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Abstract. In this paper, we consider the existence of positive solutions to the following problem⎧⎪⎪⎨⎪⎪⎩
−div(|∇u|p−2∇u) = ∂F

∂u (u,v)+ ε p−1g(x) in Ω,

−div(|∇v|q−2∇v) = ∂F
∂v (u,v)+ εq−1h(x) in Ω,

u,v > 0 in Ω,
u = v = 0 on ∂Ω,

where Ω is a bounded smooth domain in R
N ; F ∈C1((R+)2,R+) is positively homogeneous

of degree μ ; g,h ∈C1(Ω)\{0} ; and ε is a positive parameter. Using sub-supersolution method
and comparison principle, we prove the existence of positive solutions for the above problem.

1. Introduction and main results

Let Ω be a bounded smooth domain in R
N . We are concerned with the following

problem: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div(|∇u|p−2∇u) = ∂F

∂u (u,v)+ ε p−1g(x) in Ω,

−div(|∇v|q−2∇v) = ∂F
∂v (u,v)+ εq−1h(x) in Ω,

u,v > 0 in Ω,

u = v = 0 on ∂Ω,

(1)

where g,h ∈ C1(Ω)\{0} , p,q ∈ R such that p > 1 and q > 1, the parameter ε is
positive, and F ∈ C1((R+)2,R+) is positively homogeneous of degree μ , that is,
F(tz) = tμF(z) holds for all z ∈ (R+)2 and t > 0, here, R

+ = [0,+∞) .
Systems of the above form are mathematical models occurring in studies of the

(p,q)-Laplace system, generalized reaction-diffusion theory, non-Newtonian fluid the-
ory ([4],[34]), non-Newtonian filtration ([29]) and the turbulent flow of a gas in porous
medium ([19]). In the non-Newtonian fluid theory, the quantity (p,q) is characteristic
of the medium. Media with (p,q) > (2,2) are called dilatant fluids and those with
(p,q) < (2,2) are called pseudoplastics. If (p,q) = (2,2) , they are Newtonian fluids.
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In recent years, the existence and uniqueness of the positive solutions for the single
quasilinear elliptic equation with eigenvalue problems{

div(|∇u|p−2∇u)+λ f (u) = 0 in Ω,

u(x) = 0 on ∂Ω,
(2)

with λ > 0, p > 1,Ω⊂ R
N ,N � 2, have been studied by many authors, see [23]-[27],

[33], [35], [48]-[55] and the references therein. When f is strictly increasing on R
+ ,

f (0) = 0, lims→0+ f (s)/sp−1 = 0 and f (s) � α1 +α2sμ ,0 < μ < p− 1,α1,α2 > 0,
it was shown in [25] that there exist at least two positive solutions for the problem (2)
when λ is sufficiently large. If lims→0+ inf f (s)/sp−1 > 0, f (0) = 0 and the mono-
tonicity hypothesis ( f (s)/sp−1)′ < 0 holds for all s > 0, it was proved in [26] that the
problem (2) has a unique positive solution when λ is sufficiently large. Moreover, it
was also shown in [24] that problem (2) has a unique positive large solution and at least
one positive small solution when λ is large if f is nondecreasing; there exist α1,α2 > 0
such that f (s) � α1 +α2sβ ,0 < β < p−1; lims→0+

f (s)
sp−1 = 0, and there exist T,Y > 0

with Y � T such that

( f (s)/sp−1)′ > 0 for s ∈ (0,T )

and

( f (s)/sp−1)′ < 0 for s > Y.

Recently, Hai [27] considered the case when Ω is an annular domain, and obtained
the existence of positive large solutions for the problem (2) when λ is sufficiently small.
Xuan & Chen proved in [47] that the singular problem (2) has a unique positive radial
solution if f is a continuous function and positive on Ω= BR (here BR is a ball). The
existence of entire solutions have been obtained for singular and non-singular problem
(2), see [26], [53], [55]. For p = 2, the related results to a singular semilinear elliptic
boundary value problem {

Δu+λm(x)uγ = 0, x ∈Ω,
u = 0, x ∈ ∂Ω,

have been extensively studied when Ω ⊂ R
N or Ω = R

N , see [16], [18], [30]. When
p �= 2, the problem becomes more complicated since certain nice properties inherent
to the case p = 2 seem to be lost or at least difficult to verify. The main differences
between p = 2 and p �= 2 can be founded in [24]-[26].

