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NONLINEAR DEGENERATE DIFFUSION

PROBLEMS WITH A SINGULARITY

KAOUTHER AMMAR AND HICHAM REDWANE

(Communicated by M. Kirane)

Abstract. We consider a class of degenerate nonlinear diffusion problems with a singularity in a
finite value M > 0 of the unknown v . For such problems, we introduce a notion of renormalized
entropy solution which (under a particular “growth” assumptions on the diffusion term) can reach
the value M . We prove the existence of such a solution for the stationary equation with L1 data.

1. Introduction

We consider a class of diffusion problems, in the stationary case with a singularity
with respect to the unknown of the type:

Pb,g( f ,a)

{
b(v)−divA(v,∇g(v)) = f in Ω,

v = a on Γ := ∂Ω,

where Ω is a bounded open subset of R
N with regular boundary if N > 1, M > 0,

f ∈ L1(Ω) , a : Γ→ R is measurable with g(a) = 0 a.e. on Γ and b : (−∞,M] → R is
nondecreasing, continuous such that b(0) = 0.

The function g : (−∞,M) → R has a flat region [A1,A2] with A1 � 0 � A2 < M
on which it keeps a constant value and satisfies:⎧⎨

⎩
g is continuous, nondecreasing, locally Lipschitz on (−∞,M),

C1 and strictly increasing in [A2,M) with lim
r→M− g′(r) = +∞.

(1.1)

The vector field A : (−∞,M)×R
N → R

N is a Caratheodory function which satis-
fies the following conditions.

The growth condition: there exists p > 1 such that

|A(r,ξ )−A(r,0)|� C(
∣∣ Mr
M− r+

∣∣)|ξ |p−1 for all (r,ξ ) ∈ (−∞,M)×R
N a.e. on Ω,

(1.2)
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where C : R+ → R+ is increasing with C(0) = 0;

The weak coerciveness condition:

(A(r,ξ )−A(r,0)) ·ξ � λ (r)|ξ |p for all r ∈ (−∞,M), ξ ∈ R
N , (1.3)

where λ : (−∞,M) → (0,∞) satisfies

λk := inf
{r∈(−∞,M];−k�b(r)}

λ (r) > 0 for all k > 0;

The monotonicity condition:

(A(r,ξ )−A(s,η)) · (ξ −η) � (B(g(r))−B(g(s)))(1+ |ξ |p + |η |p) (1.4)

for all r,s ∈ R , ξ ,η ∈ R
N , and for some function B : R×R → R which is locally

Lipschitz continuous on (−∞,A1[∪[A2,M) .

Hypothesis (1.4) implies in particular that

(A(r,ξ )−A(r,η)) · (ξ −η) � 0 for all r ∈ (−∞,M)

and assumption (1.1) implies that a ∈ [A1,A2] a.e. on Γ and that A(a) ∈ L1(Γ) , where
A : R× ∂Ω→ R is defined by

A(s) := sup
{|A(r,0) ·�η(x)|, r ∈ [−s−,s+]

}
.

Here, by �η(x) , we denote the out unit normal to Ω in x ∈ ∂Ω .
We will investigate the question of existence in two cases:

(a) ∫ M

A2

(C(
Mr

M− r+ ))
p

p−1 d g(r) < ∞. (1.5)

(b) ∫ M

A2

(λ (r))
1

p−1 dg(r) = +∞, (1.6)

Assumption (1.5) implies in particular that lim
r→M−

g(r) < +∞ and we denote also by g

the continuous extension of g on (−∞,M] . In case (b), we construct by approximation
a solution v such that v < M a.e. in Ω but in case (a), for f ∈ L1(Ω) , the solution may
reach the value M and the behaviour on the subset {v = M} has to be specified.

As g is assumed to be constant in [A1,A2] , the problem is ill-posed even in the
variational setting and the weak entropy solution in the sense of [28], [29] is more
suitable in order to assure uniqueness results. Furthermore, it is well known ( at least
as far as a reader which is familiar with hyperbolic problems is concerned ) that the
condition on the boundary can not be assumed pointwise but has to be understood as an
entropy condition on the boundary ( see [31], [17], [6] and the bibliography therein).

Let us also emphasize that due the the luck of regularity of the data f and a which
are only assumed to be L1 , we can not prove the existence and uniqueness of a weak
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solution in the usual distributional sense. Our aim, is to establisch these results in the
framework of renormalised entropy solutions as defined in [4], [19] and [18].

For simplicity, we focus on the case where

lim
r→−∞(b+g)(r) = −∞. (1.7)

This forces the renormalized entropy solution to avoid the value −∞ and we do not have
to handle its behaviour on this set. The reader interested in the case where lim

r→−∞(b+

g)(r) = −∞ in referred to [5].
More results on similar problems can be found among other manuscripts in [14],

[15] and the bibliography therein. For more results on degenerate diffusion problems,
the reader is referred to [17], [32], [33], [2] and [8].

In a forthcoming paper, the second author studies the corresponding evolution
problem and proves similar existence and partial uniqueness results.

The outline of the paper is as follows: In the following section, after a short intro-
duction of our notations, we give our concept of renormalized entropy solution with a
few comments and we present the main results. Finally, in Section 3, we establish the
existence result in the two cases (a) and (b).

2. Notations, definitions and main results

We denote by M (Ω) the set of Radon measures on Ω and by M(Γ) the set of
measurable functions on Γ with values in R . For any measurable function v :Ω→ R ,
for any s ∈ R , we denote by χ{v<s} (resp χ{v>s} , χ{v=s} ) the characteristic function of
the set {x ∈Ω; v(x) < s} (resp, {x ∈Ω; v(x) > s} , {x ∈Ω; v(x) = s} ). For all l,β > 0
such that M−β > 0, we define Tβ ,l : R → R by Tβ ,l(r) = (M−β )∧(− l∨ r

)
and for

n ∈ N large enough, we define

hn : r �→ hn(r) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for r � −n−1 or M− 1
n > r,

r+n+1 for −n−1 < r � −n,

1 for −n < r � M− 2
n ,

−n(r+M− 1
n ) for M− 2

n < r � M− 1
n .

The operators sign+ and H0 are defined as follows: sign+(r) = 0 if r < 0, = [0,1] if
r = 0 and = 1 if r > 0 and

H0(s) :=

{
1 if s > 0,

0 if s � 0.

Moreover, for r,k ∈R , we set r∨k = max(r,k) , r∧k = min(r,k) . By T 1,T 1,2 and T 2 ,
we denote the truncation functions defined successively by

T 1(r) = r∧A1, T 1,2(r) = A1∨ r∧A2 and T 2(r) = r∨A2



88 KAOUTHER AMMAR AND HICHAM REDWANE

and for k, l ∈ R , for a.e. x ∈ Γ , we define

ω+(x,k, l) := max
k�r,s�l∨k

|(A(r,0)−A(s,0)) ·�η(x)|,

ω−(x,k, l) := max
l∧k�r,s�k

|(A(r,0)−A(s,0)) ·�η(x)|.

3. Existence results in case (a )

Throughout this section, we suppose that conditions (1.2)-(1.5) and (1.7) are
satisfied.

