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IMPLICIT DIFFERENCE INEQUALITIES CORRESPONDING

TO PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS

MILENA NETKA

(Communicated by L. Berezansky)

Abstract. We give theorems on implicit difference inequalities generated by initial-boundary
value problems for parabolic functional differential equations. We apply this result for the in-
vestigation of the stability of difference schemes. Classical solutions of mixed problems are
approximated in the paper by solutions of suitable implicit difference methods. The proofs of
the convergence of difference methods are based on a comparison technique and the results on
difference functional inequalities are used. Numerical examples are presented.

1. Introduction

Differential inequalities found applications in several topics concerning differen-
tial or functional differential equations. Such problems as: estimates of solutions of
ordinary or partial differential or functional differential equations, estimates of the do-
main of the existence of classical or generalized solutions, criteria of uniqueness and
continuous dependence, are classical examples, however not the only ones. Moreover,
discrete versions of differential inequalities, the so called difference inequalities, are
frequently used to prove the convergence of numerical methods.

Parabolic functional differential equations have the following property: difference
methods for suitable initial or initial-boundary value problems consist in replacing par-
tial derivatives with difference operators. Moreover, because differential equations con-
tain a functional variable which is an element of the space of continuous functions de-
fined on a finite dimensional space, we need some interpolating operators. This leads
to nonlinear difference functional problems which satisfy consistency conditions on all
sufficiently regular solutions of functional differential equations. The main task in these
consideration is to find a finite difference approximation of an original problem which is
stable. The methods of difference inequalities are used in the investigation of the stabil-
ity of nonlinear difference functional equations generated by initial or initial-boundary
value problems.

In recent years, a number of papers concerning implicit numerical methods for
functional partial differential equations have been published. Difference approxima-
tions of classical solutions to first order partial functional differential equations were
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considered in [3], [5]. Initial problems on the Haar pyramid and initial-boundary value
problems were considered. Implicit difference schemes for nonlinear parabolic equa-
tions with initial-boundary conditions of the Dirichlet type were studied in [1], [9].
The convergence of a class of implicit difference methods for parabolic equations with
initial-boundary conditions of the Neumann type were investigated in [7], [8]. Mono-
tone iterative methods and implicit difference schemes for computing approximate so-
lutions to parabolic equations with time delay were analyzed in [11], [12], [19]. The
stability and convergence of numerical method of lines for initial boundary value prob-
lems were investigated in [10].

The aim of the paper is to show theorems on implicit difference inequalities cor-
responding to parabolic functional differential equations with general initial-boundary
conditions. We give also applications of theorems on implicit difference inequalities.
More precisely, we propose implicit difference schemes for the numerical solving of
functional differential equations. We give a complete converegence analysis for the
methods and we show by examples that new difference schemes are considerably better
than classical methods.

Results presented in the paper are new also in the case of differential equations
without the functional dependence.

Sufficient conditions for the existence and uniqueness of classical or generalized
solutions of parabolic functional differential problems can be found in [2], [6], [13],
[14], [17], [18]. The monograph [20] gives an exposition of the theory of parabolic
functional differential equations. We use in the paper general ideas for finite difference
equations which were introduced in [15], [16].

We formulate our functional differential problems. For any metric spaces X and
Y we denote by C(X ,Y ) the class of all continuous functions defined on X and taking
values in Y . We will use vectorial inequalities with the understanding that the same
inequalities hold between their corresponding components. Write

E0 = [−b0,0]× [−b,b] and E = [0,a]× [−b,b],

where a > 0, b0 ∈ R+, R+ = (0,+∞) and b = (b1, . . . ,bn), bi > 0 for i = 1, . . . ,n .
Set r0 = b0 + a, r = 2b and B = [−r0,0]× [−r,r],Σ = [−r0,a]× [−b− r,b + r]. For
a function z : Σ→ R and for a point (t,x) ∈ E we define a function z(t,x) : B → R by
z(t,x)(τ,y) = z(t + τ,x+ y), (τ,y) ∈ B. For (t,x) ∈ E we put

D[t,x] =
{
(τ,y) ∈ R

1+n : τ � 0, (t + τ,x+ y) ∈ E0∪E
}
.

It is clear that D[t,x] = [−b0 − t,0]× [−b− x,b− x] and D[t,x] ⊂ B for (t,x) ∈ E .
Let Mn×n be the class of all n × n matrices with real elements. Write Ξ = E ×
C(B,R)×Rn ×Mn×n and suppose that F : Ξ → R is a given function. We will say
that F satisfies the condition (V ) if for each (t,x,w,q,s) ∈ Ξ and w̃ ∈ C(B,R) such
that w(τ,y) = w̃(τ,y) for (τ,y) ∈ D[t,x] we have F(t,x,w,q,s) = F(t,x, w̃,q,s) . Note
that the condition (V ) means that the value of F at the point (t,x,w,q,s) ∈ Ξ depends
on (t,x,q,s) and on the restriction of w to the set D[t,x] only. Let us denote by z an
unknown function of the variables (t,x), x = (x1, . . . ,xn) . We consider the functional



PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS 23

differential equation

∂t z(t,x) = F
(
t,x,z(t,x),∂xz(t,x),∂xxz(t,x)

)
, (1.1)

where ∂xz = (∂x1z, . . . ,∂xnz), ∂xxz = [∂xix j z]i, j=1,...,n. We assume that F satisfies the
condition (V ) and we consider classical solutions of (1.1). Now we formulate initial-
boundary conditions for (1.1). Write

Si = {x ∈ [−b,b] : xi = bi}, Sn+i = {x ∈ [−b,b] : xi = −bi}, i = 1, . . . ,n

Q+
1 = S1, Q+

i = Si \∪i−1
j=1S j, Q−

i = Sn+i \∪n+i−1
j=1 S j, i = 1, . . . ,n.

Set

∂0E
+
i = [0,a)×Q+

i ,

∂0E
−
i = [0,a)×Q−

i , i = 1, . . . ,n,

∂0E = ∪n
i=1(∂0E

+
i ∪∂0E

−
i ).

Suppose that β , γ, Ψ : ∂0E → R , ψ : E0 → R are given functions. The following
initial-boundary conditions are associated with (1.1):

z(t,x) = ψ(t,x) on E0, (1.2)

β (t,x)z(t,x)+ γ(t,x)∂xi z(t,x) = Ψ(t,x) on ∂0E
+
i , i = 1, . . . ,n, (1.3)

β (t,x)z(t,x)− γ(t,x)∂xi z(t,x) = Ψ(t,x) on ∂0E
−
i , i = 1, . . . ,n. (1.4)

A function z : E0∪E →R will be called the function of class C∗ if z is continuous
on E0∪E , the partial derivatives ∂t z , ∂xz = (∂x1z, . . . ,∂xn z) , ∂xxz = [∂xix j z]i, j=1,...,n exist
on E and the functions ∂t z,∂xz,∂xxz are continuous on E . We consider solutions of
(1.1)-(1.4) of class C∗ .

