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ASYMPTOTIC STABILITY AND STABILITY SWITCHES

IN A LINEAR INTEGRO–DIFFERENTIAL SYSTEM

HIDEAKI MATSUNAGA AND HIROKI HASHIMOTO

(Communicated by H.-O. Walther)

Abstract. This paper is concerned with the stability problem of a linear integro-differential sys-
tem with distributed delay in the diagonal terms. We establish some explicit conditions for the
zero solution of the system to be asymptotically stable. In particular, as the delay parameter
increases monotonously under certain conditions, the zero solution switches finite times from
stability to instability to stability, and becomes unstable eventually.

1. Introduction

Recently, several authors have studied the asymptotic stability of linear differential
equations with distributed delay as well as with discrete delay; for example, explicit
stability conditions can be found in [1, 2, 4, 7, 8, 10, 11, 12, 14]. It is well known
that for the linear and autonomous case, the zero solution being asymptotically stable is
equivalent to all solutions having limit zero as t →∞ which in turn is true if and only if
all roots of an associated characteristic equation have negative real parts; see, e.g., [5].

In this paper we consider a linear integro-differential system⎧⎪⎪⎨
⎪⎪⎩

x′(t) = −a
∫ t

t−τ
x(s)ds−by(t),

y′(t) = −cx(t)−a
∫ t

t−τ
y(s)ds,

(1.1)

where a , b and c are real numbers and τ is a positive constant. The purpose of this
paper is to establish necessary and sufficient conditions for the zero solution of (1.1) to
be asymptotically stable.

System (1.1) can be rewritten as

xxxx′(t) = Axxxx(t)−a
∫ t

t−τ
xxxx(s)ds,
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where xxxx(t) = col(x(t),y(t)) and A is the 2×2 matrix given by

A =
(

0 −b
−c 0

)
.

So the stability problem of (1.1) may regard as time-delayed feedback control, that is,
the stabilization of unstable steady states of the system

xxxx′(t) = Axxxx(t)−FFFF(t), (1.2)

where FFFF(t) denotes the control force given by

FFFF(t) = a
∫ t

t−τ
xxxx(s)ds.

Notice that system (1.2) with FFFF(t)≡ 0 has periodic solutions (if bc < 0) or unbounded
solutions (if bc > 0). For the general background of time-delayed feedback control,
one can refer to a recent book [13, Chapter 4] and the references cited therein.

In case FFFF(t) = axxxx(t −σ) , where σ is a positive constant, system (1.2) becomes
the linear differential-difference system{

x′(t) = −ax(t−σ)−by(t),
y′(t) = −cx(t)−ay(t−σ).

(1.3)

Recently, the first author [9] has obtained the following stability condition of (1.3).

THEOREM A. The zero solution of (1.3) is asymptotically stable if and only if any
one of the following four conditions holds:

(i)
√

bc < a and 0 < σ <
1√

a2−bc
arccos

√
bc
a

,

(ii)
√−bc � 4a and 0 < σ <

π
2(a+

√−bc)
,

(iii) 0 < 4a <
√−bc and σ ∈ (0,σ1,0)∪ (σ2,0,σ1,1)∪·· ·∪ (σ2,k∗−1,σ1,k∗),

(iv) −√−bc < 2a < 0 and σ ∈ (σ1,0,σ2,0)∪ (σ1,1,σ2,1)∪·· ·∪ (σ1,l∗ ,σ2,l∗).

Here σ1,n , σ2,n , k∗ and l∗ are defined by

σ1,n =
(4n+1)π

2(a+
√−bc)

, σ2,n =
(4n+3)π

2(−a+
√−bc)

for n = 0,1,2, . . . ,

k∗ =
⌊√−bc

4a

⌋
, l∗ =

⌊
−
√−bc

4a
− 1

2

⌋
,

where 	·
 denotes the floor function, namely, 	x
 = max{n ∈ Z | n � x} .

