the iterative and limit forms. Besides the main tool is the comparison
method based on the Bohl-Perron type theorem. The sharp stability condition for the
first order functional-differential equation with one variable delay was established by
A.D. Myshkis (the so called 3/2-stability theorem) in his celebrated paper [10] (see also
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[6]). The similar result was established by J. Lillo [8]. The 3/2-stability theorem was
generalized to nonlinear equations and equations with unbounded delays in the papers
[13, 14, 15].

In the prsesent paper we do not require that a j(t) are positive for all t � 0 and
therefore the function

z+
m

∑
j=1

a j(t)
∫ h

0
e−zsdr j(s)

can have zeros in the right-hand plane for some t � 0. In addition, we improve the
3/2-stability theorem in the case of the constant delay.

Let a j(t) = b j +c j(t) ( j = 1, ...,m) , where b j are positive constants, such that all
the zeros of the function

K(z) := z+
m

∑
j=1

b j

∫ h

0
e−zsdr j(s)

are in the open left-hand plane, and functions c j(t) have the property

wj := sup
t�0

|
∫ t

0
c j(t)dt| < ∞ ( j = 1, ...,m).

The function

W (t) =
1

2π i

∫ i∞

−i∞

eztdz
K(z)

is the fundamental solution to the equation

ẏ(t) = −
m

∑
j=1

b j

∫ h

0
y(t− s)dr j(s). (1.2)

Without loss of the generality assume that

var(r j) = 1 ( j = 1, ...,m).

Furthermore, for a function f defined and bounded on [0,∞) (not necessarily
continuous) introduce the norm ‖ f‖C = supt�0 | f (t)| . So ‖ak‖C = supt�0 |ak(t)| . In
addition, put

‖W‖L1 =
∫ ∞

0
|W (t)|dt.

Now we are in a position to formulate our main result.

THEOREM 1.1. Let

(
m

∑
j=1

wj)
[
1+‖W‖L1

m

∑
k=1

(bk +‖ak‖C)
]

< 1. (1.3)

Then equation (1.1) is exponentially stable.
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This theorem is proved in the next section. It is sharp. Namely, if a j(t) ≡ b j ( j =
1, ...,m) , then wj = 0 and condition (1.3) is automatically fulfilled.

Put

r̂(s) =
m

∑
j=1

b jr j(s).

Then (1.2) takes the form

ẏ(t) = −
∫ h

0
y(t− s)dr̂(s). (1.4)

Besides,

var(r̂) =
m

∑
j=1

b j var(r j) =
m

∑
j=1

b j.

For instance, let

eh
m

∑
j=1

b j = eh var(r̂) < 1. (1.5)

Then W (t) � 0 and equation (1.2) is exponentially stable, cf. [4]. Now, integrating
(1.2), we have

1 = W (0) =
∫ ∞

0

∫ h

0
W (t − s)dr̂(s) dt

=
∫ h

0

∫ ∞

0
W (t − s) dt dr̂(s)

=
∫ h

0

∫ ∞

−s
W (t) dt dr̂(s)

=
∫ h

0

∫ ∞

0
W (t) dt dr̂(s) = var(r̂)‖W‖L1 .

So,

‖W‖L1 =
1

∑m
k=1 bk

. (1.6)

Thus, Theorem 1.1 implies

COROLLARY 1.2. Let the conditions (1.5) and

m

∑
j=1

wj <
∑m

k=1 bk

∑m
k=1(2bk +‖ak‖C)

(1.7)

hold. Then equation (1.1) is exponentially stable.

Furthermore, let

a j(t) = b j +u j(ω jt) (ω j > 0; j = 1, ...,m) (1.8)
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with a piece-wise continuous functions u j(t) , such that

ν j := sup
t
|
∫ t

0
u j(s)ds| < ∞.

Then we have ‖a j‖C � b j +‖u j‖C and

wj = sup
t

∣∣∫ t

0
u j(ω js)ds

∣∣ = ν j/ω j.

For example if u j(t) = sin (t) , then ν j = 2. Now Theorem 1.1 and (1.7) imply our next
result.