Since 1980s, many important results have been obtained for quasilinear elliptic
systems. We will introduce some results in the following. Existence and non-existence
of solutions of the quasilinear elliptic system{

div(|∇u|p−2∇u)+ f (u,v) = 0, x ∈ R
N ,

div(|∇v|q−2∇v)+g(u,v) = 0, x ∈ R
N ,

(3)

have gained much attention recently. See, for example, [10], [20], [23], [38], [51], [54].
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When p = q = 2, system (3) becomes{
Δu+ f (u,v) = 0, x ∈ R

N ,
Δv+g(u,v) = 0, x ∈ R

N ,

for which the existence and the non-existence of positive solutions and positive bound-
ary blow-up solutions have been investigated extensively. We list here, for example,
[9], [11], [31], [36], [37], [42], and refer to the references therein.

When p = q = 2, f = −a(|x|)vα ,g = −b(|x|)uβ , system (3) becomes{
Δu = a(|x|)vα , x ∈ R

N ,

Δv = b(|x|)uβ , x ∈ R
N ,

(4)

for which existence results for positive boundary blow-up solutions can be found in a
recent paper by Lair and Wood [31]. Lair and Wood established that all positive entire
radial solutions of (4) are boundary blow-up provided that∫ ∞

0
ta(t)dt = ∞,

∫ ∞

0
tb(t)dt = ∞.

On the other hand, if ∫ ∞

0
ta(t)dt < ∞ and

∫ ∞

0
tb(t)dt < ∞,

then all positive entire radial solutions of (4) are bounded.
F. Cirstea and V. D. Radulescu [11], extended the above results to a larger class of

systems {
Δu = a(|x|)g(v), x ∈ R

N ,
Δv = b(|x|) f (u), x ∈ R

N .

Z. D. Yang [51], extended the above results to a class of systems{
div(|∇u|p−2∇u) = a(|x|)g(v), x ∈ R

N ,
div(|∇v|q−2∇v) = b(|x|) f (u), x ∈ R

N .

For p = q = 2, system (3) becomes⎧⎪⎪⎨⎪⎪⎩
−Δu = ∂F

∂u (u,v)+ εg(x) in Ω,

−Δv = ∂F
∂v (u,v)+ εg(x) in Ω,

u,v > 0 in Ω,
u = v = 0 on ∂Ω,

for which the existence and multiplicity of positive solutions for semilinear elliptic
problems have been investigated extensively. Results relating to these problems can be
find in [1], [5], [7]-[8], [12], [14]-[15], [21], [28], [45], and the references therein.

In a recent paper, Chu and Tang [8] have studied the following systems⎧⎪⎪⎨⎪⎪⎩
−Δu = ∂F

∂u (u,v)+ εg(x) in Ω,

−Δv = ∂F
∂v (u,v)+ εg(x) in Ω,

u,v > 0 in Ω,
u = v = 0 on ∂Ω,

(5)
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where g,h ∈ C1(Ω)\{0} ; ε is a positive parameter, and F ∈ C1((R+)2,R+) is posi-
tively homogeneous of degree μ , that is F(tz) = tμF(z) holds for all z ∈ (R+)2 and
t > 0, here, R

+ = [0,+∞) . By means of sub-supersolution method, they have proved
that if μ ∈ (1,2) , ( f1) and ( f2) (the same as the following assumptions) hold, then the
problem (5) has at least one positive solution for all ε > 0 if and only if both problems{−Δu = g(x) in Ω,

u = 0 on ∂Ω,
(6)

and {−Δv = h(x) in Ω,
v = 0 on ∂Ω,

(7)

have nonnegative solutions.
Motivated by the results of papers [1], [5], [7]-[8], [12], [14]-[15], [21], [28], [45],

in this paper, we consider the quasilinear elliptic system (1). We modify the method
developed by Chu and Tang [8], Han [3] and extend the results of [8] to a quasilinear
elliptic system (1).