Theorem A provides some cases where the delay σ has a stabilizing effect on
the solutions of (1.3). In particular, as σ increases monotonously from 0, the zero
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solution of (1.3) switches finite times from stability to instability to stability if 0 <
4a <

√−bc ; from instability to stability to instability if −√−bc < 2a < 0; and it
becomes unstable eventually. Such phenomena for increasing delay are often referred
to as stability switches; see, e.g., [1, 3, 8]. Judging from this, we can expect that stability
switches also appear in (1.1) as τ increases under certain conditions.

Our main result is stated as follows.

THEOREM 1.1. Suppose that 8a �= bc when bc < 0 . Then the zero solution of
(1.1) is asymptotically stable if and only if any one of the following three conditions
holds:

0 � bc < 2a and

√
bc
a

< τ <
1√

2a−bc
arccos

bc−a
a

, (1.4)

bc < 0 < a and τ ∈ (0,τ2,0)∪ (τ1,1,τ2,1)∪·· ·∪ (τ1,k,τ2,k), (1.5)

bc < 8a < 0 and τ ∈ (τ2,0,τ1,1)∪ (τ2,1,τ1,2)∪·· ·∪ (τ2,l ,τ1,l+1). (1.6)

Here τ1,n , τ2,n , k and l are defined by

τ1,n =
2nπ√−bc

, τ2,n =
2(2n+1)π√−bc+

√
8a−bc

for n = 0,1,2, . . . ,

k =
⌈ √−bc√

8a−bc−√−bc

⌉
−1, l =

⌈ √
8a−bc√−bc−√

8a−bc

⌉
−1,

where �·
 denotes the ceiling function, namely, �x
 = min{n ∈ Z | x � n} .

REMARK 1.1. In the case bc = 0, system (1.1) is reduced to

x′(t) = −a
∫ t

t−τ
x(s)ds. (1.7)

Theorem 1.1 asserts that the zero solution of (1.7) is asymptotically stable if and only
if 0 < τ < π/

√
2a , which coincides with the stability condition given by Theorem 4.1

in [2].

REMARK 1.2. Theorem 1.1 shows that as τ increases monotonously from 0, the
zero solution of (1.1) switches finite times from stability to instability to stability if
0 < 8a <−3bc ; from instability to stability to instability if 0 � bc < 2a or bc < 8a < 0;
and it becomes unstable eventually.

REMARK 1.3. The exact region of asymptotic stability of (1.1) with fixed b and
c is presented in Figure 1. In the case bc < 0, the vertical boundaries and the boundary
curves of the stability region are given by

τ =
2nπ√−bc

and

⎧⎪⎪⎨
⎪⎪⎩

a =
(2n+1)π

2τ

(
(2n+1)π

τ
−√−bc

)
,

2nπ√−bc
� τ � 2(n+1)π√−bc

for n = 0,1,2, . . . , respectively.
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tau

a

0

�3bc�8

bc�8

Figure 1. Stability region of (1.1) with bc < 0

2. Proof of Main Theorem

The characteristic equation associated with (1.1) is given by

F(λ ) ≡ det

⎛
⎜⎝λ +a

∫ 0

−τ
eλ sds b

c λ +a
∫ 0

−τ
eλ sds

⎞
⎟⎠= 0. (2.1)

Notice that

F(λ ) =
(
λ +a

∫ 0

−τ
eλ sds

)2

−bc

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
λ +a

∫ 0

−τ
eλ sds+

√
bc

)(
λ +a

∫ 0

−τ
eλ sds−

√
bc

)
, bc � 0,

(
λ +a

∫ 0

−τ
eλ sds+ i

√−bc

)(
λ +a

∫ 0

−τ
eλ sds− i

√−bc

)
, bc < 0.