DEFINITION 3.1. Let f ∈ L1(Ω) and a : Γ → R be measurable with g(a) = 0
a.e. on Γ . A measurable function v : Ω→ (−∞,M] is a renormalized entropy solution
of the problem Pb,g( f ,a) if

b(v) ∈ L1(Ω),

g(v)χ{−k<v<M−β} ∈W 1,p
0 (Ω), ∀k,β > 0 with β < M, (3.1)

A(v,Dg(v))χ{−k<v<M} ∈ (Lp′(Ω))N , ∀k > 0, (3.2)

and there exist two families (μβ )β and (νl)l of bounded measures on Ω such that

μβ ∈ (W−1,p′(Ω)+L1(Ω)+L1(Γ))∩M (Ω), (3.3)

μβ ({v � M−β}) = 0, νl({v � l}) = 0,

lim
β→0

∫
Ω
ξ dμβ (v) = 0 for all ξ ∈ D(RN) with supp(∇ξ ) ⊂ {v < M},

lim
l→−∞

∫
Ω
ξ dνl(v) = 0 for all ξ ∈ D(RN)

and the following inequalities are satisfied. The first one: for all β ,k ∈R with M−β >
k , for all ξ ∈W 1,p(Ω)∩L∞(Ω) such that ξ � 0 and (g(a∧ (M−β ))− g(k))+ξ = 0
a.e. on Γ ,

−
∫
Ω

b(v∧ (M−β ))χ{v∧(M−β )>k}ξ +
∫
Ω
χ{v∧(M−β )>k} fξ

−
∫
Ω
χ{v∧(M−β )>k}(A(v∧ (M−β ),∇g(v∧ (M−β )))−A(k,0)) ·∇ξ

� −
∫
Γ
ω+(x,k,a∧ (M−β ))ξ +

∫
Ω
ξ dμβ (v) (3.4)

and the second one: and for all l � k < M ∈ R , for all ξ ∈W 1,p(Ω)∩L∞(Ω) such that
ξ � 0 and (g(k)−g(a∨ l))+ξ = 0 a.e. on Γ ,

∫
Ω

b(v∨ l)χ{k>v∨l}ξ +
∫
Ω
χ{k>v∨l}(A(v∨ l,∇g(v∨ l))−A(k,0)) ·∇ξ

−
∫
Ω
χ{k>v∨l} fξ � −

∫
Γ
ω−(x,k,a∨ l)ξ +

∫
Ω
ξ dνl(v). (3.5)
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REMARK 3.2. We emphasize the following four remarks.

1. In (3.2), we denote by χ{<−k<v<M}A(v,Dg(v)) (in (3.2)), the measurable field on Ω
satisfying

χ{|v|<l}χ{−k<v<M}A(v,Dg(v)) = ∇g(Tlv) for all l > 0 with l < min(M,k).

It makes sense thanks to condition (3.1) on v .

2. As g is strictly increasing on [A2,M) , it follows from the definition that the function
TA2+Lv−TA2v ∈W 1,p

0 (Ω) for all L > 0 with A2 +L < M .

3. Suppose that g is strictly increasing and assume (1.5). It follows in particular that
Tβ ,lv ∈W 1,p

0 (Ω) for all β , l > 0 with M−β > 0. Taking ξ = ϕh(v) as a test function
in (3.4) with ϕ ∈D(Ω) and h∈W 1,∞(R) such that supp(h)⊂]−∞,M[ , letting β → 0,
we find ∫

Ω
χ{k<v<M}(b(v)+ (A(v,∇g(v))−A(k,0)) ·∇(h(v)ϕ)− fϕ) � 0. (3.6)

Letting k →−∞ , we find∫
Ω
χ{v<M}(b(v)+ (A(v,∇g(v))−A(k,0)) ·∇(h(v)ϕ)− fϕ) � 0.

Similarly, taking ξ = h(v)ϕ as test function in (3.5), letting l → −∞ , for all k < M ,
we find

−
∫
Ω
χ{k>v}(b(v)ϕh(v)+ (A(v,∇g(v))−A(k,0)) ·∇(h(v)ϕ)− fϕ) � 0. (3.7)

Combining (3.6) and (3.7), we get

−
∫
Ω
χ{M>v}(b(v)ϕh(v)+ (A(v,∇g(v))−A(M,0)) ·∇(h(v)ϕ)− fϕ) = 0 (3.8)

for all ϕ ∈ D(ϕ)(Ω) h ∈W 1,∞(Ω) such that supp(h)⊂ (−∞,M) .
4. Now, taking ξ = ϕ(1−hn(v+)) ∈W 1,p(Ω) , with ϕ ∈ D+(Ω) and ∇ϕ = 0 a.e. on
v = M as test function in (3.8), we get

−
∫
Ω
χ{M�v}(b(v)ϕh(v)+ (A(v,∇g(v))−A(M,0)) ·∇(h(v)ϕ)− fϕ)

= −
∫
{v=M}

b(M)ϕh(v)+
∫
{v=M}

fϕh(v).

Letting n → +∞ , we find the energie estimate∫
{v=M}

fϕ−b(M)
∫
{v=M}

ϕ = lim
n→+∞

∫
{M 2

n
�v�M− 1

n }
A(v,∇g(v)) ·∇vϕ .

Similarly, taking ξ := ϕ(1− hn(−v−)) with ϕ ∈ D+(Ω) as test function in (3.8),
letting n → +∞ , we find

lim
n→+∞

∫
{−n−1�v�−n}

A(v,∇g(v)) ·∇ϕ = 0.

Here, we denote r+ = r∨0 and r− = r∧0.
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THEOREM 3.3. For all f ∈ L1(Ω) and a : Γ → R measurable with g(a) = 0
a.e. on Γ , there exists v : Ω → R such that v is a renormalized entropy solution of
Pb,g( f ,a) .

Proceeding as in [5], we prove the following comparison principle.

THEOREM 3.4. Let ai : Γ → R with g(ai) = 0 a.e. on Γ and fi ∈ L1(Ω) , i =
1,2 . Let v1 be a renormalized entropy solution of the problem Pb,g(a1, f1) , v2 be a
renormalized entropy solution of the problem Pb,g(a2, f2) . Then, for all β , l > 0 with
β < M, there exists κ ∈ L∞(Ω) with κ ∈ sign+(−l∨v1∧(M−β )−(−l∨v2∧(M−β ))
a.e. in Ω such that, for any ξ ∈ D(RN) ,∫

Ω
(b(Tβ ,lv1)−b(Tβ ,lv2))+ξ

+
∫
Ω
(A(Tβ ,lv1,∇g(Tβ ,lv1))−A(Tβ ,lv2,∇g(Tβ ,lv2))) ·∇ξ

�
∫
Ω
κ( f1 − f2)ξ −2

∫
Ω
ξ d(μβ (v1)+ν−l(v2))

+
∫
Γ
ω−(x,Tβ ,la1,Tβ ,la2)ξ . (3.9)

As a consequence, we deduce the following ”partial uniqueness” result.

THEOREM 3.5. Let f ∈ L1(Ω) and a : Γ → R be piecewise continuous with
g(a) = 0 a.e. on Γ . Let vi , i = 1,2 be a renormalized entropy solutions of Pb,g( f ,a) .
Then, b(v1) = b(v2) a.e. in Ω .

The proofs of Theorem 3.4 and Theorem 3.5 follow the same lines as those in [5]
and are omitted here for convenience.