The outline of this paper is as following. In section 2, we investigate the existence
of solution for single equation of singular quasilinear elliptic system (1). Section 3 is
devoted to the existence of solutions to system (1).

Before stating our results, we need to give some assumptions. Let E = H1
0 (Ω)×

H1
0 (Ω) , z = (u,v) , |z| = √

u2 + v2 ,‖z‖s = (
∫
Ω(u2 + v2)

s
2 dx)

1
s . Let{−div(|∇u|p−2∇u) = g(x) in Ω,

u = 0 on ∂Ω,
(8)

and {−div(|∇v|q−2∇v) = h(x) in Ω,
v = 0 on ∂Ω.

(9)

( f1) g,h ∈C(Ω)\{0} , and there exists x0 ∈Ω such that g(x0) > 0,h(x0) > 0.

( f2) ∂F
∂u (u,v), ∂F

∂v (u,v) are strictly increasing functions about u and v for all u,v > 0.

In addition, we denote positive constants by C,C1,C2, ... .

The main results of the paper are the following theorems.

THEOREM 1. Suppose that F ∈C1((R+)2,R+) is positively homogeneous of de-
gree μ > 1 . Assume that( f1) , ( f2) hold, and 1 < μ < min{p,q} , then problem (1)
has at least one positive solution for all ε > 0 if both problems (8) and (9) have
nonnegative solutions.

For p = q , we give the following theorems.

THEOREM 2. Suppose that F ∈C1((R+)2,R+) is positively homogeneous of de-
gree μ > 1 . Assume that ( f1) , ( f2) hold, and 1 < μ < p, if problem (1) has at least
one positive solution for all ε > 1 , then both problems (8) and (9) have nonnegative
solutions.
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In particular, for the supercritical case, the condition that problem (8) and prob-
lem (9) have nonnegative solutions are also a necessary condition that guarantees the
existence of positive solutions for problem (1). In fact,we have

THEOREM 3. Suppose that F ∈C1((R+)2,R+) is positively homogeneous of de-
gree μ > 2∗,(2∗ = pN

N−p ) . Let Ω ⊂ R
N (N � 3) be a star-shaped domain, ( f1) , ( f2)

hold, and 1 < p < μ , if problem (1) has at least one positive solution for all ε > 1 ,
then both problems (8) and (9) have nonnegative solutions.

REMARK 1. If p � N , we do not know whether or not Theorem 3 holds. From
[56], we guess problem (1) has no positive solution for p � N . This is an open problem.

2. The existence of positive solutions for problem (1)

In this section, we will prove Theorems 1-3. It is well known that the following
lemma holds. From [8], we give the following lemma.

LEMMA 1. Suppose that ( f2) holds. Assume that F ∈ C1((R+)2,R+) is posi-
tively homogeneous of degree μ with μ > 1 , then ∂F

∂u , ∂F
∂v ∈ C((R+)2,R+) are posi-

tively homogeneous of degree μ−1 .

From [27] and [42], we give the following lemma.

LEMMA 2. (Weak comparison principle) Let Ω be a bounded domain in R
N

(N � 2) with smooth boundary ∂Ω and θ : (0,∞) → (0,∞) be continuous and nonde-
creasing function. Let u1, u2 ∈W 1,p(Ω) be such that∫

Ω
|∇u1|p−2∇u1∇ψdx+

∫
Ω
θ (u1)ψdx �

∫
Ω
|∇u2|p−2∇u2∇ψdx+

∫
Ω
θ (u2)ψdx

for all non-negative ψ ∈W 1,p
0 (Ω) . If

u1 � u2 on ∂Ω,

then
u1 � u2 in Ω.