First, we consider the case of bc > 0. Then equation (2.1) is reduced to

λ +
√

bc+a
∫ 0

−τ
eλ sds = 0 (2.2)

or

λ −
√

bc+a
∫ 0

−τ
eλ sds = 0. (2.3)

The locations of roots of these equations have been studied by Funakubo et al. [4] and
Hara and Sakata [6]. By virtue of their work, we have the following result.
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LEMMA 2.1. Let p and q be real numbers. Then all roots of the transcendental
equation

λ + p+q
∫ 0

−τ
eλ sds = 0

have negative real parts if and only if any one of the following four conditions holds:

(i) p > 0, q � 0 and 2q− p2 � 0,

(ii) p � 0, q > 0, 2q− p2 > 0 and τ <
1√

2q− p2

(
2π− arccos

p2−q
q

)
,

(iii) p > 0, q < 0 and τ <

∣∣∣∣ pq
∣∣∣∣ ,

(iv) p < 0, q > 0, 2q− p2 > 0 and

∣∣∣∣ pq
∣∣∣∣< τ <

1√
2q− p2

arccos
p2−q

q
.

By Lemma 2.1, the necessary and sufficient condition for all roots of (2.2) to have
negative real parts is given by

a � 0 and 2a−bc � 0,

or

a > 0, 2a−bc > 0 and τ <
1√

2a−bc

(
2π− arccos

bc−a
a

)
,

or

a < 0 and τ < −
√

bc
a

.

Also, by Lemma 2.1, the necessary and sufficient condition for all roots of (2.3) to have
negative real parts is given by

a > 0, 2a−bc > 0 and

√
bc
a

< τ <
1√

2a−bc
arccos

bc−a
a

.

Taking into account that 0 � arccos(bc/a− 1) � π , one can immediately obtain the
following result.

PROPOSITION 2.1. Let bc � 0 . Then all roots of (2.1) have negative real parts if
and only if condition (1.4) holds.

Next, we consider the case of bc < 0. Here and hereafter, let β =
√−bc > 0.

Then we can easily see that all roots of (2.1) have negative real parts if and only if all
roots of

f (λ ) ≡ λ + iβ +a
∫ 0

−τ
eλ sds = 0 (2.4)

have negative real parts since the function F(λ ) is written as

F(λ ) = f (λ ) f (λ ),
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where λ denotes the complex conjugate of any complex λ . Notice that λ = 0 is not a
root of (2.4) because of f (0) = aτ+ iβ �= 0. Hence, the function f (λ ) is expressed as

f (λ ) = λ + iβ +
a
λ

(1− e−λτ),

which implies that equation (2.4) is equivalent to

f̂ (λ ) ≡ λ 2 + iβλ +a(1− e−λτ) = 0.

Since f̂ (λ ) is an analytic function of λ and τ for fixed a and β , one can regard the
root λ = λ (τ) as a continuous function of τ . The next lemma established by Theorem
2.4 in [3] plays an essential role in our proofs (see also [8, Chapter 3]).

LEMMA 2.2. As τ varies, the sum of the multiplicities of roots of (2.4) in the
open right half-plane can change only if a root appears on or crosses the imaginary
axis.

Consequently, we will find the value of τ at which equation (2.4) has roots on the
imaginary axis. For the sake of convenience, we define

ω1 = −β , ω2 = −β +
√
β 2 +8a
2

, ω3 = −β −
√
β 2 +8a
2

and

τ1,n = −2nπ
ω1

, τ2,n = − (2n+1)π
ω2

, τ3,n = sgn(a)
(2n+1)π

ω3

for n = 0,1,2, . . . . Note that the equality ω2
j +βω j −2a = 0 is satisfied for j = 2,3.

LEMMA 2.3. Let a �= 0 . Suppose that iω is a root of (2.4) with τ � 0 , where ω
is a nonzero real number. Then the values of ω and τ are expressed as

ω = ω1 and τ = τ1,n for n = 0,1,2, . . .

or

ω = ω j and τ = τ j,n for j = 2,3 and n = 0,1,2, . . . if β 2 +8a � 0.

Conversely, if τ = τ j,n for j = 1,2,3 and n = 0,1,2, . . . , then iω j is a root of (2.4).

Proof. Let f̂ (iω) = 0 with ω �= 0. Then −ω2−βω+a(1− e−iωτ) = 0, namely,

acosωτ = −(ω2 +βω−a) (2.5)

and

asinωτ = 0. (2.6)

By squaring both sides of (2.5) and (2.6), and adding them together, we have a2 =
(ω2 +βω− a)2 , that is, (ω +β )(ω2 +βω− 2a) = 0. In case ω +β = 0, equations
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(2.5) and (2.6) become cosωτ = 1 and sinωτ = 0, which, together with ω = −β ≡
ω1 < 0, yield

τ = −2nπ
ω1

≡ τ1,n for n = 0,1,2, . . . .

