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STABILITY OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH
OSCILLATING COEFFICIENTS AND DISTRIBUTED DELAYS

MICHAEL I. GIL’

(Communicated by J. Yan)

Abstract. We consider the scalar equation

m h
)+ Y aj(t) / x(t —s)drj(s) =0 (h=const >0, X =dx/dt),
j=1 70

where r;(s) are nondecreasing functions. Besides, we do not require that a;(¢) are positive for
all r > 0. So the function

m h
+ Y, aj(t)/ e “dri(s)
j=1 0

can have zeros in the right-hand plane for some 7 > 0. It is proved that the considered equation
is exponentially stable, provided a;(t) = b; +c;(t), where b; are positive constants, such that

all the zeros of the function z+ X7, b; j(f' e ¥drj(s) are in the open left-hand plane, and the
integrals [§c;(s)ds (j=1,...,m) are sufficiently small for all # > 0.

1. Introduction and statement of the main result

The present paper deals with the equation
m h
)+ aj(t)/ x(t—s)dri(s) =0 (t >0, h=const >0, x =dx/dt),  (1.1)
j=1 0

where r;(s) are nondecreasing functions having finite variations var(r;), and a;(r) are
piece-wise continuous real functions bounded on [0,0).

The literature on the first order linear functional differential equations is very rich,
cf. [1,5,7,9, 11, 12, 15] and references therein, but mainly, the coefficients in (1.1)
are assumed to be positive. The papers [2, 3, 16] are devoted to stability properties
of differential equations with several (not distributed) delays and an arbitrary number
of positive and negative coefficients. In particular, the papers [2, 3] give us explicit
stability tests in the iterative and limit forms. Besides the main tool is the comparison
method based on the Bohl-Perron type theorem. The sharp stability condition for the
first order functional-differential equation with one variable delay was established by
A.D. Myshkis (the so called 3/2-stability theorem) in his celebrated paper [10] (see also

Mathematics subject classification (2010): 34K20.
Keywords and phrases: functional differential equation, linear equation, exponential stability.
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12 MICHAEL I. GIL’

[6]). The similar result was established by J. Lillo [8]. The 3/2-stability theorem was
generalized to nonlinear equations and equations with unbounded delays in the papers
[13, 14, 15].

In the prsesent paper we do not require that a;(t) are positive for all t > 0 and
therefore the function

m h
Z+j=21aj(t)‘/0 e “drj(s)

can have zeros in the right-hand plane for some t > 0. In addition, we improve the
3/2-stability theorem in the case of the constant delay.

Letaj(t)=bj+c;(t) (j=1,...,m), where b; are positive constants, such that all
the zeros of the function

—Z—I—Zb/ e “drj(s)

are in the open left-hand plane, and functions c¢;(¢) have the property
1
W= sup|/ ci(t)dt] <o (j=1,....m).
>0 J0

The function )
1 i e?dz

W(I) = % 71.00@

is the fundamental solution to the equation

m h
- b./’/o y(t —s)dr;(s). (1.2)
=1

Without loss of the generality assume that
var(rj) =1 (j=1,...,m).

Furthermore, for a function f defined and bounded on [0,e<) (not necessarily
continuous) introduce the norm || f||c = sup,~¢ [f(t)|. So |[lak||c = sup,>¢|ak(t)|. In
addition, put

Wi = [ W

Now we are in a position to formulate our main result.

THEOREM 1.1. Let

m

wi) [14 Wl 3 (et lale)] < 1. (1.3)
1 k=1

ek

(

J

Then equation (1.1) is exponentially stable.
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This theorem is proved in the next section. It is sharp. Namely, if a;(r) =b; (j =
1,...,m), then w; = 0 and condition (1.3) is automatically fulfilled.

Put
m
7 S) = ijrj(s)
J=1
Then (1.2) takes the form

- "t~ ) (s). (14)

Besides,

var(? Zb var rJ Zb

For instance, let

eh Y bj=ehvar(#) < 1. (1.5)
Jj=1

Then W(¢) > 0 and equation (1.2) is exponentially stable, cf. [4]. Now, integrating

(1.2), we have
0) z/om/OhW(t—s)df(S) dt
:/h/wwa—smtdf(s)
_/ _SW 1) dt di(s)
_/ / W (¢) di d(s) = var(F)|[W | 1.

So,
Wl = 5 (16)
Thus, Theorem 1.1 implies
COROLLARY 1.2. Let the conditions (1.5) and
ﬁn“ Zie1 bk (1.7)

Zk 1 (2D + [lalc)

hold. Then equation (1.1) is exponentially stable.

Furthermore, let

aj(t):bj+uj(wjt) (wj>0;j:1,...,m) (1.8)
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with a piece-wise continuous functions u;(), such that
!
V= 51t1p|/0 uj(s)ds| < eo.
Then we have ||aj|lc < bj+ ||uj||c and
1
w; = Sl;lp |/0 uj(sz)ds’ = Vj/(!)j.

For example if u;(¢) = sin (), then v; =2. Now Theorem 1.1 and (1.7) imply our next
result.

COROLLARY 1.3. Let the conditions (1.5), (1.8) and

o v, P by
Vi (1.9)
& < S0t o)

hold. Then equation (1.1) is exponentially stable.
EXAMPLE 1.4. Consider the equation

ﬁ b; +1;sin( w,z))/o1 (t —$)d;(s)ds (t; = const > 0), (1.10)

where dj(s) are positive and bounded on [0, 1] functions, satisfying the condition

/Oldj(s)ds: L.