3.1. Proof of the existence result

For ε > 0 with M− ε > A2 , let gε : R → R and Aε : R×R
N → R

N be defined
by:

gε(r) =

{
g(r) if r � M− ε,
g(M− ε)+g′(M− ε)(r−M + ε) if r � M− ε,

and

Aε(r,ξ ) =

{
A(r,ξ ) if r � M− ε,
A(M− ε,ξ ) if r � M− ε.

The proof consists in two steps: in a first step, we consider the problem

Pbα ,ε( f ,a)

{
bα(v)− div Aε(v,∇gε(v)) = f in Ω,

gε(v) = gε(a) on Γ,

with f ∈ L∞(Ω) , a ∈ L∞(Γ) g(a) = 0 and with bα(r) = b(r) +αr for r < M and
bα(r) = b(M)+αr for α � M , α > 0. The operator v →− div Aε(vε ,∇gε(v)) being
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coercive, existence and uniqueness results for this problem are already proved in [5].
The definition of the weak entropy solution in this case is given in Proposition 3.6
below. Going to limit with ε → 0, we prove the existence of a renormalized solution
of the problem

Pbα ,g( f ,a)

⎧⎨
⎩

bα(v)− div A(v,∇g(v)) = f in Ω

g(v) = g(a) on Γ,

In the second step, proceeding by approximation, we pass to the limit with α → 0 and
solve the problem Pb,g( f ,a) in the L1 -setting.

3.1.1. First step

We start with the following existence result proved in [4].

PROPOSITION 3.6. Let f ∈ L∞(Ω) and a ∈ L∞(Γ) such that g(a) = 0 a.e. on
Γ . Then, there exists a unique vε ∈ L∞(Ω) weak entropy solution of Pbα ,gε ( f ,a) i.e.

gε(vε) ∈W 1,p
0 (Ω) and vε satisfies the following entropy inequalities. The first one: for

all k ∈ R , for all ξ ∈ D(RN) such that ξ � 0 and (−g(k))+ξ = 0 a.e. on Γ ,

−
∫
Γ
ω+(x,k,a)ξ +

∫
Ω

bα(vε )χ{vε>k}ξ

�
∫
Ω
χ{vε>k}( fξ − (A(vε ,∇gε(vε))−A(k,0)) ·∇ξ ), (3.10)

and the second one: for all k∈R , for all ξ ∈D(RN) such that ξ � 0 and (g(k))+ξ = 0
a.e. on Γ ,

−
∫
Γ
ω−(x,k,a)ξ −

∫
Ω

bα(vε )χ{k>vε}ξ

� −
∫
Ω
χ{k>vε}( fξ − (A(vε ,∇gε(vε))−A(k,0)) ·∇ξ ). (3.11)

The weak entropy solution is in particular a weak solution of the problem bα(v)−
div A(v,∇g(v)) = f i.e.∫

Ω
bα(v)ξ +

∫
Ω

A(v,∇gε(v)) ·∇ξ =
∫
Ω

fξ (3.12)

holds true for all ξ ∈W 1,p
0 (Ω) .

With a particular choice of test functions in (3.12) and thanks to the strict mono-
tonicity of bα , one can prove that

(vε)ε is bounded in L∞(Ω), (3.13)

and for all l,β > 0 with M−β > 0,

(|∇gε(Tβ ,lvε)|)ε is bounded in Lp(Ω).
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Following classical arguments, extracting a subsequence if necessary, we can prove that
as ε → 0,

gε(vε) converges to some measurable function w a.e. in Ω, (3.14)

gε(Tβ ,lvε) converges to Tβ ,lw ∈W 1,p
0 (Ω)

{
weakly in W 1,p

0 (Ω),
strongly in Lp(Ω),

(3.15)

and by the growth condition (1.2) and (3.13),

Ãε(vε ,∇gε(Tβ ,lvε)) converges weakly in Lp′(Ω)N to some χβ ,l ∈ Lp′(Ω)N (3.16)

for (r,ξ ) ∈ R×R
N , Ãε(r,ξ ) = Aε(r,ξ )−Aε(r,0).

Now, we need to prove some strong compactness on vε in L1
Loc . We propose here

to use the L∞ uniform bound on (vε) in order to deduce the weak-∗ convergence of
(vε) to a function v . Then, going to the limit in the approximate entropy inequalities,
we prove that v is a renormalized entropy process solution of Pbα ,g(a, f ) (see Definition
3.9 below). Finally using a “strong” principle of uniqueness, we show that v is the
entropy solution of Pbα ,g(a, f ) and that the convergence holds strongly in L1(Ω) .

DEFINITION 3.7. Let Ω be an open subset of R
N (N � 1), (un) be a bounded

sequence of L∞(Ω) and u ∈ L∞(Ω× (0,1)) . The sequence (un) converges towards u
in the “nonlinear weak-∗ sense” if∫

Ω
S(un(x))ψ(x)dx →

∫ 1

0

∫
Ω

S(u(x,μ))ψ(x)dxdμ as n → ∞,

for all ψ ∈ L1(Ω) , for all S ∈ C (R,R) .

LEMMA 3.8. Let Ω be an open subset of R
N (N � 1 ) and (un) be a bounded

sequence of L∞(Ω) . Then (un) admits a subsequence converging in the nonlinear
weak-∗ sense.

For the proof of the above lemma, we refer to [26, 20].
According to Lemma 3.8, there exists v ∈ L∞((0,1)×Ω) and a subsequence of

(vε) still denoted by (vε ) such that

(vε) converges to v in the nonlinear weak−∗ sense. (3.17)

We will prove that v is a renormalized entropy process solution of Pbα ,g(a, f ) in the
following sense:

DEFINITION 3.9. A function u : (0,1)×Ω→ (−∞,M] is a renormalized entropy
process solution of Pbα ,g(a, f ) if u ∈ L∞((0,1)×Ω) and there exists a measurable
function w : Ω→ R and a family (μβ )β of bounded measures on Ω such that

w(x) = g(u(α,x)) a.e. in Ω,
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w∧M−β ∈W 1,p
0 (Ω), for all β > 0,

A(u,Dw)χ{−k<u<M} ∈ (Lp′(Ω))N ,∀k > 0,

μβ ∈ (W−1,p′(Ω)+L1(Ω)+L1(Γ))∩M (Ω),

μβ ({v � M−β}) = 0, (3.18)

lim
β→0

∫
Ω
ξ dμβ (v) = 0 for all ξ ∈ D(RN) with supp(∇ξ ) ⊂ {v < M}

and the following inequalities are satisfied. The first one: for all β ,k ∈R with M−β >
k , for all ξ ∈W 1,p(Ω)∩L∞(Ω) such that ξ � 0 and (g(u∧M−β )−g(k))+ξ = 0 a.e.
on Γ ,

∫ 1

0

∫
Ω

bα(u∧ (M−β ))χ{u∧(M−β )>k}ξ dμ−
∫ 1

0

∫
Ω
χ{u∧(M−β )>k} fξ

+
∫ 1

0

∫
Ω
(A(u∧ (M−β ),∇(w∧g(M−β )))−A(k,0)) ·∇ξ )dμ

�
∫
Γ
ω+(x,k,a∧ (M−β ))ξ −

∫
Ω
ξ dμβ (u)

and the second one: for all l � k ∈ R , for all ξ ∈W 1,p(Ω)∩L∞(Ω) such that ξ � 0
and (g(k)−g(a∨ l))+ξ = 0 a.e. on Γ ,

−
∫ 1

0

∫
Ω

bα(u)χ{k>u}ξ dμ−
∫ 1

0

∫
Ω
χ{k>u}(A(u,∇w)−A(k,0)) ·∇ξ )dμ

+
∫ 1

0

∫
Ω
χ{k>u} fξ �

∫
Γ
ω−(x,k,a)ξ . (3.19)

REMARK 3.10. Inequality (3.19) is well defined. Indeed

χ{k>u}A(u,∇w) = χ{k>u}A(u,∇(w∧g(k))) ∈ Lp′(Ω)N .