PROOF OF THEOREM 1. First, let u0 ,v0 be nonnegative solutions of problem (8)
and (9) , respectively. It implies from Lemma 1 that (εu0,εv0 ) satisfies:

−div(|∇(εu0)|p−2∇(εu0)) = −ε p−1div(|∇u0|p−2∇u0)

= ε p−1g(x)

� ∂F
∂u

(εu0,εv0)+ ε p−1g(x),
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and

−div(|∇(εv0)|q−2∇(εv0)) = −εq−1div(|∇v0|q−2∇v0)

= εq−1h(x)

� ∂F
∂v

(εu0,εv0)+ εq−1h(x)

for all ε > 0. Hence, (εu0,εv0) is a subsolution of problem (1). In addition, let d and
e denote the solutions of the following problem, and (10) respectively:{−div(|∇d|p−2∇d) = 1 in Ω,

d = 0 on ∂Ω,{−div(|∇e|q−2∇e) = 1 in Ω,
e = 0 on ∂Ω.

(10)

It follows from the strong maximum principle (see Serrin and Zou [43]) that d(x) > 0,
e(x) > 0 in Ω . Choose R0 so large that

Rp−1
0 � Rμ−1

0 max
x∈Ω

∂F
∂u

(d,e)+ ε p−1max
x∈Ω

|g|,

Rq−1
0 � Rμ−1

0 max
x∈Ω

∂F
∂v

(d,e)+ εq−1 max
x∈Ω

|h|.

This is possible, since 1 < μ < p , 1 < μ < q and

R1−p(Rμ−1 max
x∈Ω

∂F
∂u

(d,e)+ ε p−1 max
x∈Ω

|g|) → 0,

R1−q(Rμ−1 max
x∈Ω

∂F
∂v

(d,e)+ εq−1max
x∈Ω

|h|) → 0,

as R → +∞ . Set ω1 = R0d, ω2 = R0e, we have

−div(|∇ω1)|p−2∇ω1))− ∂F
∂u

(ω1,ω2)− ε p−1g(x)

= −div(|∇(R0d))|p−2∇(R0d))−Rμ−1
0

∂F
∂u

(d,e)− ε p−1g(x)

= Rp−1
0 −Rμ−1

0
∂F
∂u

(d,e)− ε p−1g(x) � 0,

and

−div(|∇ω2)|q−2∇ω2))− ∂F
∂v

(ω1,ω2)− εq−1h(x)

= −div(|∇(R0e))|q−2∇(R0e))−Rμ−1
0

∂F
∂v

(d,e)− εq−1h(x)

= Rq−1
0 −Rμ−1

0
∂F
∂v

(e,e)− εq−1h(x) � 0.
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These imply that (ω1,ω2) is a supersolution of problem (1). According to ω1 � 0,
ω2 � 0 and Lemma 1, we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−div(|∇ω1)|p−2∇ω1))− (−div(|∇(εu0)|p−2∇(εu0))
� ∂F

∂u (ω1,ω2)+ ε p−1g(x)− ε p−1g(x) � 0 in Ω,

−div(|∇ω2)|q−2∇ω2))− (−div(|∇(εv0)|q−2∇(εv0))
� ∂F

∂v (ω1,ω2)+ εq−1h(x)− εq−1h(x) � 0 in Ω,

ω1 = ω2 = εu0 = εv0 = 0 on ∂Ω.

By Lemma 2, we have 0 � εu0 � ω1 , 0 � εv0 � ω2 . By C1,α(Ω) estimates in [32]
and monotonic iteration in [2] or [41], we conclude that problem (1) has at least one
positive solution (u∗ε ,v∗ε) which satisfies 0 � εu0 � u∗ε � ω1 , 0 � εv0 � v∗ε � ω2 .

It implies from ( f1) that there exists Ω0 = B(x0)⊂⊂Ω such that g(x)> 0, h(x) >
0 in Ω0 . Moreover, u0 and v0 satisfy{−div(|∇u0|p−2∇u0) = g(x) in Ω0,

u0 � 0 on ∂Ω0,

and {−div(|∇v0|q−2∇v0) = h(x) in Ω0,
v0 � 0 on ∂Ω0.