COROLLARY 1.3. Let the conditions (1.5) , (1.8) and

m

∑
k=1

ν j

ω j
<

∑m
k=1 bk

∑m
k=1(3bk +‖uk‖C)

(1.9)

hold. Then equation (1.1) is exponentially stable.

EXAMPLE 1.4. Consider the equation

ẋ = −
m

∑
j=1

(b j + τ j sin(ω jt))
∫ 1

0
x(t− s)d j(s)ds (τ j = const > 0), (1.10)

where d j(s) are positive and bounded on [0,1] functions, satisfying the condition

∫ 1

0
d j(s)ds = 1.

Assume that (1.5) holds with h = 1. Then ν j = 2τ j and condition (1.9) takes the form

m

∑
k=1

2τ j

ω j
<

∑m
k=1 bk

∑m
k=1(3bk + τk)

.

So for arbitrary τ j , there are ω j , such that equation (1.10) is exponentially stable. In
particular, consider the equation

ẋ = −(b+ τ0 sin(ωt))x(t−1) (b < e−1;τ0,ω = const > 0). (1.11)

Then according to condition (1.9) for any τ0 , there is an ω , such that equation (1.11) is
exponentially stable. At the same time the 3/2-stability theorem requires the condition
h(τ0 +b) < 3/2 for all ω .
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2. Proof of Theorem 1.1

Due to the Variation of Constants Formula the equation

ẋ(t) = −
m

∑
k=1

b j

∫ h

0
x(t − s)dr j(s)+ f (t) (t > 0)

with a given function f and the zero initial condition

x(t) = 0 (t � 0)

is equivalent to the equation

x(t) =
∫ t

0
W (t − τ) f (τ)dτ. (2.1)

Recall that a differentiable in t function G(t,s) (t � s � 0) is the fundamental solution
to (1.1) if it satisfies that equation in t and the initial conditions

G(s,s) = 1, G(t,s) = 0 (t < s, s � 0).

Put G(t,0) = G(t) . Subtracting (1.2) from (1.1) we have

d
dt

(G(t)−W(t))

= −
m

∑
k=1

b j

∫ h

0
(G(t− s)−W(t − s))dr j(s)−

m

∑
j=1

c j(t)
∫ h

0
G(t − s)dr j(s). (2.2)

Now (2.1) implies

G(t) = W (t)−
∫ t

0
W (t − τ)

m

∑
j=1

c j(τ)
∫ h

0
G(τ− s)dr j(s) dτ. (2.3)

We need the following simple lemma.

LEMMA 2.1. Let f (t),u(t) and v(t) be scalar functions defined on a finite seg-
ment [a,b] of the real axis. Assume that f (t) and v(t) are boundedly differentiable and
u(t) is integrable on [a,b] . Then with the notation

ju(t) =
∫ t

a
u(s)ds (a < t � b),

the equality

∫ t

a
f (s)u(s)v(s)ds = f (t) ju(t)v(t)−

∫ t

a
[ f ′(s) ju(s)v(s)+ f (s) ju(s)v′(s)]ds

is valid.
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Proof. Clearly,

d
dt

f (t) ju(t)v(t) = f ′(t) ju(t)v(t)+ f (t)u(t)v(t)+ f (t) ju(t)v′(t).

Integrating this equality and taking into account that ju(a)= 0, we arrive at the required
result. �

Put

Jj(t) :=
∫ t

0
c j(s)ds.

By the previous lemma,

∫ t

0
W (t− τ)c j(τ)G(τ− s)dτ = W (0)Jj(t)G(t− s)

−
∫ t

0

[dW (t− τ)
dτ

Jj(τ)G(τ− s)+W(t− τ)Jj(τ)
dG(τ − s)

dτ

]
dτ. (2.4)