Taking into account (3.14), (3.15), and as (gε)ε converges uniformly on compact
subsets to g , it follows that

gε(vε) converges to g(v) a.e. in Ω, (3.20)

gε(Tβ ,l(vε)))ε converges weakly in W 1,p(Ω) to g(Tβ ,lv)

and that g(v) is independent of μ . Moreover,

(vε χ{v∈R\[A1,A2]}) → vχ{v∈R\[A1,A2]} ∈ L∞(Ω). (3.21)

Indeed, g−1 is locally Lipschitz continuous in the open segment g(]A2,M[) . Moreover,
as g(vε) → g(v) a.e. in Ω , for a.e. x ∈ Ω , given a fixed δ > 0, there exists ε0 > 0
small enough such that |g(vε)(x)−g(v)(x)| � δ for all ε � ε0 . Hence,

|g−1(g(vε(x)))−g−1(g(v(x))| � C(δ ),
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where C(δ ) > 0 depends on δ . Thus,

(|vε − v|χ{v∈R\[A1,A2]})(x) = (|g−1(g(vε))−g−1(g(v))|χ{v∈R\[A1,A2]})(x)

� c(δ )(|g(vε)−g(v)|χ{v∈R\[A1,A2]})(x)

� c(δ )(|g(vε)−gε(vε)|(x)
+ |gε(vε)−g(v)|(x))χ{v∈R\[A1,A2]}(x)

→ 0 with ε → 0.

Next, we prove that v is less or equal to M : We choose gε(T2Mvε)+−gε(TMv)+ as test
function in (3.12) to get

∫
Ω

A(vε ,gε(vε)) ·∇(gε(T2Mvε)+−gε(TMv)+)

� (gε(T2Mvε )+−gε(TMv)+) ‖ f ‖L1(Ω) .

By (1.3) and the divergence Theorem, this implies that

λ (2M)|∇(g(M− ε)+g′(M− ε)(vε −M + ε))|p � Mg′(M− ε) ‖ f ‖L1(Ω) .

Then, in view of (3.21) and by Poincaré’s inequality together with the fact that g′(M−
ε) → +∞ as ε tends to 0, we deduce that

(T2Mv)+ − (TA2v)
+ = 0, a.e. in Ω,

that is
v � M a.e. in Ω. (3.22)

In order to pass to the limit in (3.10) and (3.11), we have to identify χβ ,l in (3.16), to
define the measure μβ and to verify the properties (3.3) and (3.18).

We use the argument of Minty Browder in order to prove that

∫
Ω

Ã(vε ,∇gε(Tβ ,lvε)) ·∇ξ →
∫ 1

0

(∫
Ω

Ã(v,∇g(Tβ ,lv)) ·∇ξ
)

dμ .

Therefore, we need the following convergence result:

lim
L→0

lim
ε→0

∫
Ω

Ã(vε ,∇gε(Tβ ,lvε)) ·∇TL(gε(Tβ ,lvε)−g(Tβ ,lv)) = 0. (3.23)

In order to prove (3.23), we use the following decomposition of the above integral:∫
Ω

Ã(vε ,∇gε(Tβ ,lvε)) ·∇TL(gε(Tβ ,lvε)−g(Tβ ,lv))

=
∫
{−l<vε<M−β}

Ã(vε ,∇gε(vε)) ·∇TL(gε(vε )−g(Tβ ,lv))

=
∫
Ω

Ã(vε ,∇gε(vε )) ·∇TL(gε(vε)−g(Tβ ,lv))
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−
∫
{−l�vε}∪{M−β�vε}

Ã(vε ,∇gε(vε)) ·∇TL(gε(vε )−g(Tβ ,lv))

:= T1 +T2.

As vε is also a weak solution of Pbα ,ε(a, f ) ,

lim
L→0

lim
ε→0

T1

= lim
L→0

lim
ε→0

∫
Ω

Ã(vε ,∇gε(vε)) ·∇TL(gε(vε )−g(Tβ ,lv))

= − lim
L→0

lim
ε→0

[∫
Ω

bα(vε)TL(gε(vε )−g(Tβ ,lv))−
∫
Ω

f TL(gε(vε)−g(Tβ ,lv))
]

−
∫
Ω

A(vε ,0) ·∇TL(gε(vε)−g(Tβ ,lv)). (3.24)

It is clear that the first and second term in the R. H. S of inequality (3.24) converge to
0. In view of (3.22),∫

Ω
A(vε ,0) ·∇TL(gε(vε)−g(Tβ ,lv))

=
∫
{v=M}

A(vε ,0) ·∇TL(gε(vε )−g(M−β ))

+
∫
{v∈]A1,A2[}

A(vε ,0) ·∇TLgε(vε)

+
∫
{v∈R\[A1,A2]}

A(vε ,0) ·∇TL(gε(vε )−g(Tβ ,lv))

=
∫
{v=M}

A(vε ,0) ·∇TL(gε(vε )−g(M−β ))

+
∫
{v∈]A1,A2[,vε∈]A2,M[}

A(vε ,0) ·∇TLgε(vε)

+
∫
{v∈]A1,A2[,vε∈(−∞,A1[}

A(vε ,0) ·∇TLgε(vε )χ{|gε(vε )|�L}

+
∫
{R\[A1,A2]}

A(vε ,0) ·∇TL(gε(vε )−g(Tβ ,lv))

= I1 +I2 +I3 +I4.

Taking into account (3.21) it is not difficult to pass to the limit with ε → 0 and then
with L → 0 in I4 to find

lim
L→0

lim
ε→0

I4 = 0.

Next, we prove that (A(vε ,0)χ{v∈]A1,A2[,vε∈]A2,M[}χ{|gε(vε )−g(Tβ ,l v)|�L})ε converges a.e.

in Ω and then strongly in Lp′(Ω)N to A(A2,0)χ{|g(v)−g(Tβ ,lv)|�L} .
Indeed, a simple computation shows that gε(vε )χ{vε∈]A2,M[} ∈ g(]A2,M[) for ε

small enough. Moreover, as the restriction of g to [A2,M) is continuously invertible,
taking into account (3.20) and the fact that gε(r) → g(r) pointwise in R , one has

|vε −A2| = |g−1(g(vε))−g−1(g(v))|
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� |g−1(gε(vε ))−g−1(g(v))|
+ |g−1(g(vε))−g−1(gε(vε))| → 0 a.e. in Ω.