For spaces X and Y we denote by F (X ,Y ) the class of all functions defined on
X and taking values in Y . Let N and Z be the sets of natural numbers and integers,
respectively. We define a mesh in R1+n in the following way. Let h = (h0,h), h =
(h1, . . . ,hn) , stand for steps of the mesh. For (r,m) ∈ Z1+n, m = (m1, . . . ,mn) we
define nodal points as follows

t(r) = rh0, x(m) = (m1h1, . . . ,mnhn) =
(
x(m1)
1 , . . . ,x(mn)

n
)
.

Let us denote by H the set of all h for which there exist (M1, . . . ,Mn) = M ∈ Z
n

and M0 ∈ Z such that Mihi = bi for i = 1, . . . ,n , M0h0 = b0 . For h ∈ H we put
‖h‖ = h0 +h1 + . . .+hn . Let K ∈ N be defined by relations Kh0 � a < (K +1)h0 . For
h ∈ H we put

R
1+n
h = {(t(r),x(m)) : (r,m) ∈ Z

1+n},
and

E0.h = E0∩R
1+n
h , Eh = E ∩R

1+n
h , Bh = B∩R

1+n
h ,

∂0E
+
h.i = ∂0E

+
i ∩R

1+n
h , ∂0E

−
h.i = ∂0E

+
i ∩R

1+n
h .
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Difference operators are defined in the following way. Let ei ∈ Rn defined by
ei = (0, . . . ,0,1,0, . . . ,0) with 1 standing on the i− th place. Write

J = {(i, j) : i, j = 1, . . . ,n, i 	= j}.

Suppose that we have defined the sets J+, J− ⊂ J such that J+∪ J− = J, J+∩ J− = /0 .
We assume that (i, j) ∈ J+ if ( j, i) ∈ J+ . In particular, it may happen that J+ = /0 or
J− = /0 . Relations between equation (1.1) and the sets J+,J− are given in Remark 2.1.

Given z ∈ F (E0.h ∪Eh,R) and (r,m) ∈ Z
1+n , 0 � r � K − 1, −(M− 1) � m �

M−1, where M−1 = (M1 −1, . . . ,Mn −1). Write

δ0z
(r,m) =

1
h0

[
z(r+1,m) − z(r,m)], (1.5)

δ+
i z(r,m) =

1
hi

[z(r,m+ei)− z(r,m)], i = 1, . . . ,n,

δ−
i z(r,m) =

1
hi

[z(r,m)− z(r,m−ei)], i = 1, . . . ,n,

and δ z(r,m) = (δ1z(r,m), . . . ,δnz(r,m)) where

δiz
(r,m) =

1
2
[δ+

i z(r,m) + δ−
i z(r,m)], i = 1, . . . ,n. (1.6)

The difference operator δ (2) = [δi j]i, j=1,...,n, is defined in the following way:

δ (2)
ii z(r,m) = δ+

i δ−
i z(r,m) for i = 1, . . . ,n (1.7)

and

δ (2)
i j z(r,m) =

1
2

[
δ+

i δ−
j z(r,m) + δ−

i δ
+
j z(r,m)] for (i, j) ∈ J−, (1.8)

δ (2)
i j z(r,m) =

1
2

[
δ+

i δ+
j z(r,m) + δ−

i δ
−
j z(r,m)] for (i, j) ∈ J+. (1.9)

Solutions of difference functional equations are elements of the space F (E0.h ∪
Eh,R). Since equation (1.1) contains the functional variable z(t,x) which is an element
of the space C(D[t,x],R) , we need an interpolating operator Th : F (Bh,R)→C(B,R).
We adopt additional assumption on Th in Section 3. For a function z : Σh → R and for
a point (t(r),x(m)) ∈ Eh we define a function z[r,m] : Bh → R by

z[r,m](τ,y) = z(t(r) + τ,x(m) + y), (τ,y) ∈ Bh.

Set
Fh[z](r,m) = F

(
t(r),x(m),Thz[r,m],δ z(r+1,m),δ (2)z(r+1,m))

and
Λ+

h.i[z]
(r,m) = β (r,m)z(r,m) + γ(r,m)δ−

i z(r,m) on ∂0E
+
h.i,

Λ−
h.i[z]

(r,m) = β (r,m)z(r,m)− γ(r,m)δ+
i z(r,m) on ∂0E

−
h.i,
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where i = 1, · · · ,n. Write

∂0E
+
h = ∪n

i=1∂0E
+
h.i, ∂0E

−
h = ∪n

i=1∂0E
−
h.i, ∂0Eh = ∂0E

+
h ∪∂0E

−
h .

For a function z : E0.h∪Eh →R we define a function Λh[z] : ∂0Eh →R in the following
way:

Λh[z](r,m) = Λ+
h.i[z]

(r,m) if (t(r),x(m)) ∈ ∂0E
+
h.i,

Λh[z](r,m) = Λ−
h [z](r,m) if (t(r),x(m)) ∈ ∂0E

−
h.i.

Suppose that ψh : E0.h → R and Ψh : ∂0Eh → R are given functions. We consider the
difference functional equation

δ0z
(r,m) = Fh[z](r,m) (1.10)

with the initial-boundary conditions:

z(r,m) = ψ(r,m)
h on E0.h, (1.11)

Λh[z](r,m) = Ψ(r,m)
h on ∂0Eh. (1.12)

REMARK 1.1. Note that the values z(r+1,m+λ ) appear in the expressions δ z(r+1,m)

and δ (2)z(r+1,m) , where λ = (λ1, . . . ,λn), λi ∈ {−1,0,1} , i = 1, . . . ,n and ‖λ‖ � 2.
Then (1.10)-(1.12) is an implicit difference scheme for (1.1)-(1.4).

Our motivations for the construction of implicit difference schemes are the fol-
lowing. Two type assumptions are needed in theorems on the stability of difference
schemes corresponding to (1.1)-(1.4). The first type conditions concern regularity of
F . It is assumed that the function F of the variables (t,x,w,q,s) , q = (q1, . . . ,qn) ,
s = [si j]i, j=1,...,n , is of class C1 with respect to (q,s) and the functions:

∂qF = (∂q1F, . . . ,∂qnF) and ∂sF = [∂si j F]i, j=1,...,n

are bounded. It is assumed also that F satisfies the Perron type estimate with respect to
the functional variable w .