But
dG(τ− s)

dτ
= −

m

∑
k=1

ak(τ− s)
∫ h

0
G(τ− s− s1)drk(s1)

and

dW (t− τ)
dτ

= −dW (t− τ)
dt

=
m

∑
j=1

b j

∫ h

0
W (t − τ− s1)dr j(s1)

=
∫ h

0
W (t − τ− s1)dr̂ j(s1).

Thus, ∫ t

0
W (t− τ)c j(τ)G(τ − s)dτ = Zj(t,s),

where

Zj(t,s) := Jj(t)G(t− s)+
∫ t

0
Jj(τ)[−

∫ h

0
W (t− τ− s1)dr̂(s1)G(τ− s)

+W (t− τ)
m

∑
k=1

ak(τ− s)
∫ h

0
G(τ− s− s1)drk(s1)]dτ.

Now (2.3) implies

LEMMA 2.2. The equality

G(t) = W (t)−
∫ h

0

m

∑
j=1

Zj(t,s)dr j(s)

is true.
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We have

sup
t�0

|Zj(t,s)| � wj‖G‖C

[
1+

∫ t

0

∫ h

0
|W (t − τ− s1)|dr̂(s1)dτ

+
m

∑
k=1

‖ak‖C

∫ t

0
|W (t− τ)|dτ

]
.

But

∫ h

0

∫ t

0
|W (t − τ− s)|dτ dr̂(s) =

∫ h

0

∫ t−s

−s
|W (t− τ)|dτ dr̂(s)

� var(r̂)
∫ ∞

0
|W (τ)|dτ.

Thus,

‖Zj(t,s)‖C � wj‖G‖C(1+
m

∑
k=1

(bk +‖ak‖C)‖W‖L1).

From the previous lemma we get ‖G‖C � ‖W‖C + γ‖G‖C , where

γ := (
m

∑
k=1

wj)
[
1+

m

∑
k=1

(bk +‖ak‖C)‖W‖L1

]
.

Condition (1.3) means that γ < 1. We thus have proved the following result.

LEMMA 2.3. Let condition (1.3) hold. Then

‖G‖C � ‖W‖C

1− γ
. (2.5)

The previous lemma implies the stability of (1.1). Substituting

xε(t) = e−εt x(t) (2.6)

with ε > 0 into (1.1), we have the equation

ẋε (t) = εxε(t)−
m

∑
k=1

ak(t)
∫ h

0
eεsxε(t− s)drk(s). (2.7)

If ε > 0 is sufficiently small, then according to (2.5) we easily obtain that ‖xε‖C < ∞
for any solution xε of (2.7). Hence (2.6) implies |x(t)| � e−εt‖xε‖C for any solution x
of (1.1). �
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3. Additional stability results

In this section we suggest a bound for the norm of W (t) under the condition

eh
m

∑
j=1

b j < ξ (1 < ξ < 2). (3.1)

Due to Theorem 1.1 that bound gives us explicit stability conditions, provided (3.1)
holds. Consider the equation

dỹ(t)/dt +
m

∑
j=1

b̃ j

∫ h

0
ỹ(t− s)dr j(s) = 0, (3.2)

where b̃ j = b j/ξ . Let W̃ be the fundamental solution to the equation (3.2). Subtracting
(3.2) from (1.4), we obtain

d
dt

(W (t)−W̃(t))+
m

∑
j=1

b̃ j

∫ h

0
(W (t − s)−W̃(t − s))dr j(s)

= −
m

∑
j=1

(b j − b̃ j)
∫ h

0
W (t − s)dr j(s).

Due to the Variation of Constants Formula,

W (t)−W̃(t) = −
∫ t

0
W̃ (t− τ)

m

∑
j=1

(b j − b̃ j)
∫ h

0
W (τ − s)dr j(s)dτ.

Hence, taking into account that var (r j) = 1, by simple calculations we get

‖W −W̃‖L1 � ‖W̃‖L1‖W‖L1

m

∑
j=1

(b j − b̃ j).

If

ψ := ‖W̃‖L1

m

∑
j=1

(b j − b̃ j) < 1,

then ‖W‖L1 � ‖W̃‖L1(1−ψ)−1 . But condition (3.1) implies (1.5) with b̃k instead of
bk . So according to (1.6) we have

‖W̃‖L1 =
1

∑m
k=1 b̃k

=
ξ

∑m
k=1 bk

.

Consequently, ψ = ξ − 1 and ‖W‖L1 � ‖W̃‖L1(2− ξ )−1 . Thus we have proved the
following result.

LEMMA 3.1. Let conditions (3.1) and var (r j) = 1 ( j = 1, ...,m) hold. Then

‖W‖L1 � ξ
(2− ξ )∑m

k=1 bk
.

Now we can directly apply Theorem 1.1.
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