Here, we denote by g−1 the inverse of the restriction of g to [A2,M) . Using similar ar-
guments, we prove that (A(vε ,0)χ{v∈]A1,A2[,vε∈(−∞,A1[}χ{|gε(vε )−g(Tβ ,l v)|�L})ε converges

strongly in Lp′(Ω)N to A(A1,0)χ{|g(v)−g(Tβ ,lv)|�L} . This implies that

lim
L→0

lim
ε→0

I2 = lim
L→0

lim
ε→0

I3 = 0.

Now, we prove that
lim
L→0

lim
ε→0

I1 = 0.

Indeed,

I1 =
∫
{v=M}

A(vε ,0) ·∇TL(gε(vε)−g(M−β ))

=
∫
{v=M,vε>M−ε}

A(vε ,0) ·∇TL(gε(vε)−g(M−β ))

+
∫
{v=M,vε�M−ε}

A(vε ,0) ·∇TL(g(vε)−g(M−β )).

As lim
r→M

g(r) = +∞ , for β > 0 fixed, there exists 0 < α < β such that g(r)− g(M−
β ) > L for all M−α � r < M . This means that the first term in the R.H.S of the above
equality converges to 0 with ε . The second term can be estimated as follows:

∫
{v=M,vε�M−ε}

A(vε ,0) ·∇TL(g(vε)−g(M−β ))

�
∫
{v=M,vε�M−ε}

A(TL+g(M−β )vε ,0) ·∇TL+g(M−β ).g(vε)

And by (3.21) , it is clear that this term converges also to 0 with ε → 0. Next, we claim
that

lim
L→0

limsup
ε→0

T2 � 0.

Indeed,

lim
L→0

limsup
ε→0

T2 = lim
L→0

limsup
ε→0

[
−

∫
{g(Tβ ,l v)+L>gε(vε )�gε(M−β )}

Ã(vε ,∇gε(vε)) ·∇gε(vε )

−
∫
{g(Tβ ,l v)−L�gε (vε )<gε(−l)}

Ã(vε ,∇gε(vε)) ·∇gε(vε)
]

+ lim
L→0

lim
ε→0

∫
{vε<−l or M−β<vε and |gε (vε )−g(v)|<L}

Ã(vε ,∇gε (vε)) ·∇g(Tβ ,lv)

= lim
L→0

limsup
ε→0

[
−

∫
Ω

Ã(vε ,∇gε(vε )) ·∇(TL+g(M−β )gε(vε)−Tg(M−β )gε(vε ))
+
]
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+ lim
L→0

limsup
ε→0

[
−

∫
Ω

Ã(vε ,∇gε (vε)) ·∇(T−g(−l)+Lgε(vε)−T−g(−l)gε(vε))
−
]

+ lim
L→0

lim
ε→0

∫
{vε<−l or M−β<vε and |gε (vε )−g(v)|<L}

Ã(vε ,∇gε (vε)) ·∇g(Tβ ,lv)

:= L 1
2 +L 2

2 +L 3
2 .

As vε is a weak solution of Pbα ,ε (a, f ) ,

L 1
2 = lim

L→0
limsup
ε→0

[
−

∫
Ω

bα(vε)(TL+g(M−β )gε(vε)−Tg(M−β )gε(vε))
+

+
∫
Ω

f (TL+g(M−β )gε(vε )−Tg(M−β )gε(vε ))
+
]

−
∫
Ω

A(vε ,0) ·∇(TL+g(M−β )gε(vε)−Tg(M−β )gε(vε))
+

= lim
L→0

limsup
ε→0

[
−

∫
Ω

bα(vε)(TL+g(M−β )gε(vε)−Tg(M−β )gε(vε))
+

+
∫
Ω

f (TL+g(M−β )gε(vε )−Tg(M−β )gε(vε ))
+
]

−
∫
Ω

div
(∫ (TL+g(M−β)gε (T

2vε )−Tg(M−β)gε (T
2vε ))+

A2

A(g−1
ε (r),0)dr

)
= 0,

where g−1
ε is the continuous inverse of (gε)/]A2,+∞) . The term L 2

2 can be estimated
in the same way. Now, for β > ε > 0 and L > 0 small enough, we denote γ(β , l) :=
g−1(g(M−β )+L) and σ(β , l) := g−1(g(−l)−L) = g−1

ε (gε(−l)−L) . Then

L 3
2 = lim

L→0
limsup
ε→0

∫
Ω
(Ã(vε ,∇Tγ(β ,l),σ(β ,l)gε(vε ))− Ã(vε ,∇gε(Tβ ,lvε))) ·∇g(Tβ ,lv)

=
∫
Ω
(−χγ(β ,l),σ(β ,l) + χβ ,l) ·∇g(Tβ ,lv)

= 0.

Indeed, for all β ,L > 0,

Ã(vε ,∇Tβ ,Lgε(vε)) = Ã(vε ,∇Tγ(β ,l),σ(β ,l)gε(vε ))χ{g(−l)<gε(vε )|<g(M−β )}
+ Ã(vε ,0)χ{gε(vε )�g(M−β ) or gε (vε )�g(−l)}.

Therefore, going to limit with ε → 0, by (3.16), (3.17) and (3.20), it follows that

χβ ,l = χγ(β ,l),σ(β ,l)χ{g(−l)<g(v)<g(M−β )}+ Ã(v,0)χ{g(v)�g(M−β ) or g(v)�g(−l)},

a.e. on {g(v) �= g(−l)} ∩ {g(v) �= g(M − β )}. As ∇g(v) = 0 on {g(v) �= g(−l)}∪
{g(v) �= g(M−β )} , this yields∫

Ω
(−χγ(β ,l),σ(β ,l) + χβ ,l) ·∇g(Tβ ,lv) = 0.
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Combining all the estimates, we get (3.23) and by the standard pseudo-monotonicity
argument it follows that

∫
Ω
χk ·∇ξ =

∫ 1

0

∫
Ω

Ã(v,∇Tβ ,lg(v)) ·∇ξ for all ξ ∈ D(Ω). (3.25)

Indeed, for ξ ∈ D(Ω) , ξ � 0, α ∈ R ,

α
∫
Ω
χk∇ξ

= lim
ε→0

∫
Ω
αÃ(vε ,∇Tβ ,lgε(vε )) ·∇ξ

� lim
L→0

limsup
ε→0

∫
Ω

Ã(vε ,∇Tβ ,lgε(vε)) ·∇(TL(gε(Tβ ,lvε)−Tβ ,lg(v))+αξ )

= lim
L→0

limsup
ε→0

∫
{|gε (Tβ ,l vε )−g(Tβ ,l v)|<L}

Ã(vε ,∇Tβ ,lgε(vε))

·∇(gε(Tβ ,lvε)−Tβ ,lg(v)+αξ )

+ lim
L→0

limsup
ε→0

∫
{|gε (Tβ ,l vε )−g(Tβ ,l v)|�L}

Ã(vε ,∇Tβ ,lgε(vε)) ·∇(αξ )

= P1 +P2.