By the strong maximum principle (see Serrin and Zou [43] or Vazquez’s [46]), we have
u0 > 0,v0 > 0 in Ω0 . We infer from ( f2) and Lemma 1 that

∂F
∂u

(εu0,εv0) > 0,
∂F
∂v

(εu0,εv0) > 0

in Ω0 . Hence we conclude that (εu0,εv0) is not the solution of the problem (1). So,
we have u∗ε > εu0 � 0,v∗ε > εv0 � 0 in Ω , that is, (u∗ε ,v∗ε) is a positive solution of
problem (1). The proof of Theorem 1 is completed. �

PROOF OF THEOREM 2. Assume that problem (1) has at least one positive solu-
tion for all ε > 1, we shall prove that problems (8) and (9) have nonnegative solutions.
To this end, let (uε ,vε ) be any positive solution of problem (1) with respect to the
parameter ε . Set ω1ε = ε−1uε , ω2ε = ε−1vε , then (ω1ε ,ω2ε) satisfies⎧⎪⎪⎨⎪⎪⎩

−div(|∇ω1ε |p−2∇ω1ε) = εμ−p ∂F
∂u (ω1ε ,ω2ε)+g(x) in Ω,

−div(|∇ω2ε |p−2∇ω2ε) = εμ−p ∂F
∂v (ω1ε ,ω2ε)+h(x) in Ω,

ω1ε ,ω2ε > 0 in Ω,
ω1ε = ω2ε = 0 on ∂Ω.

(11)

Since F ∈ ((R+)2,R+) is positively homogeneous of degree μ , we have

m|z|μ � F(z) � M|z|μ ,

where
m = min

{z∈(R+)2:|z|=1}
F(z) and M = max

{z∈(R+)2:|z|=1}
F(z).
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Let |Ω| denote the Lebesgue measure of Ω . Multiplying the two differential equations
in problem (11) by ω1ε ,ω2ε , and integrating over Ω , respectively, according to the
Schwartz inequality, the Hölder inequality, the Poincaré ineuality and 1 < μ < p , we
obtain∫

Ω
|∇ω1ε |p + |∇ω2ε |pdx

= εμ−p
∫
Ω
ω1ε

∂F
∂u

(ω1ε ,ω2ε)+ω1ε
∂F
∂v

(ωvε ,ω2ε)dx+
∫
Ω
ω1εgdx+

∫
Ω
ω2εhdx

= μεμ−p
∫
Ω

F(ω1ε ,ω2ε )dx+
∫
Ω
ω1εgdx+

∫
Ω
ω2εhdx

� μMεμ−p
∫
Ω
(ω2

1ε +ω2
1ε)

μ
2 dx+

∫
Ω
ω1εgdx+

∫
Ω
ω2εhdx

� μMεμ−p2
μ
2

∫
Ω
((ωμ

1ε +ωμ
1ε)dx+‖ω1ε‖2‖g‖2 +‖ω1ε‖2‖h‖2

� μMεμ−p2
μ
2 |Ω| 2−μ

2
(‖ω1ε‖

μ
2
2 +‖ω2ε‖

μ
2
2

)
+‖ω1ε‖2‖g‖2 +‖ω1ε‖2‖h‖2

� C(Ω,g,h)
(‖ω1ε‖

μ
2 +‖ω2ε‖

μ
2 +‖ω1ε‖+‖ω2ε‖

)
, (12)

for all ε � 1, where C(Ω,g,h) depends only on Ω , g and h . Therefore, there exist a
constant C > 0 independent of ε � 1 such that∫

Ω
|∇ω1ε |p + |∇ω2ε |pdx � C1. (13)

By the Sobolev embedding theorem, we have∫
Ω
|ω1ε |p∗dx � C1,

∫
Ω
|ω2ε |p∗dx � C1.

By choosing a subsequence if necessary, we may assume that as ε → ∞,

(ω1ε ,ω2ε ) ⇀ (ω1,ω2) weakly in E . (14)

Combining (12) and (13), we deduce that there exists a constant C2 independent of ε
such that

εμ−p
∫
Ω

F(ω1ε ,ω2ε)dx � C2.