In case ω2 +βω−2a = 0 and β 2 +8a � 0, equations (2.5) and (2.6) become cosωτ =
−1 and sinωτ = 0. If

ω = −β +
√
β 2 +8a
2

≡ ω2 < 0,

then

τ = − (2n+1)π
ω2

≡ τ2,n for n = 0,1,2, . . . .

If

ω = −β −
√
β 2 +8a
2

≡ ω3,

then sgn(ω3) = sgn(a) , and hence,

τ = sgn(a)
(2n+1)π

ω3
≡ τ3,n for n = 0,1,2, . . . .

Conversely, if τ = τ1,n , we see that

f̂ (iω1) = −ω2
1 −βω1 +a(1− e−iω1τ1,n) = −ω2

1 −βω1 +a(1− e−2nπ i) = 0,

which implies that iω1 is a root of (2.4). Similarly, if τ = τ j,n ( j = 2,3) , one can verify
that iω j is a root of (2.4). The proof is complete. �

REMARK 2.1. The root iω1 of (2.4) is simple. In fact, since

d f̂ (λ )
dλ

= 2λ + iβ +aτe−λτ = 2λ + iβ + τ(λ 2 + iβλ +a),

it follows that
d f̂ (iω)

dλ
= i(2ω+β )− τ(ω2 +βω−a),

which implies d f̂ (iω1)/dλ = aτ− iβ �= 0, and the assertion is verified. Also, if β 2 +
8a > 0, then the roots iω2 and iω3 of (2.4) are simple because

d f̂ (iω j)
dλ

= (−1) j−1
√
β 2 +8a �= 0 for j = 2,3.

On the other hand, if β 2 +8a = 0, then the root iω2 (= iω3) of (2.4) is double because
d f̂ (iω2)/dλ = 0 and d2 f̂ (iω2)/dλ 2 = 2 �= 0.

Next, we will observe how the roots of (2.4) cross the imaginary axis as τ varies.
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LEMMA 2.4. As τ increases, the purely imaginary roots of (2.4) move as follows.

1. If a > 0 , then the root iω1 crosses the imaginary axis from right to left, while the
roots iω2 and iω3 cross the imaginary axis from left to right.

2. If a < 0 , then the root iω1 crosses the imaginary axis from left to right. Moreover, if
−β 2/8 < a < 0 , then the root iω2 crosses the imaginary axis from right to left, while
the root iω3 crosses the imaginary axis from left to right.

Proof. By taking the derivative of λ with respect to τ on (2.4), we have

dλ
dτ

+
a
λ 2

{(
τe−λτ

dλ
dτ

+λe−λτ
)
λ − (1− e−λτ)

dλ
dτ

}
= 0,

that is,

dλ
dτ

= − aλ 2e−λτ

λ 2−a+a(1+λτ)e−λτ
= − aλ 2

(λ 2−a)eλτ +a(1+λτ)
.

This yields that

dλ
dτ

∣∣∣∣
λ=iω

= − aω2

(ω2 +a)eiωτ −a− iaωτ
. (2.7)

In case ω = ω1 , equality (2.7) with ω1τ1,n = 2nπ leads to

Re
dλ
dτ

∣∣∣∣
λ=iω1

= Re

(
− aω2

1

ω2
1 − iaω1τ1,n

)
= − aω4

1

ω4
1 +(aω1τ1,n)2

.

If a > 0, then Re(dλ/dτ)
∣∣
λ=iω1

< 0, which implies that the root iω1 crosses the
imaginary axis from right to left as τ increases. On the other hand, if a < 0, then
Re(dλ/dτ)

∣∣
λ=iω1

> 0, which yields that the root iω1 crosses the imaginary axis from
left to right as τ increases.