By assumption (1.4),

P1 � lim
L→0

limsup
ε→0

∫
{|gε (Tβ ,l vε )−g(Tβ ,l v)|<L}

Ã(vε ,∇(g(Tβ ,lv)−αζ ))

·∇(gε(Tβ ,lvε)−Tβ ,lg(v)+αζ )

= lim
L→0

limsup
ε→0

∫
{|gε (Tβ ,l vε )−g(Tβ ,l v)|<L}

Ã(vε ,∇(g(Tβ ,lv)−αζ )) ·∇(αζ )

+ lim
L→0

limsup
ε→0

∫
{v∈]A2 ,M[,|gε (Tβ ,l vε )−g(Tβ ,l v)|<L}

Ã(vε ,∇(g(Tβ ,lv)−αζ ))

·∇(gε(Tβ ,lvε)−Tβ ,lg(v))

+ lim
L→0

limsup
ε→0

∫
{v∈(−∞,A1[,|gε (Tβ ,l vε )−g(Tβ ,l v)|<L}

Ã(vε ,∇(g(Tβ ,lv)−αζ )) ·∇(gε(Tβ ,lvε))

+ lim
L→0

limsup
ε→0

∫
{v∈]A1 ,A2[,|gε (Tβ ,l vε )−g(Tβ ,l v)|<L}

Ã(vε ,∇(−αζ )) ·∇(gε (Tβ ,lvε))

= P1
1 +P2

1 +P3
1 +P4

1 .

It is not difficult to pass to the limit in the first term in the R.H.S of the above inequality
to find

P1
1 =

∫ 1

0
(
∫
Ω

Ã(v,∇(g(Tβ ,lv)−αζ )) ·∇(αζ ))dμ .
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The term P2
1 can be estimated in the same way and it is easy to see that P3

1 = P4
1 = 0.

Now, in order to estimate P2 , we use the growth condition (1.2),

P2 � lim
L→0

limsup
ε→0

(∫
Ω
|A(vε ,∇(g(Tβ ,lv)−αζ )|p′

) 1
p′

(∫
{|gε (Tβ ,l vε )−g(Tβ ,l v)|�L}

|∇(αζ )|p
) 1

p = 0.

Hence,

α
∫
Ω
χk∇ζ �

∫ 1

0
(
∫
Ω

Ã(v,∇(g(Tβ ,lv)−αζ )) ·∇(αζ ))dμ .

Dividing by α > 0 (resp. α < 0), passing to the limit with α → 0, we obtain (3.25).

DEFINITION OF THE MEASURES μβ . Let us first verify that vε satisfies (3.4) and
(3.5). For all k ∈ IR , for all β > 0 with M−β � k , for any ξ ∈ D(RN) , ξ � 0 with
(−g(k))+ξ = 0 on Γ ,
∫
Ω
χ{vε∧(M−β )>k}

{
−bα(vε ∧ (M−β ))ξ + fξ

− (A(vε ∧ (M−β ),∇gε(vε ∧ (M−β )))−A(k,0)) ·∇ξ
}

+
∫
Γ
ω+(x,k,a∧ (M−β ))ξ

=
∫
Ω
χ{vε>k}

{− (bα(vε)− f )ξ − (A(vε ,∇gε (vε))−A(k,0)) ·∇ξ}
+

∫
Γ
ω+(x,k,a)ξ

+
∫
Ω
χ{vε>(M−β )}

{
(bα(vε)−bα(M−β ))ξ

+(A(vε ,∇gε (vε))−A(M−β ,0)) ·∇ξ}
−

∫
Γ
ω+(x,M−β ,a)ξ

+
∫
Γ
ω+(x,k,a∧ (M−β ))−

∫
Γ
ω+(x,k,a)ξ +

∫
Γ
ω+(x,a,M−β )ξ

�
[∫

Ω
χ{vε>M−β}{(bα(vε)−bα(M−β ))ξ +(A(vε ,∇gε(vε))−A(M−β ,0)) ·∇ξ}

−
∫
Γ
ω+(x,M−β ,a)ξ

]
=:< μβ (vε),ξ > . (3.26)

We split the right hand side of inequality (3.26) into

< μβ (vε),ξ >

=
[∫

Ω
χ{vε>M−β}{(bα(vε)− f )ξ +(A(vε ,∇gε(vε))−A(M−β ,0)) ·∇ξ}
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−
∫
Γ
ω+(x,M−β ,a)ξ

]
+

∫
Ω
χ{vε>M−β} fξ −

∫
Ω
χ{vε>(M−β )}bα(M−β )ξ

:=
∫
Ω
ξ dμ̃β +

∫
Ω
χ{vε>(M−β )} fξ −

∫
Ω
χ{vε>M−β}bα(M−β )ξ .

Thus, μβ (vε) is the sum of the negative measure μ̃ε and the operator

ξ �→
∫
Ω
χ{vε>M−β} fξ −

∫
Ω
χ{vε>M−β}bα(M−β )ξ .

In particular, for any ξ ∈ D(RN) , 0 � ξ � 1,∫
Ω
ξd(μβ (vε))+ �

∫
Ω
χ{vε>M−β} f +ξ +

∫
Ω
χ{vε>M−β}bα(M−β )ξ

and

∫
Ω
ξd(μβ (vε))−

�
∫
Ω
χ{vε>M−β}(| f |+ |bα(vε)−bα(M−β )|)ξ +

∫
Γ
ω+(x,M−β ,a)ξ .

It follows that (μβ (vε))ε is uniformly bounded with respect to ε . Therefore, we
can extract a subsequence still denoted by (μβ (vε ))β which is convergent with respect
to the weak−∗ topology on C(Ω) to some Radon measure μβ (v) . We are going to
prove that for ξ ∈ D(RN) with ∇ξ = 0 on {v = M} ,

lim
β→0

< μβ (v),ξ >= 0. (3.27)

Indeed, for M − β > A2 , ω+(x,M − β ,a) = 0 a.e. on Γ because a < A2 and as
lim
r→M

bα(r) = bα(M) < +∞ and bα(v) ∈ L∞((0,1)×Ω) ,

lim
β→0

lim
ε→0

∫
Ω
(bα(vε)−bα(M−β ))+ξ = lim

β→0

∫ 1

0
(
∫
Ω
(bα(v)−bα(M−β ))+ξ )dμ

= lim
β→0

∫
Ω
(bα(v)−bα(M−β ))+ξ

=
∫
Ω
(bα(M)−bα(M)) = 0.

Moreover, for all ε > 0,

lim
β→0

lim
ε→0

∫
Ω
χ{vε>M−β}(A(vε ,∇gε (vε))−A(M−β ,0)) ·∇ξ

= lim
β→0

lim
ε→0

∫
Ω
χ{vε>M−β}Ã(vε ,∇gε (vε)) ·∇ξ
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+ lim
β→0

lim
ε→0

∫
Ω
χ{vε>M−β}(A(vε ,0)−A(M−β ,0)) ·∇ξ

= T1 +T2.

In order to estimate T1 , we use hypothesis (1.5). Define

wε :=
∫ vε∨A2

A2

(C(
Mr

M− r+ ))
p

p−1 dgε(r).