Set zε = (ω1ε ,ω2ε) , according to F(z) � m|z|μ and m > 0, we have

εμ−p
∫
Ω
|zε |μdx � 1

m
C2. (15)

Since F ∈ C1((R+)2,R+) is positively homogeneous of degree μ > 1, ∂F
∂u (z) , ∂F

∂v (z)
is positively homogeneous of degree μ−1. Moreover, we have

∂F
∂u

(z) � M1|z|μ−1,
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where

M1 = max
{z∈(R+)2:|z|=1}

∂F
∂u

(z).

By (15) and Hölder inequality, for any ϕ ,ψ ∈C∞
0 , we infer that∣∣∣∫

Ω

∂F
∂u

(ω1ε ,ω2ε)ϕdx
∣∣∣ � M1

∫
Ω
|zε |μ−1|ϕ |dx

� M1‖ϕ‖∞|Ω| 1
μ (

∫
Ω
|zε |μdx)

μ−1
μ

� M1m
1−μ
μ C

μ−1
μ

2 |Ω| 1
μ ‖ϕ‖∞ε

(μ−p)(1−μ)
μ .

Since 1 < μ < p , we have

εμ−p
∫
Ω

∂F
∂u

(ω1ε ,ω2ε)ϕdx → 0 as ε → ∞. (16)

Similarly, one has

εμ−p
∫
Ω

∂F
∂v

(ω1ε ,ω2ε)ψdx → 0 as ε → ∞. (17)

Multiplying the two differential equations in problem (11) by ϕ ,ψ , and integrating
over Ω , respectively, we obtain∫

Ω
|∇ω1ε |p−2∇ω1ε∇ϕdx = εμ−p

∫
Ω

∂F
∂u

(ω1ε ,ω2ε)ϕdx+
∫
Ω

gϕdx, (18)∫
Ω
|∇ω2ε |p−2∇ω2ε∇ψdx = εμ−p

∫
Ω

∂F
∂v

(ω1ε ,ω2ε)ψdx+
∫
Ω

gψdx. (19)

Taking ε → ∞ on both sides of the equalities in (18) and (19), and taking (16) and (17)
into account, we have∫

Ω
|∇ω1|p−2∇ω1∇ϕ =

∫
Ω

gϕdx and
∫
Ω
|∇ω2|p−2∇ω2∇ψ =

∫
Ω

gψdx,

which imply that ω1,ω2 are weakly solutions of problem (8) and (9), respectively.
Since ω1ε ,ω2ε > 0 in Ω , we infer that ω1,ω2 � 0 in Ω . By the regularity theory (see
[31]), we know that ω1,ω2 are classical nonnegative solutions of problems (8) and (9),
respectively. The proof of Theorem 2 is completed. �

Before giving the proof of Theorem 3, we introduce the Pohozaev identity, which
is established in [39].

LEMMA 3. Let u be in C1(Ω)∩C(Ω) , where Ω is a C1 domain in R
N (N � 3)

satisfying u = 0 on ∂Ω . Then we have∫
Ω

div(|∇u|p−2∇u)(x,∇u)dx =
N−2

2

∫
Ω
|∇u|pdx+

1
2

∫
Ω
(x,n)

∣∣∂u
∂n

∣∣p
dσ , (20)

where n denotes the unit outward normal of ∂Ω .
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PROOF OF THEOREM 3. Let (ũε , ṽε ) be any positive solution of problem (1) with
respect to the parameter ε . Set ω̃1ε = ε−1ũε , ω2ε = ε−1ṽε , then (ω̃1ε , ω̃2ε) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

−div(|∇ω̃1ε |p−2∇ω̃1ε) = εμ−p ∂F
∂u (ω̃1ε , ω̃2ε)+g(x) in Ω,

−div(|∇ω̃2ε |p−2∇ω̃2ε) = εμ−p ∂F
∂v (ω̃1ε , ω̃2ε)+h(x) in Ω,

ω̃1ε , ω̃2ε > 0 in Ω,
ω̃1ε = ω̃2ε = 0 on ∂Ω.