The second type conditions concern the mesh. It is required that

1−2h0

n

∑
i=1

1

h2
i

∂siiF(P)+h0

n

∑
j=1
j 	=i

1
hih j

∣∣∂si jF(P)
∣∣ � 0, P = (t,x,w,q,s) ∈ Ξ. (1.13)

It is clear that strong assumptions on relations between h0 and h = (h1, . . . ,hn) are
required in (1.13). It is important in our considerations that assumption (1.13) is omitted
in theorems on difference functional inequalities and in theorems on the convergence
of implicit difference methods for (1.1)-(1.4).
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2. Difference functional inequalities

The following assumption will be needed throughout the paper.

ASSUMPTION H[F ]. The function F : Ξ→ R of the variables (t,x,w,q,s), q =
(q1, . . . ,qn), s = [si j]i, j=1,...,n satisfies the condition (V ) and:

1) F ∈C(Ξ,R) and the derivatives ∂qF = (∂q1F, . . . ,∂qnF), ∂sF = [∂si jF ]i, j=1,...,n exist
and the functions ∂qF : Ξ→ Rn, ∂sF : Ξ→ Mn×n are continuous and bounded,

2) the matrix ∂sF is symmetric and

−1
2

∣∣∂qiF(P)
∣∣+ 1

hi
∂siiF(P)−

n

∑
j=1
j 	=i

1
h j

∣∣∂si j F(P)
∣∣ � 0, i = 1, . . . ,n, (2.1)

and
∂si jF(P) � 0 for (i, j) ∈ J+, ∂si j F(P) � 0 for (i, j) ∈ J−, (2.2)

where P ∈ Ξ ,

3) h∈H and there is ε0 > 0 such that for 0 < h0 < ε0 and w,w∈F (Bh,R) if w(τ,y) �
w(τ,y) for (τ,y) ∈ Bh , then

w(0,θ) +h0F(t,x,Thw,q,s) � w(0,θ) +h0F(t,x,Thw,q,s),

4) β : ∂0Eh → (0,∞), γ : ∂0Eh → R+ and h ∈ H, h0 � ε0 , Th : F (Bh,R) →C(B,R) .

REMARK 2.1. We have assumed that for each (i, j) ∈ J, the functions

gi j(P) = sign ∂si jF(P), P ∈ Ξ,

are constant. Relations (2.2) can be considered as definitions of the sets J+ and J− .

REMARK 2.2. Suppose that f : E ×R×C(B,R)×Rn ×Mn×n → R is a given
function of the variables (t,x, p,w,q,s) and F(t,x,w,q,s) = f (t,x,w(0,θ ),w,q,s) on
Ξ , where θ = (0, . . . ,0) ∈ R

n. Suppose that:

1) f is nondecreasing with respect to the functional variable w ,

2) there exist the derivative ∂p f and the function ∂p f is continuous and bounded.

Then F satisfies condition 3) of Assumption H[F ].

We prove a theorem on difference inequalities generated by problem (1.10)-(1.12).

THEOREM 2.1. Suppose that Assumption H[F ] is satisfied and

1) the functions u,v : E0.h∪Eh → R satisfy the differential difference inequality

δ0u
(r,m)−Fh[u](r,m) � δ0v

(r,m)−Fh[v](r,m) on Eh, (2.3)
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2) the initial estimate u(r,m) � v(r,m) on E0.h and boundary inequalities Λh[u](r,m) �
Λh[v](r,m) on ∂0Eh are satisfied.

Then
u(r,m) � v(r,m) on Eh. (2.4)

Proof. Notice that for r = 0 inequality (2.4) is satisfied. Suppose that

u(i,m) � v(i,m) for (t(i),x(m)) ∈ (E0.h∪Eh)∩ ([−b0,t(r)]×Rn) .

We prove that u(r+1,m) � v(r+1,m) for −M � m � M. Suppose by contradiction that
above inequality fails to be true. Let μ = (μ1, . . . ,μn) be defined by relation

(u− v)(r+1,μ) = max
{
(u− v)(r+1,m) : −M � m � M

}
. (2.5)

We thus get
(u− v)(r+1,μ) > 0. (2.6)

Then two possibilities can happen,

either (i) :
(
t(r+1),x(μ)) ∈ ∂0Eh or (ii) :

(
t(r+1),x(μ)) ∈ Eh \ ∂0Eh .

Let us consider the first case. Then there is i ∈ {1, . . . ,n} such that x(μi)
i = bi or x(μi)

i =
−bi . If x(μi)

i = bi (the other case can be treated similary) then δ−
i (u− v)(r+1,μ) � 0.

But from assumption 2) it follows that

β (r+1,μ)(u− v)(r+1,μ) + γ(r+1,μ)δ−
i (u− v)(r+1,μ) � 0.

Hence β (r+1,μ)(u− v)(r+1,μ) � 0 which contradicts condition (2.6). Hence

(t(r+1),x(μ)) ∈ Eh \ ∂0Eh.

Write

A(r,μ) = (u− v)(r,μ) +h0

[
Fh[u](r,m)−F

(
t(r),x(μ),Thv[r,μ],δu(r+1,μ),δ (2)u(r+1,μ))],

B(r,μ) = h0

[
F

(
t(r),x(μ),Thv[r,μ],δu(r+1,μ),δ (2)u(r+1,μ))−Fh[v](r,m)

]
.

It follows form (2.3) that

(u− v)(r+1,μ) � A(r,μ) +B(r,μ). (2.7)

Set

Q(r,m)(τ) =
(
t(r),x(m),Thv[t,m],δv(r+1,m) + τδ (u− v)(r+1,m),

δ (2)v(r+1,m) + τδ (2)(u− v)(r+1,m)
)
,
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where 0 � τ � 1. Write

S̃(r,m)
i =

h0

h2
i

∫ 1

0
∂siiF(Q(r,m)(τ))dτ −h0

n

∑
j=1
j 	=i

1
h jhi

∫ 1

0

∣∣∂si jF(Q(r,m)(τ))
∣∣dτ

and

S(r,m)
0 = −2h0

n

∑
j=1

1

h2
j

∫ 1

0
∂s j j F(Q(r,m)(τ))dτ

+h0 ∑
(i, j)∈J

1
hih j

∫ 1

0

∣∣∂si j F(Q(r,m)(τ))
∣∣dτ, (2.8)

S(r,m)
i.+ =

h0

2hi

∫ 1

0
∂qiF(Q(r,m)(τ))dτ + S̃(r,m)

i , (2.9)

S(r,m)
i.− = − h0

2hi

∫ 1

0
∂qiF(Q(r,m)(τ))dτ + S̃(r,m)

i , (2.10)

where i = 1, . . . ,n and

S(r,m)
i j =

h0

2hih j

∫ 1

0
∂si j F(Q(r,m)(τ))dτ, (i, j) ∈ J. (2.11)