Then, by (3.21),

wε → w :=
∫ v∨A2

A2

(C(
Mr

M− r+ ))
p

p−1 dg(r) on {v < M}. (3.28)

Using Tkwε as a test function in (3.12), applying the divergence theorem, we get
∫
Ω

Ã(vε ,∇gε(vε)) ·∇Tk(wε )

=
∫
Ω
χ{vε>A2}A(vε ,∇gε(vε)) ·∇Tk(wε )

=
∫
Ω
(−bα(vε)+ f )Tkwε

� k ‖ f ‖L1(Ω) . (3.29)

Hence, by (1.3)

λ0

∫
Ω
|∇gε(vε ∨A2)|p ·C(

Mvε
M− vε

)
p

p−1 � k ‖ f ‖L1(Ω)

and by (1.2, it follows
∫
{|wε |<k}

|Ã(vε ,∇g(vε))|p′χ{vε>A2} � k ‖ f ‖L1(Ω) (3.30)

with 1
p + 1

p′ = 1. Therefore,

(Ã(vε ,∇g(vε))χ{vε>A2}χ{|wε |<k})ε is bounded in Lp′(Ω). (3.31)

This in turn, implies that

hk(wε )Ã(vε ,∇g(vε)) → ψk weakly in (Lp′(Ω))N for all k > 0. (3.32)

In order to identify ψk on the set {A2 < v < M} , let h be a smooth function with
support in ]A2 +α,M−η [ for some α,η > 0 with A2 +α < M−η . Then, by (3.25),
(3.21) and (3.28),

h(vε)hk(wε )Ã(vε ,∇gε(vε)) → h(v)hk(w)Ã(v,∇g(v)) weakly in (Lp′(Ω))N (3.33)
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as ε → 0. As α,η are arbitrary, it follows from (3.33) and (3.32) that

ψk = hk(w)Ã(v,∇g(v)) a.e. in {A2 < v < M}. (3.34)

Next, note that for k large enough, hk(w) = 1 on {v < M} . Indeed, on {v < M} ,

∫ v∨A2

A2

C(|r|) p
p−1 dg(r) �

∫ M

A2

C(|r|) p
p−1 dg(r) < +∞

by (1.5). Therefore, for

k >
∫ M

A2

C(|r|) p
p−1 dg(r),

hk(w) = 1 and as a consequence of (3.34), one get

Ã(v,∇g(v))χ{A2<v<M} ∈ Lp′(Ω)N . (3.35)

This in turn implies that for all ξ ∈ D(Ω) with ∇ξ = 0 on {v = M} ,

lim
β→0

lim
ε→0

∫
Ω
χ{vε>M−β}Ã(vε ,∇g(vε)) ·∇ξ = lim

β→0

∫
{M>v>M−β}

Ã(v,∇g(v)) ·∇ξ = 0.

Now, as A(r,ξ ) is continuous in r ,

lim
β→0

lim
ε→0

∫
Ω
χ{vε>M−β}(A(vε ,0)−A(M−β ,0)) ·∇ξ = 0

= lim
β→0

lim
ε→0

∫
Ω
χ{v<M}χ{vε>M−β}(A(vε ,0)−A(M−β ,0)) ·∇ξ

= lim
β→0

∫ 1

0
(
∫
Ω
χ{M>v>M−β}(A(v,0)−A(M−β ,0)) ·∇ξ )dμ = 0.

Thus,

lim
β→0

lim
ε→0

∫ 1

0

(∫
Ω
χ{v>M−β}(A(vε ,∇gε(vε))−A(M−β ,0)) ·∇ξ

)
dμ = 0

for all ξ ∈ D(RN) with ∇ξ = 0 a.e. on {v = M}. Therefore, combining all the esti-
mates on vε , we can pass to the limit with ε → 0 in inequality (3.26) to obtain (3.4).
The second entropy inequality (3.5) can be proved by a classical argument: We choose
ξ = Hδ (gε(k)−gε(vε))ζ in (3.12) with ζ ∈ D(RN) such that (g(k))+ζ = 0 a.e. on Γ
and we let δ ,ε → 0 successively.

Hence, v is a weak entropy process solution of Pbα ,g(a, f ) .
Now, in order to prove that v is a week entropy solution of Pbα ,g(a, f ) , we use

the following “reinforced ” comparaison result which can be seen as a generalisation of
Theorem 3.4 to the entropy process solutions. The reader is referred to [20] in order to
verify the technical tools needed when dealing with measure-valued functions.
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PROPOSITION 3.11. Let fi ∈ L∞(Ω) , ai ∈ L∞(Γ) with g(ai) = 0 and vi ∈ L∞(Ω×
(0,1) be a weak entropy process of Pbα ,g(ai, fi) , i = 1,2 . Then there exists κ ∈ L∞(Ω×
(0,1)) with κ ∈ sign+(v1 ∧ (M−β )− v2∧ (M−β )) a.e. in Ω× (0,1) such that for
all M > β > 0 ,

∫ 1

0

∫
Ω
(bα(v1(x,α)∧ (M−β ))−bα(v2(x,μ)∧ (M−β )))+ξ dxdα dμ

�
∫ 1

0

∫
Ω
κ( f1− f2)ξ dx+

∫ 1

0

∫
Γ
ω−(x,a1∧ (M−β ),a2∧ (M−β ))ξ .

In particular, if f1 = f2 and a1 = a2 , it follows from Proposition 3.11 and the fact
that bα : R → R is strictly increasing that

v1(x,α)∧ (M−β ) = v2(x,μ)∧ (M−β ) for a.e. (x,α,μ) ∈Ω× (0,1)× (0,1)

Defining the function w(x) =
∫ 1
0 v1(x,α)dα , we deduce that w(x) = v1(x,α) =

v2(x,β ) for a.e. (x,α,β ) ∈Ω× (0,1)× (0,1) .
This ends the first part of the proof. �

3.1.2. Second step

The comparison principle is again the main tool in this second step: Let f ∈ L1(Ω)
and a ∈ M(Γ) with g(a) = 0 a.e. on Γ . For m,n ∈ IN , let fm,n = f ∧m∨ (−n) ,
am,n = a∧m∨(−n) and define bm,n : r �→ b(r)+ 1

mr+− 1
n r−. Denote by vm,n the unique

weak entropy solution of Pbm,n,g( fm,n,am,n) , which exists by the result of the first step.
Recall that vm,n is a weak solution of bm,n(v)− div A(v,∇g(v)) = f i.e.

∫
Ω

bm,n(vm,n)ξ +
∫
Ω

A(vm,n,∇g(vm,n)) ·∇ξ =
∫
Ω

fξ (3.36)

for all ξ ∈ D(Ω) . By Theorem 3.5, vm1,n � vm2,n for m1 � m2 and vm,n1 � vm,n2 for
n1 � n2 . i.e. vm,n ↓n vm a.e. on Ω where vm :Ω→ [−∞,M] is measurable. Here, we use
the notation ↑n resp. ↓n to denote the convergence of a sequence which is monotone
increasing, resp. decreasing in n . Next, we prove that vm is finite a.e. in Ω : Suppose
first that b(−∞) := lim

r→−∞b(r) >−∞ . Then, by the range condition (1.7), it follows that

lim
r→−∞g(r) = −∞ .

As vm,n is a week solution of Pbm,n,g(am,n, fm,n) , choosing g(Tβ ,l(−v−m,n)) as test
function in (3.36), taking into account the growth condition on A , we find

λb(−∞)

∫
Ω
|∇g(Tβ ,l(−v−m,n))|p � |g(−l)|

∫
Ω
| fm,n|

(see condition (1.2) on A). Hence, by Poincaré’s inequality,

|{−v−m,n � −l}|� C(1+ |g(−l)|)
|g(−l)|p
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for some constant C independent of m,n and k . Passing the limit with n→∞ and then
with k →−∞ in the above inequality, we find that vm is finite a.e. on Ω . Applying the
diagonal principle, we may assume that for some subsequence (m(n))n , we have (with
fn := fm(n),n, an = am(n),n and bn := bm(n),n ) fn → f in L1(Ω)) and the solution vn of
Pbn,g(an, fn ) satisfies: vn → v a.e. in Ω , b(vn) → b(v) in L1(Ω) .