(21)

Multiplying the two differential equations in problem (21) by ω̃1ε , ω̃2ε , and integrating
over Ω , respectively, we obtain∫

Ω
|∇ω̃1ε |p + |∇ω̃2ε |pdx = μεμ−p

∫
Ω

F(ω̃1ε , ω̃2ε )dx+
∫
Ω
ω̃1εgdx+

∫
Ω
ω̃2εhdx. (22)

On the one hand, from Lemma 3 and (22), we obtain∫
Ω
Δω̃1ε(x,∇ω̃1ε )dx+

∫
Ω
Δω̃2ε(x,∇ω̃2ε )dx

=
N−2

2

∫
Ω
(|∇ω̃1ε |p + |∇ω̃2ε |p)dx+

1
2

∫
∂Ω

(x,n)(|∂ω̃1ε
∂n

|p + |∂ω̃2ε
∂n

|p)dσ

=
N−2

2
μεμ−p

∫
Ω

F(ω̃1ε , ω̃2ε)dx+
N−2

2

∫
Ω
(ω̃1εg+ ω̃2εh)dx

+
1
2

∫
∂Ω

(x,n)
(∣∣∂ω̃1ε

∂n

∣∣p +
∣∣∂ω̃2ε
∂n

∣∣p
)
dσ . (23)

On the other hand, noticing that ω̃1ε = ω̃2ε = 0, x ∈ ∂Ω and the homogeneity of F ,
we have F(ω̃1ε , ω̃2ε) = 0,x ∈ ∂Ω . Therefore, one has:∫

Ω
(εμ−p ∂F

∂u
(ω̃1ε , ω̃2ε)+g(x)) · (x,∇ω̃1ε)dx

+
∫
Ω
(εμ−p ∂F

∂v
(ω̃1ε , ω̃2ε)+h(x)) · (x,∇ω̃2ε)dx

= εμ−p
∫
Ω
(x,∇F(ω̃1ε , ω̃2ε))dx+

∫
Ω

g(x,∇ω̃1ε)dx+
∫
Ω

h(x,∇ω̃2ε )dx

= −εμ−pN
∫
Ω

F(ω̃1ε , ω̃2ε)dx−N
∫
Ω
(ω̃1εg+ ω̃2εh)dx

−
∫
Ω
ω̃1ε(x,∇g)dx−

∫
Ω
ω̃2ε(x,∇h)dx. (24)

According to (21), (23), (24), we obtain

(N−2
2

− N
μ

)
μεμ−p

∫
Ω

F(ω̃1ε , ω̃2ε )dx+
1
2

∫
∂Ω

(x,n)
(∣∣∂ω̃1ε

∂n

∣∣p +
∣∣∂ω̃2ε
∂n

∣∣p
)
dσ

=
N +2

2

∫
Ω
(ω̃1εg+ ω̃2εh)dx+

∫
Ω
ω̃1ε(x,∇g)dx+

∫
Ω
ω̃2ε(x,∇h)dx. (25)
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As μ > 2∗ , we have N−2
2 − N

μ > 0. Since Ω is star-shaped, we have (x,n) > 0 on ∂Ω .
Therefore, one has ∫

∂Ω
(x,n)

(
|∂ω̃1ε
∂n

|p + |∂ω̃2ε
∂n

|p
)
dσ � 0.

Consequently, using (25), we conclude that

εμ−p
∫
Ω

F(ω̃1ε , ω̃2ε)dx

� C3

(∫
Ω
ω̃1εgdx+

∫
Ω
ω̃2εhdx+

∫
Ω
ω̃1ε(x,∇g)dx+

∫
Ω
ω̃2ε(x,∇h)dx

)
.