It follows from Assumption H[F ] that:

S(r,m)
i.+ � 0 S(r,m)

i.− � 0 for i = 1, . . . ,n, (2.12)

S(r,m)
i j � 0 for (i, j) ∈ J+, S(r,m)

i j � 0 for (i, j) ∈ J−, (2.13)

S(r,m)
0 +

n

∑
i=1

S(r,m)
i.+ +

n

∑
i=1

S(r,m)
i.− +2 ∑

(i, j)∈J

∣∣S(r,m)
i j

∣∣ = 0. (2.14)

We conclude from Hadamard mean value theorem that

B(r,μ) = S(r,μ)
0 (u− v)(r+1,μ)

+
n

∑
i=1

S(r,μ)
i.+ (u− v)(r+1,μ+ei) +

n

∑
i=1

S(r,μ)
i.− (u− v)r+1,μ−ei)

+ ∑
(i, j)∈J+

S(r,μ)
i j

[
(u− v)(r+1,μ+ei+e j) + (u− v)(r+1,μ−ei−e j)

]
− ∑

(i, j)∈J−
S(r,μ)

i j

[
(u− v)(r+1,μ+ei−e j) + (u− v)(r+1,μ−ei+e j)

]
.

This gives B(r,μ) � 0. The functions w= u[r,m] , w = v[r,m] satisfy the condition w(τ,y)�
w(τ,y) for (τ,y) ∈ Bh . We conclude from condition 3) of Assumption H[F ] that
A(r,μ) � 0. According to (2.7) we have (u− v)(r+1,μ) � 0, which contradicts (2.6).
Hence inequality (2.4) is proved on Eh .
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Put Ξ0 = E ×C(B,R)×Rn and suppose that

f : E → Mn×n, f = [ fi j]i, j=1,...,n, G : Ξ0 → R

are given functions. We consider the functional differential equation

∂t z(t,x) =
n

∑
i, j=1

fi j(t,x)∂xix j z(t,x)+G(t,x,z(t,x),∂xz(t,x)) (2.15)

with initial-boundary conditions (1.2)-(1.4). Let δ0, δ , δ (2) be the difference operators
defined by (1.5)-(1.9) respectively. If we apply Theorem 2.1 to the difference equation

δ0z
(r,m) =

n

∑
i, j=1

f (r,m)
i j δi jz

(r+1,m) +G
(
t(r),x(m),Thz[r,m],δ z(r+1,m)), (2.16)

where f (r,m)
i j = fi j(t(r),x(m)), 1 � i, j � n, then we need the following assumption on

f : for each (i, j) ∈ J the functions f̃i j(t,x) = sign fi j(t,x), (t,x) ∈ E, are constant on
E , see assumption (2.2). We prove that this condition can be omitted if we modify the
definitions of δi jz(r+1,m) for (i, j) ∈ J . More precisely, we consider problem (2.16),
(1.11), (1.12) with δ0, δ , δii, 1 � i � n, given by (1.5)-(1.7) and we define δi jz for
(i, j) ∈ J in the following way

if f (r,m)
i j < 0, then δi jz

(r+1,m) =
1
2

[
δ+

i δ−
j z(r+1,m) + δ−

i δ
+
j z(r+1,m)],

if f (r,m)
i j � 0, then δi jz

(r+1,m) =
1
2

[
δ+

i δ+
j z(r+1,m) + δ−

i δ
−
j z(r+1,m)].

Set

Gh[z](r,m) =
n

∑
i, j=1

f (r,m)
i j δi jz

(r+1,m) +G
(
t(r),x(m),Thz[r,m],δ z(r+1,m)).

We consider the difference functional equation corresponding to (2.15)

δ0z
(r,m) = Gh[z](r,m) (2.17)

with the initial-boundary conditions (1.11)-(1.12).

ASSUMPTION H[ f ,G] The functions f : E →Mn×n, G :Ξ0 →Rn are continuous
and:

1) G satisfies the condition (V ) and there exist the derivatives ∂qG = (∂q1G, . . . ,∂qnG)
and the function ∂qG : Ξ0 → Rn is continuous and bounded,

2) the matrix f is symmetric and

−1
2

∣∣∂qiG(P)
∣∣+ 1

hi
fii(t,x)−

n

∑
j=1
j 	=i

1
h j

∣∣ fi j(t,x)∣∣ � 0, i = 1, . . . ,n,

where P = (t,x,w,q) ∈ Ξ0 ,
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3) h ∈ H and there is ε0 > 0 such that for 0 < h0 < ε0 and w,w ∈ F (Bh,R) if
w(τ,y) � w(τ,y) for (τ,y) ∈ Bh , then

w(0,θ) +h0G(t,x,Thw,q) � w(0,θ) +h0G(t,x,Thw,q),

4) β : ∂0Eh → (0,∞), γ : ∂0Eh → R+ and Th : F (Bh,R) →C(B,R) .

THEOREM 2.2. Suppose that Assumption H[ f ,G] is satisfied and :

1) the functions u,v : E0.h∪Eh → R satisfy the differential difference inequality

δ0u
(r,m)−Gh[u](r,m) � δ0v

(r,m)−Gh[v](r,m) on Eh,

2) the initial estimate u(r,m) � v(r,m) on E0.h and boundary inequalities Λh[u](r,m) �
Λh[v](r,m) on ∂0Eh are satisfied.

Then
u(r,m) � v(r,m) on Eh. (2.18)

Proof. It is easy to see that for r = 0 inequality (2.18) is satisfied. Suppose that

u(i,m) � v(i,m) for (t(i),x(m)) ∈ (E0.h∪Eh)∩ ([−b0,t(r)]×Rn) .

We prove that
u(r+1,m) � v(r+1,m) for −M � m � M.

Suppose by contradiction that above inequality fails to be true. Let μ be defined by
relation (2.5). Then condition (2.6) is satisfied. It follows easily that (t(r+1),x(μ)) ∈
Eh \ ∂0Eh . We conclude from assumption 2) that

(u− v)(r+1,μ) � (u− v)(r,μ) +h0
[
Gh[u](r,μ)−Gh[v](r,μ)].

It follows form condition 3) of Assumption H[ f ,G] and from the above inequality that

(u− v)(r+1,μ)

� h0

n

∑
i, j=1

f (r,μ)
i j δi j(u− v)(r+1,μ)

+h0

[
G

(
t(r),x(μ),(Thv)[r,μ],δu(r+1,μ))−G

(
t(r),x(μ),(Thv)[r,μ],δv(r+1,μ))].