In case β 2 + 8a > 0 and ω = ω j ( j = 2,3) , equality (2.7) with ω jτ j,n = |(2 j +
1)π | leads to

Re
dλ
dτ

∣∣∣∣
λ=iω j

= Re

(
aω2

j

ω2
j +2a+ iaω jτ j,n

)
=

aω2
j (ω2

j +2a)

(ω2
j +2a)2 +(aω jτ j,n)2

.

If a > 0, then Re(dλ/dτ)
∣∣
λ=iω j

> 0 for j = 2,3, which implies that the roots iω2 and

iω3 cross the imaginary axis from left to right as τ increases. Also, if −β 2/8 < a < 0,
then

Re
dλ
dτ

∣∣∣∣
λ=iω2

=
aω2

2

(
β 2 +8a+β

√
β 2 +8a

)
2{(ω2

2 +2a)2 +(aω2τ2,n)2} < 0,

Re
dλ
dτ

∣∣∣∣
λ=iω3

=
aω2

3

(
β 2 +8a−β

√
β 2 +8a

)
2{(ω2

3 +2a)2 +(aω3τ3,n)2} > 0.
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This yields that as τ increases under −β 2/8 < a < 0, the root iω2 crosses the imagi-
nary axis from right to left, while the root iω3 crosses the imaginary axis from left to
right. This completes the proof. �

We are now ready to present necessary and sufficient conditions for all roots of
(2.1) to have negative real parts when a �= 0, bc < 0 and 8a �= bc (Propositions 2.2 and
2.3).

PROPOSITION 2.2. Let a > 0 and bc < 0 . Then all roots of (2.1) have negative
real parts if and only if condition (1.5) holds.

Proof. It suffices to verify that under a > 0 and β =
√−bc > 0, all roots of

(2.4) lie in the left half-plane if and only if condition (1.5) holds. To this end, we will
examine the locations of roots of (2.4) by taking τ as a parameter.

For the sake of brevity, we denote by ν(τ) the number of roots of (2.4) including
multiplicity whose real parts are positive at τ . Clearly, for τ = 0, equation (2.4) has
the only root −iβ (= iω1) , and hence, ν(0) = 0. Lemma 2.4 (i) then asserts that
iω1 moves in the left half-plane as τ increases from 0, which yields ν(τ) = 0 for all
sufficiently small τ > 0 by the continuity of the roots with respect to τ . By virtue of
Lemma 2.2, we will focus on purely imaginary roots of (2.4) to determine the value of
ν(τ) .

By Lemma 2.3, if equation (2.4) has a purely imaginary root iω , then ω = ω j for
some j = 1,2,3. Let λ j,n(τ) be the branch of the root of (2.4) satisfying λ j,n(τ j,n) =
iω j for j = 1,2,3 and n = 0,1,2, . . . . Then, as shown in Lemma 2.4 (i), λ1,n(τ) moves
in the left half-plane as τ increases from τ1,n , while for j = 2,3, λ j,n(τ) moves in the
right half-plane as τ increases from τ j,n . This implies that λ2,n(τ) or λ3,n(τ) may cross
the imaginary axis at λ = iω1 from right to left as τ increases. Consequently, we will
observe the order relation between τ1,n , τ2,n , and τ3,n in detail. An easy calculation
yields that for n = 0,1,2, . . . ,

τ3,n− τ2,n =
(2n+1)πβ

2a
> 0,

τ2,n− τ1,n =
2π(
√
β 2 +8a−β )

β (
√
β 2 +8a+β )

(
β√

β 2 +8a−β
−n

)
, (2.8)

τ3,0− τ2,n =
π(
√
β 2 +8a−β )

2a

(
β√

β 2 +8a−β
−n

)
. (2.9)

Also, since

τ2,n+1− τ2,n =
2π
|ω2| <

2π
|ω1| = τ1,n+1− τ1,n for n = 0,1,2, . . . ,

there exists a positive integer N1(n) such that

τ1,n < τ2,N1(n) < τ1,n+1. (2.10)
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We consider the following two cases. For simplicity, let k be a nonnegative integer
defined by

k =

⌈
β√

β 2 +8a−β

⌉
−1,

where �·
 denotes the ceiling function.
Case (i): a �=(2m+1)β 2/(8m2) for any m = 1,2,3, . . . . Since β/(