From (22), we obtain∫
Ω
(|∇ω̃1ε |p + |∇ω̃2ε |p)dx

= μεμ−p
∫
Ω

F(ω̃1ε , ω̃2ε)dx+
∫
Ω
ω̃1εgdx+

∫
Ω
ω̃2εhdx

� C4

(∫
Ω
ω̃1εgdx+

∫
Ω
ω̃2εhdx+

∫
Ω
ω̃1ε(x,∇g)dx+

∫
Ω
ω̃2ε(x,∇h)dx

)
(26)

for all ε small enough, where C(Ω,g,h) depends only on Ω , g and h . Therefore, there
exist a constant C5 > 0 independent of ε such that∫

Ω
|∇ω̃1ε |p + |∇ω̃2ε |pdx < C5. (27)

By the Sobolev embedding theorem, we have∫
Ω
|ω̃1ε |p∗dx � C5,

∫
Ω
|ω̃2ε |p∗dx � C5.

By choosing a subsequence if necessary, we may assume that as ε → 0,

(ω̃1ε , ω̃2ε ) ⇀ (ω̃1, ω̃2) weakly in E . (28)

Since F is positively homogeneous of degree μ , we have

m|z|μ � F(z) � M|z|μ ,

where
m = min

{z∈(R+)2:|z|=1}
F(z) and M = max

{z∈(R+)2:|z|=1}
F(z).

Combining (22) and (26), we deduce that there exists a constant C6 independent of ε
such that

εμ−p
∫
Ω

F(ω̃1ε , ω̃2ε)dx < C6.

Set z̃ε = (ω̃1ε , ω̃2ε) , according to F(z) � m|z|μ and m > 0, we have

εμ−p
∫
Ω
|z̃ε|μ dx � 1

m
C6. (29)



68 XIAOYAN CAO AND ZUODONG YANG

Since F ∈C1((R+)2,R+) is positively homogeneous of degree μ > 2∗ , ∂F
∂u (z) , ∂F

∂v (z)
is positively homogeneous of degree μ−1, and 1 < p < μ . Moreover, we have

∂F
∂u

(z) � M1|z|μ−1,

where

M1 = max
{z∈(R+)2:|z|=1}

∂F
∂u

(z).

By (29) and Hölder inequality, for any ϕ ,ψ ∈C∞
0 , we infer that

∣∣∣∫
Ω

∂F
∂u

(ω̃1ε , ω̃2ε)ϕdx
∣∣∣ � M1

∫
Ω
|z̃ε |μ−1|ϕ |dx

� M1‖ϕ‖∞|Ω| 1
μ
(∫

Ω
|z̃ε |μdx

) μ−1
μ

� M1m
1−μ
μ C

μ−1
μ

2 |Ω| 1
μ ‖ϕ‖∞ε

(μ−p)(1−μ)
μ .

Since 1 < p < μ , we have

εμ−p
∫
Ω

∂F
∂u

(ω̃1ε , ω̃2ε)ϕdx → 0 as ε → 0. (30)

Similarly, one has

εμ−p
∫
Ω

∂F
∂v

(ω̃1ε , ω̃2ε)ψdx → 0 as ε → 0. (31)

Multiplying the two differential equations in problem (21) by ϕ ,ψ , and integrating
over Ω , respectively, we obtain:∫

Ω
|∇ω1ε |p−2∇ω1ε∇ϕdx = εμ−p

∫
Ω

∂F
∂u

(ω̃1ε , ω̃2ε)ϕdx+
∫
Ω

gϕdx, (32)∫
Ω
|∇ω̃2ε |p−2∇ω̃2ε∇ψdx = εμ−p

∫
Ω

∂F
∂v

(ω̃1ε , ω̃2ε)ψdx+
∫
Ω

gψdx. (33)

Taking ε → 0 on both sides of the equalities in (32), (33) and tanking (28), (30), (31)
into account, we have∫

Ω
|∇ω̃1|p−2∇ω̃1∇ϕ =

∫
Ω

gϕdx and
∫
Ω
|∇ω̃2|p−2∇ω̃2∇ψ =

∫
Ω

gψdx,

which imply that ω̃1, ω̃2 are weakly solutions of problem (8) and (9), respectively.
Since ω̃1ε , ω̃2ε > 0 in Ω , we infer that ω̃1, ω̃2 � 0 in Ω . By the regularity theory (see
[17]), we know that ω̃1, ω̃2 are classical nonnegative solutions of problems (8) and (9),
respectively. The proof of Theorem 3 is completed. �
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