Write
J(r,μ)
+ =

{
(i, j) ∈ J : f (r,μ)

i j � 0
}
, J(r,μ)

− = J \ J(r,μ)
+ ,

and

S(r,μ)
0 = −2h0

n

∑
i=1

1

h2
i

f (r,μ)
ii + ∑

(i, j)∈J

1
hih j

∣∣ f (r,μ)
i j

∣∣
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S(r,μ)
i.+ =

1

h2
i

f (r,μ)
ii −

n

∑
j=1
j 	=i

1
h jhi

∣∣ f (r,μ)
i j

∣∣+ 1
2hi

∫ 1

0
∂qiG(P(r,μ)(τ))dτ

S(r,μ)
i.− =

1

h2
i

f (r,μ)
ii −

n

∑
j=1
j 	=i

1
h jhi

∣∣ f (r,μ)
i j

∣∣− 1
2hi

∫ 1

0
∂qiG(P(r,μ)(τ))dτ

where i = 1, . . . ,n and

P(r,μ)(τ) =
(
t(r),x(μ),(Thv)[r,μ],δv(r+1,m) + τδ (u− v)(r+1,m)).

We conclude from the Hadamard mean value theorem that

(u− v)(r+1,μ)(1−S(r,μ)
0 )

� h0

[ n

∑
i=1

S(r,μ)
i.+ (u− v)(r+1,μ+ei) +

n

∑
i=1

S(r,μ)
i.− (u− v)(r+1,μ−ei)

+h0 ∑
(i, j)∈J

(r,μ)
+

1
2h jhi

f (r,μ)
i j

[
(u− v)(r+1,μ+ei+e j) + (u− v)(r+1,μ−ei−e j)

]

− ∑
(i, j)∈J

(r,μ)
−

1
2h jhi

f (r,μ)
i j

[
(u− v)(r+1,μ+ei−e j) + (u− v)(r+1,μ−ei+e j)

]]
. (2.19)

It is easily seen that S(r,μ)
i.+ , S(r,μ)

i.− � 0, for i = 1, . . . ,n and

S(r,μ)
0 +h0

n

∑
i=1

S(r,μ)
i.+ +h0

n

∑
i=1

S(r,μ)
i.− +h0 ∑

(i, j)∈J

1
h jhi

∣∣ f (r,μ)
i j

∣∣ = 0. (2.20)

From (2.19), (2.20) we conclude that (u−v)(r+1,μ) � 0 which contradicts (2.6). Hence
inequality (2.18) is proved on Eh .

3. Implicit difference schemes

We first prove a theorem on the existence and uniqueness of solutions to (1.10)-
(1.12).

THEOREM 3.1. Suppose that Assumption H[F ] is satisfied and

ψh : E0.h → R, Ψh : ∂0Eh → R, β : ∂0Eh → (0,+∞), and γ : ∂0Eh → R+.

Then there is exactly one solution uh : E0.h ∪Eh → R of problem (1.10)-(1.12) .

Proof. Suppose that 0 � r < K is fixed and that the solution uh to problem (1.10)-
(1.12) is given on the set (E0.h ∪Eh)∩ ([−b0,t(r)]×R

n) . We prove that the values
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u(r+1,m)
h , −M � m � M , exist and that they are unique. It is sufficient to show that

there exists exactly one solution of the system of equations

z(r+1,m) = u(r,m)
h +h0F

(
t(r),x(m),Th(uh)[r,m],δ z(r+1,m),δ (2)z(r+1,m)), (3.1)

where −(M−1) � m � M−1, and

Λ[z](r+1,m) = Ψ(r+1,m)
h on ∂0Eh. (3.2)

It follows from Assumption H[F ] that there is Ah ∈ R+ such that

Ah � 2h0

n

∑
i=1

1

h2
i

∂siiF(P)−h0 ∑
(i, j)∈J

1
hih j

∣∣∂si j F(P)
∣∣, P ∈ Ξ. (3.3)

Write

G
(r,m)
i [τ] =

hiΨ
(r,m)
h

hiβ (r,m) + γ(r,m) +
γ(r,m)

hiβ (r,m) + γ(r,m) τ, i = 1, . . . ,n,

where τ ∈ R and
G

(r,m)
h [q,s] = F

(
t(r),x(m),Th(uh)[r,m],q,s

)
,

where q ∈ Rn, s ∈ Mn×n . Difference problem (3.1), (3.2) is equivalent to the system

z(r+1,m) =
1

1+Ah

[
Ahz

(r+1,m) +u(r,m)
h +h0G

(r,m)
h [δ z(r+1,m),δ (2)z(r+1,m)]

]
, (3.4)

where −(M−1) � m � M−1 and{
z(r+1,m) = G

(r+1,m)
i [z(r+1,m−ei)] on ∂0E

+
h.i,

z(r+1,m) = G
(r+1,m)
i [z(r+1,m+ei)] on ∂0E

−
h.i ,

(3.5)

where i = 1, . . . ,n . Set Xh = {x(m) : −M � m � M}. For χ ∈ F (Xh,R) we write
χ (m) = χ(x(m)) ,

δχ (m) = (δ1χ (m), . . . ,δnχ (m)) and δ (2)χ (m) = [δi jχ (m)]i, j=1,...,n,

where δi, δi j, 1 � i � n, are defined in Section 2. The norm in the space F(Xh,R) we
define by

‖χ‖Xh = max{∣∣χ (m)∣∣ : x(m) ∈ Xh}.
Set

Yh =
{
χ ∈ F(Xh,R) : χ (m) = G

(r+1,m)
i [χ (m−ei)] on ∂0E

+
h.i and

χ (m) = G
(r+1,m)
i [χ (m+ei)] on ∂0E

−
h.i, i = 1, . . . ,n

}
.

Let Wr.h be an operator defined on Yh in the following way:

Wr.h[χ ](m) =
1

1+Ah

[
Ahχ (m) +u(r,m)

h +h0G
(r,m)
h [δχ (m),δ (2)χ (m)]

]
,
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where −(M−1) � m � M−1 and

Wr.h[χ ](m) = G
(r+1,m)
i [Wr.h[χ ](m−ei)] on ∂0E

+
h.i, (3.6)

Wr.h[χ ](m) = G
(r+1,m)
i [Wr.h[χ ](m+ei)] on ∂0E

−
h.i, (3.7)

where i = 1, . . . ,n . It follows that Wr.h : Yh → Yh . It is clear that problem (3.4), (3.5) is
equivalent to the equation

χ = Wr.h[χ ]. (3.8)

Suppose that χ , χ̃ ∈ Yh . Write

Q(r,m)(τ) =
(
t(r),x(m),Th(uh)[r,m],δχ (m) + τδ (χ̃− χ)(m),

δ (2)χ (m) + τδ (2)(χ̃− χ)(m)
)
.