√
β 2 +8a−β )

is not an integer, equalities (2.8) and (2.9) imply that

τ2,n− τ1,n > 0 and τ3,0 − τ2,n > 0 for n = 0,1, . . . ,k,

τ2,n− τ1,n < 0 and τ3,0 − τ2,n < 0 for n = k+1,k+2, . . . ,

namely,

0 = τ1,0 < τ2,0 < · · · < τ1,k < τ2,k < τ3,0 < τ2,k+1 < τ1,k+1 < · · · .

From this, together with (2.10) and the crossing of the imaginary axis, we thus obtain⎧⎪⎨
⎪⎩

ν(τ) = 0 if τ ∈ (0,τ2,0)∪ (τ1,1,τ2,1)∪·· ·∪ (τ1,k,τ2,k),
ν(τ) = 1 if τ ∈ (τ2,0,τ1,1)∪ (τ2,1,τ1,2)∪·· ·∪ (τ2,k−1,τ1,k),
ν(τ) � 1 if τ ∈ (τ2,k,∞).

(2.11)

Case (ii): a = (2m+ 1)β 2/(8m2) for some m = 1,2,3, . . . . By β/(
√
β 2 +8a−

β ) = m , equalities (2.8) and (2.9) yield that

0 = τ1,0 < τ2,0 < · · · < τ1,k < τ2,k < τ3,0 = τ2,k+1 = τ1,k+1 < τ2,k+2 < · · · .
From this, together with (2.10) and the crossing of the imaginary axis, we obtain (2.11).

By virtue of the preceding argument and Lemma 2.3, we therefore conclude that
under a > 0 and β > 0, all roots of (2.4) lie in the left half-plane if and only if condition
(1.5) holds. �

PROPOSITION 2.3. Let a < 0 , bc < 0 and 8a �= bc. Then all roots of (2.1) have
negative real parts if and only if condition (1.6) holds.

Proof. It suffices to verify that under a < 0, β =
√−bc > 0 and β 2 +8a �= 0, all

roots of (2.4) lie in the left half-plane if and only if condition (1.6) holds.
For the sake of convenience, we denote by ν(τ) the number of roots of (2.4)

including multiplicity whose real parts are positive at τ . Recall that for τ = 0, equation
(2.4) has the only root iω1 , and hence, ν(0) = 0. Lemma 2.4 (ii) then asserts that iω1

moves in the right half-plane as τ increases from 0, which implies ν(τ) = 1 for all
sufficiently small τ > 0 by the continuity of the roots with respect to τ . By virtue of
Lemma 2.2, we will focus on purely imaginary roots of (2.4) to determine the value of
ν(τ) . Our argument is divided into two cases.

Case (I): β 2+8a< 0. By Lemma 2.3, if equation (2.4) has a purely imaginary root
iω , then ω = ω1 . Let λ1,n(τ) be the branch of the root of (2.4) satisfying λ1,n(τ1,n) =
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iω1 . Lemma 2.4 (ii) shows that λ1,n(τ) moves in the right half-plane and cannot move
in the left half-plane crossing on the imaginary axis as τ increases from τ1,n . This
yields ν(τ) � 1 for all τ > 0.

Case (II): β 2 + 8a > 0. By Lemma 2.3, if equation (2.4) has a purely imaginary
root iω , then ω = ω j for some j = 1,2,3. Let λ j,n(τ) be the branch of the root of
(2.4) satisfying λ j,n(τ j,n) = iω j for j = 1,2,3 and n = 0,1,2, . . . . Then, as shown in
Lemma 2.4 (ii), λ2,n(τ) moves in the left half-plane as τ increases from τ2,n , while for
j = 1,3, λ j,n(τ) moves in the right half-plane as τ increases from τ j,n . This implies
that λ1,n(τ) or λ3,n(τ) may cross the imaginary axis at λ = iω2 from right to left as
τ increases. Consequently, we will observe the order relation between τ1,n , τ2,n , and
τ3,n in detail. An easy calculation yields that for n = 0,1,2, . . . ,