Assume that (1.5) holds with 4= 1. Then v; = 27; and condition (1.9) takes the form

P
& o Xl B+ w)

So for arbitrary 7;, there are w;, such that equation (1.10) is exponentially stable. In
particular, consider the equation

%= —(b+1osin(wt))x(t — 1) (b<e 19,0 = const > 0). (L.1D)
Then according to condition (1.9) for any 7y, there is an w, such that equation (1.11) is

exponentially stable. At the same time the 3/2-stability theorem requires the condition
h(tp+b) <3/2 forall ®.
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2. Proof of Theorem 1.1

Due to the Variation of Constants Formula the equation

=3 [ e+ ) (1>0)

with a given function f and the zero initial condition

is equivalent to the equation

/)= /O "Wt — o) f(2)dr. @.1)

Recall that a differentiable in # function G(z,s) (¢ > s > 0) is the fundamental solution
to (1.1) if it satisfies that equation in ¢ and the initial conditions

G(s,s)=1,G(t,5) =0 (t <s,s>0).

Put G(7,0) = G(¢). Subtracting (1.2) from (1.1) we have

Now (2.1) implies

t m h
- / w(t—1) Y ¢i(r) / G(t — s)dr;(s) dr. 2.3)
0 i 0
Jj=1
We need the following simple lemma.
LEMMA 2.1. Let f(t),u(t) and v(t) be scalar functions defined on a finite seg-

ment [a,b] of the real axis. Assume that f(t) and v(t) are boundedly differentiable and
u(t) is integrable on [a,b]. Then with the notation

() :/atu(s)ds (a<t<b),

the equality

[ s s)as = 700 - [ 6606 + 66 0)ds

is valid.
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Proof. Clearly,
%f(t)ju(t)V(t) = f1(0) jut)v(e) + f(@)u(t)v(e) + () ju(0)V' ().

Integrating this equality and taking into account that j,(a) =0, we arrive at the required
result. [

Put .
Ji(t) = / ¢;(s)ds.
0
By the previous lemma,

/0 "Wt —1)e; (2)G(x — s)dT = W(O); (1) Gt — s)

_/0[ [MJ/(T)G(T—S)+W(I—T)]J(T)M:|dr (2.4)

dt dt
But "
& 2 —s/G —s—s1)dre(sy)
and
dWST_T): dW Zb / W(t—1—s1)drj(s1)
:/ Wt — 17— s1)d#;(s1).
0
Thus, )
/()W(t—‘c)cj(r)G( )T =Z;(1,5).
where
Z;(t,5) = J;()G(t —s +/J /OhW(t—T—sl)df(sl)G(r—s)

m h
FW-1) Y alr-s) [ Gle—s—s)drs)ldr.
k=1 0
Now (2.3) implies

LEMMA 2.2. The equality
Glt) =W() / S Z,(1,5)dri(s)
O J 1

is true.
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We have
t rh
sup Z(r.5)| < willGlle[1+ [ [" Wt =7 —s1)ldis1)ae
t>0 0 J0
m 1
+ Y lladle [ Wit va].
k=1 0
But
/ /\Wt—r—s )|dt di(s) / / W (t—7)|dt di(s)
<var(s) [ W ()ldr.
0
Thus,
1Z;(t,5)l[c < w;l|Gllc(1 Z b+ larll )Wl zr)-

From the previous lemma we get ||G||c < [|W||c + ¥||G||c, where

m

— (S w1+ iMWMkWM]

Condition (1.3) means that ¥ < 1. We thus have proved the following result.

LEMMA 2.3. Let condition (1.3) hold. Then

6l < L. 2.3
The previous lemma implies the stability of (1.1). Substituting
xe(t) = e ¥x(t) (2.6)
with € > 0 into (1.1), we have the equation
Xe(t) = exe(t i / e xe(t — 5)dri(s). 2.7)

If € > 0 is sufficiently small, then according to (2.5) we easily obtain that |xg||c < oo
for any solution x, of (2.7). Hence (2.6) implies |x(¢)| < e~ ||x¢||c for any solution x
of (1.1). O
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3. Additional stability results

In this section we suggest a bound for the norm of W (¢) under the condition

ehibj@i (1<&<2). 3.1
j=1

Due to Theorem 1.1 that bound gives us explicit stability conditions, provided (3.1)
holds. Consider the equation

dy(t) /dt + i b; / " $(t —s)dr;(s) =0, (3.2)
=1 70

where b; =b;/&. Let W be the fundamental solution to the equation (3.2). Subtracting
(3.2) from (1.4), we obtain

d ~ &oo [h =
WO WO+ 385 [T (e=5) = W= 9)dry()

m » h
=—Y (b —bj)/ W(t —s)dr(s).
j=1 0
Due to the Variation of Constants Formula,
t m » h
W) —W(t) = —/ W—1) 3 (b; - b,,»)/ W(t —s)drj(s)dx.
0 = 0
j=1

Hence, taking into account that var (r;) = 1, by simple calculations we get

m

W =Wilpe < Wl Wil X (b = b))

j=1
If

m

wi= Wil X (b= b)) <1,

Jj=1
then ||W|[;1 < ||[W| .1 (1 —w)~!. But condition (3.1) implies (1.5) with b; instead of
by. So according to (1.6) we have

1 ¢
ka=1 Z’k 2;?:1 bk.
Consequently, ¥ =& —1 and ||W/| 1 < [[W][1(2—&)~!. Thus we have proved the
following result.

Wil =

LEMMA 3.1. Let conditions (3.1) and var (rj) =1 (j =1,...,m) hold. Then

&
Q-8 b

Now we can directly apply Theorem 1.1.

Wil <
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