Suppose that the numbers S(r,m)
0 , S(r,m)

i.+ , , S(r,m)
i.− , i = 1, . . . ,n and S(r,m)

i j , for (i, j) ∈ J are

defined by (2.8)-(2.11) with the above given Q(r,m)(τ). By using the Hadamard mean
value theorem to the difference

G
(r,m)
h [δ χ̃ (m),δ (2)χ̃ (m)]−G

(r,m)
h [δχ (m),δ (2)χ (m)]

we get

[
Wr.h[χ̃ ](m) −Wr.h[χ ](m)](1+Ah) =

(
Ah +S(r,m)

0

)
(χ̃− χ)(m)

+
n

∑
i=1

S(r,m)
i.+ (χ̃ − χ)(m+ei) +

n

∑
i=1

S(r,m)
i.− (χ̃− χ)(m−ei)

+ ∑
(i, j)∈J+

S(r,m)
i j

[
(χ̃− χ)(m+ei+e j) + (χ̃− χ)(m−ei−e j)

]
− ∑

(i, j)∈J−
S(r,m)

i j

[
(χ̃− χ)(m+ei−e j) + (χ̃− χ)(m−ei+e j)

]
,

where −(M−1) � m � M−1. The above relations and (2.12)-(2.14) imply

‖Wr.h[χ̃ ](m)−Wr.h[χ ](m)‖ � Ah

1+Ah
‖χ̃− χ‖Xh for − (M−1) � m � M−1.

Suppose that (t(r+1),x(m)) ∈ ∂0Eh . It follows from (3.6) and (3.7) that

Wr.h[χ̃](m) −Wr.h[χ ](m) =
γ(r,m)

hiβ (r,m) + γ(r,m)

{
Wr.h[χ̃ ](m−ei) −Wr.h[χ ](m−ei)

}
for (t(r+1),x(m)) ∈ ∂0E

+
h.i and

Wr.h[χ̃](m) −Wr.h[χ ](m) =
γ(r,m)

hiβ (r,m) + γ(r,m)

{
Wr.h[χ̃ ](m+ei) −Wr.h[χ ](m+ei)

}
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for (t(r+1),x(m)) ∈ ∂0E
−
h.i, where i = 1, . . . ,n . The result is

‖Wr.h[χ̃](m) −Wr.h[χ ](m)‖ � Ah

1+Ah
‖χ̃− χ‖Xh (3.9)

for (t(r+1),x(m)) ∈ ∂0Eh. Hence for χ , χ ∈ Yh we have

‖Wr.h[χ̃ ]−Wr.h[χ ]‖Xh � Ah

1+Ah
‖χ̃− χ‖Xh. (3.10)

The Banach fixed point theorem implies that there exists exactly one solution to (3.8).

It follows that the values u(r+1,m)
h , −M � m � M , exist and that they are unique. Since

uh is given on E0.h , the proof is completed by induction.

ASSUMPTION H[σ ,F ]. There exists σ : [0,a]×R+ → R+ such that:

1) σ is continous and σ(t,0) = 0 for t ∈ [0,a] ,

2) σ is nondecreasing with respect to both variables and the maximal solution of the
Cauchy problem ω ′(t) = σ(t,ω(t)) , ω(0) = 0, is ω(t) = 0, t ∈ [0,a],

3) the estimate

F(t,x,w,q,s)−F(t,x,w,q,s) � σ(t,‖w−w‖B)

is satisfied for w,w ∈C(B,R) , w � w and (t,x,q,s) ∈ E ×Rn×Mn×n .

ASSUMPTION H[Th ]. The operator Th : F (Bh,R) →C(B,R) satisfies the condi-
tions:

1) for w, w̃ ∈ F (Bh,R) we have

‖Th[w]−Th[w̃]‖B � ‖w− w̃‖Bh ,

2) if w : B → R is of class C1 then there is γ∗ : H → R+ such that

‖Th[wh]−w‖B � γ∗(h), and lim
h→0

γ∗(h) = 0,

where wh is the restriction of w to the set Bh .

THEOREM 3.2. Suppose that Assumptions H[F ], H[σ ,F ], H[Th ] are satisfied
and

1) uh : E0.h∪Eh → R is a solution of (1.10)-(1.12) ,

2) v : E0∪E →R is a solution of (1.1)-(1.4) and v is of class C∗ and vh is restriction
of v to the set E0.h∪Eh ,

3) the functions β : ∂0E → (0,+∞), γ : ∂0E → R+ are continuous, and β (t,x) � 1 on
∂0E ,
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4) for α0 : H → R+ the following initial-boundary inequalities are satisfied

∣∣ψ(r,m)
h −ψ(r,m)∣∣ � α0(h) on E0.h,∣∣Ψ(r,m)
h −Ψ(r,m)∣∣ � α0(h) on ∂0Eh

and lim
h→0

α0(h) = 0.

Then there is α : H → R+ such that∣∣(uh − vh)(r,m)∣∣ � α(h) on Eh (3.11)

and lim
h→0

α(h) = 0 .

Proof. There are

Γh : Eh → R, Γ̃ : ∂0Eh → R, β̃1 : H → R+ and β̃2 : H → R+

such that
δ0v

(r,m)
h = Fh[vh](r,m) +Γ(r,m)

h on Eh, (3.12)

Λh[vh](r,m) = Ψ(r,m)
h + Γ̃(r,m)

h on ∂0Eh

and ∣∣Γ(r,m)
h

∣∣ � β̃1(h) on Eh,
∣∣Γ̃(r,m)

h

∣∣ � β̃2(h) on ∂0Eh, (3.13)

lim
h→0

β̃1(h) = 0, lim
h→0

β̃2(h) = 0.

Let ṽh = vh +ωh where ωh is a maximal solution of the problem

ω ′(t) = σ(t,ω(t))+ β̃1(h), ω(0) = α0(h)+ β̃2(h).

Then we have ṽ(r,m)
h � u(r,m)

h on E0.h and

Λh[uh− ṽh](r,m) = Λh[uh− vh−ωh](r,m)

= Ψ(r,m)
h −Λh[vh](r,m) −β (r,m)ω(r)

h

� β̃2(h)−β (r,m)ω(r)
h

� (1−β (r,m))ω(r)
h � 0.

We show that δ0ṽ
(r,m)
h − Fh[ṽh](r,m) � 0 on Eh \ ∂0Eh . It follows from Assumption

H[σ ,F ] that

δ0ṽ
(r,m)
h −Fh[ṽh](r,m) = δ0v

(r,m)
h +

1
h0

[
ω(r+1)

h −ω(r)
h

]−Fh[ṽh](r,m)

+Fh[vh](r,m)−Fh[vh](r,m)

� δ0v
(r,m)
h −Fh[vh](r,m) +

1
h0

[
ω(r+1)

h −ω(r)
h

]



36 MILENA NETKA

−σ(t(r),ωh(t(r))).