τ3,n − τ2,n = − (2n+1)π
√
β 2 +8a

2a
> 0,

τ2,n − τ1,n =
2π{β +n(β −

√
β 2 +8a)}

β (β +
√
β 2 +8a)

> 0,

τ1,n+1− τ2,n =
2π(β −

√
β 2 +8a)

β (β +
√
β 2 +8a)

( √
β 2 +8a

β −
√
β 2 +8a

−n

)
, (2.12)

τ3,0− τ1,n+1 =
2π
β

( √
β 2 +8a

β −
√
β 2 +8a

−n

)
. (2.13)

Also, since

τ1,n+1− τ1,n =
2π
|ω1| <

2π
|ω2| = τ2,n+1− τ2,n for n = 0,1,2, . . . ,

there exists a positive integer N2(n) such that

τ2,n < τ1,N2(n) < τ2,n+1. (2.14)

We consider the following two subcases. For brevity, let l be a nonnegative integer
defined by

l =

⌈ √
β 2 +8a

β −
√
β 2 +8a

⌉
−1.

Subcase (II-i): a �= −(2m + 1)β 2/(8(m + 1)2) for any m = 1,2,3, . . . . Since√
β 2 +8a/(β −

√
β 2 +8a) is not an integer, equalities (2.12) and (2.13) imply that

τ1,n+1− τ2,n > 0 and τ3,0 − τ1,n+1 > 0 for n = 0,1, . . . , l,

τ1,n+1− τ2,n < 0 and τ3,0 − τ1,n+1 < 0 for n = l +1, l +2, . . . ,

namely,

0 < τ2,0 < τ1,1 < · · · < τ2,l < τ1,l+1 < τ3,0 < τ1,l+2 < τ2,l+1 < · · · .
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From this, together with (2.14) and the crossing of the imaginary axis, we thus obtain⎧⎪⎨
⎪⎩

ν(τ) = 1 if τ ∈ (0,τ2,0)∪ (τ1,1,τ2,1)∪·· ·∪ (τ1,l,τ2,l),
ν(τ) = 0 if τ ∈ (τ2,0,τ1,1)∪ (τ2,1,τ1,2)∪·· ·∪ (τ2,l ,τ1,l+1),
ν(τ) � 1 if τ ∈ (τ1,l+1,∞).

(2.15)

Subcase (II-ii): a = −(2m + 1)β 2/(8(m + 1)2) for some m = 1,2,3, . . . . By√
β 2 +8a/(β −

√
β 2 +8a) = m , equalities (2.12) and (2.13) yield that

0 < τ2,0 < τ1,1 < · · · < τ2,l < τ1,l+1 < τ3,0 = τ1,l+2 = τ2,l+1 < · · · .

From this, together with (2.14) and the crossing of the imaginary axis, we obtain (2.15).
By virtue of the preceding argument and Lemma 2.3, we therefore conclude that

under a < 0, β > 0 and β 2 +8a �= 0, all roots of (2.4) lie in the left half-plane if and
only if condition (1.6) holds. �

Finally, we will prove our main theorem.

PROOF OF THEOREM 1.1. Suppose that 8a �= bc when bc < 0. In case a = 0 and
bc < 0, equation (2.1) has the roots ±i

√−bc whose real parts are zero. This fact and
Propositions 2.1–2.3 show that all roots of (2.1) have negative real parts if and only if
any one of conditions (1.4)–(1.6) holds. �

REMARK 2.2. As mentioned in Remark 2.1, in case 8a = bc < 0, the root iω2

(= iω3) of (2.4) is double, and hence, we cannot analyze the behavior of the root iω2

by using the derivative Re(dλ/dτ)
∣∣
λ=iω2

. In the critical case, we believe that equation
(2.4) has a root with nonnegative real part for all τ > 0 and as a result, the assumption
that 8a �= bc when bc < 0 in Theorem 1.1 might be dropped.
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