Since ωh is convex, we have that

δ0ṽ
(r,m)
h −Fh[ṽh](r,m) � 1

h0

[
ω(r+1)

h −ω(r)
h

]− β̃1(h)−σ(t(r),ωh(t(r))) � 0.

From Theorem 2.1 follows that u(r,m)
h � ṽ(r,m)

h on Eh. Analogouslywe prove that u(r,m)
h �

w̃(r,m)
h on Eh , where

w̃(r,m)
h = v(r,m)

h −ω(r)
h on Eh .

Consequently we have that

∣∣u(r,m)
h − v(r,m)

h

∣∣ � ω(r)
h on Eh.

REMARK 3.1. Suppose that all the assumptions of Theorem 3.2 are satisfied and
σ : [0,a]×R+ ×C(I,R+) → R+ is given by σ(t, p) = Lp on [0,a]×R+, where L ∈
R+ . Then ∣∣u(r,m)

h − v(r,m)
h

∣∣ � α̃(h) on Eh ,

where

α̃(h) = (α0(h)+ β̃2(h))eLa +
β̃1(h)

L
(eLa −1) if L > 0, (3.14)

α̃(h) = α0(h)+ β̃2(h)+aβ̃1(h) if L = 0. (3.15)

Now we formulate a result on the error estimate. For x ∈ Rn, X ∈ Mn×n , X =
[xi j]i, j=1,...,n, we put

‖x‖ =
n

∑
i=1

∣∣xi
∣∣, ‖X‖ = max{

n

∑
j=1

∣∣xi j
∣∣ : 1 � i � n}.

LEMMA 3.1. Suppose that all the assumptions of Theorem 3.2 are satisfied with
σ(t, p) = Lp on [0,a]×R+ , where L ∈ R+ and:

1) for P = (t,x,w,q,s) ∈ Ξ we have: ‖∂qF(P)‖ � L0, ‖∂sF(P)‖ � L0,

2) ψh =ψ on E0.h and Ψh =Ψ on ∂0Eh and interpolating operator Th : FC(Bh,R)→
C(B,R) is given in [4] and

∣∣γ(t,x)∣∣ � N on ∂0E ,

3) v : E0 ∪E → R is a solution of (1.1) - (1.4) and v is of class C2 and there is
L̃ ∈ R+ such that

‖∂xxv(t,x)− ∂xxv(t,y)‖ � L̃‖x− y‖ on E0∪E. (3.16)

Then ∣∣(uh − vh)(r,m)∣∣ � α̃(h) on Eh, (3.17)
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where uh : E0.h ∪Eh → R is a solution to (1.10)-(1.12) and vh is the restriction of v
to the set E0.h∪Eh and α̃ is given by (3.14)-(3.15) with

β̃1(h) =
1
2
C̃h0 +L0(C̃+ L̃)‖h‖+L0C̃‖h‖2, β̃2(h) = NC̃‖h‖

and C̃ ∈ R+ is defined by the relations∣∣∂tt v(t,x)
∣∣ � C̃, ‖∂xxv(t,x)‖ � C̃ on E0∪E. (3.18)

Proof. It follows from (3.16), (3.18) and from Theorem 5.27 in [4] that

∣∣∂tv
(r,m)− δ0v

(r,m)
h

∣∣ � 1
2
C̃h0, ‖∂xv

(r,m)− δv(r,m)
h ‖ � C̃‖h‖,

‖∂xxv
(r,m) − δ (2)v(r,m)

h ‖ � L̃‖h‖, ‖Th(vh)[r,m] − v(t(r),x(m))‖B � C̃‖h‖2

on Eh . Then inequalities (3.13) are satisfied with the above given β̃1 , β̃2 . Then in-
equality (3.17) is a consequence of (3.14)-(3.15).

In the result on the error estimate, we need estimates of the derivatives of the
solution v of problem (1.1)-(1.4). One may obtain them by the method of differential
inequalities.

Now we consider implicit difference schemes for problem (2.15), (1.2)-(1.4).

ASSUMPTION H[G ,σ ] Suppose that there is σ : [0,a]×R+ → R+ such that con-
ditions 1), 2) of Assumption H[σ ,F ] are satisfied and

G (t,x,w,q)−G (t,x,w,q) � σ(t,‖w−w‖B)

where w,w ∈C(B,R), w � w and (t,x) ∈ E .

THEOREM 3.3. Suppose that Assumptions H[ f ,G], H[G,σ ], H[Th ] are satis-
fied and:

1) ψh : E0.h → R , Ψh : ∂0Eh → R , β ∈ C(∂0Eh,(0,+∞)), γ ∈ C(∂0Eh,R+) and
β (t,x) � 1 on ∂0E ,

2) v : E0∪E → R is a solution of (2.15) , (1.2)-(1.4) and v is of class C∗ and vh is
restriction of v to the set E0.h∪Eh ,

3) there is α0 : H → R+ such that∣∣ψ(r,m)
h −ψ(r,m)∣∣ � α0(h) on E0.h,

∣∣Ψ(r,m)
h −Ψ(r,m)∣∣ � α0(h) on ∂0Eh

and lim
h→0

α0(h) = 0 . Then we have:

1) there exists exactly one solution uh : E0.h∪Eh →R of problem (2.15) , (1.2)-(1.4);
2) there is α : H → R+ such that∣∣(uh − vh)(r,m)∣∣ � α(h) on Eh (3.19)

and lim
h→0

α(h) = 0 .
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Proof. Proceeding like as in the proof of Theorem 3.1 we deduce that there exists
exactly one solution uh of problem (2.15), (1.2)-(1.4). We will show that (3.19) is
satisfied on Eh . There are

Γh : Eh → R, Γ̃h : ∂0Eh → R,

γ̃1 : H → R+, γ̃2 : H → R+,

such that for −(M−1) � m � M−1, 0 � r � K−1,

δ0v
(r,m)
h = Gh[vh](r,m) +Γ(r,m)

h on Eh, (3.20)

Λh[vh](r,m) = Ψ(r,m)
h + Γ̃(r,m)

h on ∂0Eh,

and ∣∣Γ(r,m)
h

∣∣ � γ̃1(h) on Eh,
∣∣Γ̃(r,m)

h

∣∣ � γ̃2(h) on ∂0Eh,

lim
h→0

γ̃1(h) = 0, lim
h→0

γ̃2(h) = 0.

Write ṽh = vh +ωh on Eh , where ωh is a maximal solution of the problem

ω ′(t) = σ(t,ω(t))+ γ̃1(h), ω(0) = α0(h)+ γ̃2(h).

Then we have u(r,m)
h � ṽ(r,m)

h on E0.h and

Λh[uh − ṽh](r,m) = Λh[uh](r,m)−Λh[uh](r,m) −Λh[ωh](r,m)

= Ψ(r,m)
h −Λh[vh](r,m)−β (r,m)ω(r)

h

� γ̃2(h)−β (r,m)ω(r)
h � 0.

We show that
δ0ṽ

(r,m)
h � Gh[ṽh](r,m) on Eh \ ∂0Eh.

It follows from Assumption H[G,σ ] and (3.20) that

δ0ṽ
(r,m)
h = δ0v

(r,m)
h +

1
h0

[ω(r+1)
h −ω(r)

h ]

= Gh[vh](r,m) +Γ(r,m)
h +

1
h0

[ω(r+1)
h −ω(r)

h ]

�
n

∑
i, j=1

f (r,m)
i j δi jv

(r+1,m)
h +G(t(r),x(m),(Thvh)[r,m],δv(r+1,m)

h )− γ̃1(h)

−G
(
t(r),x(m),(Thṽh)[r,m],δv(r+1,m)

h

)
+G

(
t(r),x(m),(Thṽh)[r,m],δv(r+1,m)

h

)
+

1
h0

[ω(r+1)
h −ω(r)

h ]

� Gh[ṽh](r,m)− γ̃1(h)−σ(t(r),ω(r)
h )+

1
h0

[ω(r+1)
h −ω(r)

h ] � Gh[ṽh](r,m).
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From Theorem (2.2) follows that u(r,m)
h � ṽ(r,m)

h on Eh. Analogously we prove that

u(r,m)
h � w̃(r,m)

h on Eh where:

w̃(r,m)
h = v(r,m)

h −ω(r)
h on Eh and w̃(r,m)

h = v(r,m)
h −α0(h) on E0.h .

Consequently we have that
∣∣(uh − vh)(r,m)

∣∣ � ω(r)
h on Eh. Then the condition (3.19) is

satisfied with α(h) = ωh(a) . This completes the proof.

4. Numerical examples

We apply the results presented in Section 3 to a differential equation with deviated
variables and to a differential integral problem. Let n = 2 and

E = [0,0.5]× [−0.5,0.5]× [−0.5,0.5], E0 = {0}× [−0.5,0.5]× [−0.5,0.5].

Initial-boundary problems considered in the present section have solutions on E .
The following examples satisfy all the assumptions of Theorem 3.3.

EXAMPLE 4.1. Consider the differential equation with deviated variables

∂t z(t,x,y) = ∂xxz(t,x,y)+ ∂yyz(t,x,y)
+ xy∂xyz(t,x,y)+ z(t,0.5(x+ y),0.5(x− y))

+
[
x2 − y2 +4t2(x2y2 − x2− y2)− et(xy−x2+y2)]z(t,x,y) (4.1)

and the initial-boundary conditions

z(0,x,y) = 1, (x,y) ∈ [−0.5,0.5]× [−0.5,0.5] (4.2)

and

z(t,0.5,y) = z(t,−0.5,y) = et(0.25−y2), (t,y) ∈ [0,0.5]× [−0.5,0.5], (4.3)

z(t,x,0.5) = z(t,x,−0.5) = et(x2−0.25), (t,x) ∈ [0,0.5]× [−0.5,0.5].

The solution of (4.1)- (4.3) is known, it is v(t,x,y) = et(x2−y2). Let us denote by uh :
Eh →R the solution of implicit difference problem corresponding to (4.1) -(4.3). Write

ε(r)
h =

1
(2N1 +1)(2N2 +1) ∑m∈M

∣∣u(r,m)
h − v(r,m)

h

∣∣, 0 � r � N0, (4.4)

where vh is the restriction of v to the set Eh and

M = {m ∈ (m1,m2) : −N1 � m1 � N1, −N2 � m2 � N2}

and N0h0 = 0.5, N1h1 = 0.5, N2h2 = 0.5. The numbers ε(r)
h are the arithmetical means

of the errors with fixed t(r) . We give experimental values of the above defined errors
for h0 = 1

128 , h1 = h2 = 1
128 .
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Table I

t(r) : 0.0625 0.1250 0.1875 0.2500 0.3125 0.3750 0.4375

ε(r)
h : 0.000006 0.000017 0.000030 0.000044 0.000058 0.000072 0.000086

Note that condition (1.13) is not satisfied in our example and the explicit difference
method is not convergent. In fact, the average errors of that method exceeded 108 .

EXAMPLE 4.2. Consider the differential integral equation

∂t z(t,x,y) = ∂xxz(t,x,y)+ xy∂xyz(t,x,y)+ ∂yyz(t,x,y)

+ xy2
∫ x

0
z(t,s,y)ds+ yx2

∫ y

0
z(t,x,s)ds

− f (x,y)z(t,x,y)+g(t,x,y), (4.5)

with initial-boundary conditions

z(0,x) = 0 for x ∈ [−0.5,0.5], (4.6)

and
z(t,−0.5,y)− ∂xz(t,−0.5,y) = (1− y)sin(πt)exp(−0.5y), (4.7)

z(t,0.5,y)+ ∂xz(t,0.5,y) = (1+ y)sin(πt)exp(0.5y),

where (t,y) ∈ [0,0.5]× [−0.5,0.5] and

z(t,x,−0.5)− ∂xz(t,x,−0.5) = (1− x)sin(πt)exp(−0.5x),
z(t,x,0.5)+ ∂xz(t,x,0.5) = (1+ x)sin(πt)exp(0.5x),

where (t,x) ∈ [0,0.5]× [−0.5,0.5] and

f (x,y) = x2y2 +3xy+ x2 + y2,

g(t,x,y) = π cos(πt)exp(xy)+2xysin(πt).

The solution of (4.5)-(4.7) is known, it is z(t,x,y) = sin(πt)exp(xy).
Let us denote by uh : Eh → R the solution of implicit difference problem corre-

sponding to (4.5)-(4.7). Let ε(r)
h be the arithmetical means of the errors defined by

(4.4). In Table II we give experimental values of ε(r)
h for h0 = 1

200 , h1 = h2 = 1
200 .

Table II

t(r) : 0.075 0.150 0.225 0.300 0.375 0.450 0.500

ε(r)
h : 0.0003721 0.0010198 0.0018419 0.0027397 0.0036224 0.0044096 0.0048474

In the considered case condition (1.13) is not satisfied and the explicit difference
method is not convergent. The average errors of that method exceeded 108 .

The above examples show that there are implicit difference shcemes for parabolic
functional differential equations which are convergent and the corresponding classical
methods are not convergent. This is due to the fact that we need relation (1.13) for
steps of the mesh in the classical case and we do not need this condition for our implicit
difference schemes.
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