The rest of the proof follows the same lines as in the proof of Theorem 1.4 in [6]
(see also [5]).

4. Existence results in case (b )

Throughout this section, we suppose that conditions (1.2)-(1.6) and (1.7) are sat-
isfied.

DEFINITION 4.1. Let f ∈ L1(Ω) and a : Γ→R be measurable with g(a) = 0 a.e.
on Γ . A measurable function v : Ω → (−∞,M) is said to be a renormalized entropy
solution of the problem Pb,g( f ,a) if

b(v) ∈ L1(Ω),

g(Tβ ,lv) ∈W 1,p
0 (Ω),

χ{−l<v<M−β} ∈ (Lp′(Ω))N , ∀l,β > 0, 0 < M−β ,A(v,Dg(v))

and there exists two family (μβ )β and (νl)l of bounded measures on Ω such that

μβ ({v � M−β}) = νl({v � l}) = lim
l→−∞

∫
Ω
ξ dνl(v) = 0,

and the following inequalities are satisfied: for all β ,k ∈ R with M− β > k , for all
ξ ∈W 1,p(Ω)∩L∞(Ω) such that ξ � 0 and (g(a∧ (M−β ))−g(k))+ξ = 0 a.e. on Γ ,

−
∫
Ω

b(v∧ (M−β ))χ{v∧(M−β )>k}ξ +
∫
Ω
χ{v∧(M−β )>k} fξ

−
∫
Ω
χ{v∧(M−β )>k}(A(v∧ (M−β ),∇g(v∧ (M−β )))−A(k,0)) ·∇ξ

� −
∫
Γ
ω+(x,k,a∧ (M−β ))ξ +

∫
Ω
ξ dμβ (v)

and for all l � k ∈ R , for all ξ ∈W 1,p(Ω)∩L∞(Ω) such that ξ � 0 and (g(k)−g(a∨
l))+ξ = 0 a.e. on Γ ,

∫
Ω

b(v∨ l)χ{k>v∨l}ξ +
∫
Ω
χ{k>v∨l}(A(v∨ l,∇g(v∨ l))−A(k,0)) ·∇ξ

−
∫
Ω
χ{k>v∨l} fξ � −

∫
Γ
ω−(x,k,a∨ l)ξ +

∫
Ω
ξ dνβ (v).

THEOREM 4.2. For all f ∈ L1(Ω) and a : Γ → R measurable with g(a) = 0
a.e. on Γ , there exists v : Ω → R such that v is a renormalized entropy solution of
Pb,g( f ,a) .
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Moreover, the comparaison result (3.9) and the partial uniqueness result (3.5)
hold true.

4.1. Proof of the existence result

We use another method of approximation. We first consider the problem

Pbα ,g◦(·∧(M−κ)( f ,a)

{
bα(v)− div A(v,∇g(v∧ (M−κ))) = f in Ω,

v∧ (M−κ) = a on Γ,

with κ > 0, f ∈ L∞(Ω) , a ∈ L∞(Γ) with g(a) = 0 and with bα(r) = b(r)+αr , α >
0. Existence and uniqueness results for this problem are already proved in [5]. The
definition of the weak entropy solution in this case is given in Proposition 4.3 below.
Going to limit with κ → 0, we prove the existence of a renormalized solution of the
problem Pbα ,g( f ,a) and we continue exactly as in case (a ).

PROPOSITION 4.3. Let f ∈ L∞(Ω) and a ∈ L∞(Γ) such that g(a) = 0 a.e on Γ .
Then, there exists a unique vκ ∈ L∞(Ω) weak entropy solution of Pbα ,g◦(.∧(M−κ))( f ,a)
i.e. g(vκ ∧(M−κ))∈W 1,p

0 (Ω) and vκ satisfies the following entropy inequalities. The
first one: for all k ∈ R , for all ξ ∈ D(RN) such that ξ � 0 and (−g(k))+ξ = 0 a.e.
on Γ ,

−
∫
Γ
ω+(x,k,a)ξ +

∫
Ω

bα(vκ)χ{vκ>k}ξ

�
∫
Ω
χ{vκ>k}( fξ − (A(vκ ,∇g(vκ ∧ (M−κ)))−A(k,0)) ·∇ξ )

and the second one: for all k∈R , for all ξ ∈D(RN) such that ξ � 0 and (g(k))+ξ = 0
a.e. on Γ ,

−
∫
Γ
ω−(x,k,a)ξ −

∫
Ω

bα(vκ)χ{k>vκ}ξ

� −
∫
Ω
χ{k>vκ}( fξ − (A(vκ ,∇g(Tκ ,lvκ))−A(k,0)) ·∇ξ ).

The weak entropy solution v is in particular a weak solution of the problem
bα(v)− div A(v,∇g(v∧ (M−κ))) = f i.e.∫

Ω
bα(v)ξ +

∫
Ω

A(v,∇g(v∧ (M−κ))) ·∇ξ =
∫
Ω

fξ (4.1)

holds true for all ξ ∈W 1,p
0 (Ω) .

With the same arguments as in case (a), we prove that

(vκ)κ is bounded in L∞(Ω),

Ã(vκ ,∇Tkg(vκ ∧ (M−κ))) converges weakly in Lp′(Ω)N to some χk ∈ Lp′(Ω)N ,



106 KAOUTHER AMMAR AND HICHAM REDWANE

g(vκ) converges to g(v) a.e. in Ω,

(vκχ{v∈R\[A1,A2]}) → vχ{v∈R\[A1,A2]}. a.e. in Ω, (4.2)

and according to Lemma 3.8, there exists v ∈ L∞(Ω× (0,1) and a subsequence of (vκ)
still denoted by (vκ) such that

(vκ) converges to v in the nonlinear weak-∗ sense. (4.3)

We will prove that v is a renormalized entropy process solution of Pbα ,g(a, f ) in the
following sense:

DEFINITION 4.4. A function u : (0,1)×Ω→ (−∞,M) is a renormalized entropy
process solution of Pbα ,g(a, f ) if

u ∈ L∞((0,1)×Ω)

and there exists a measurable function w : Ω → R and a family (μκ)κ of bounded
measures on Ω such that

w(x) = g(u(α,x)) a.e. in Ω,

w∧ k ∈W 1,p
0 (Ω), for all k > 0,

A(u,Dw)χ{u<M} ∈ (Lp′(Ω))N ,

μκ ∈ (W−1,p′(Ω)+L1(Ω)+L1(Γ))∩M (Ω), (4.4)

μκ({v � M−κ}) = 0, (4.5)

lim
κ→0

∫
Ω
ξ dμκ(v) = 0 for all ξ ∈ D(RN), (4.6)

and the following inequalities are satisfied: for all κ ,k ∈ R with M− κ > k , for all
ξ ∈W 1,p(Ω)∩L∞(Ω) such that ξ � 0 and (g(u∧ (M−κ))−g(k))+ξ = 0 a.e. on Γ ,

∫ 1

0

∫
Ω

bα(u∧ (M−κ))χ{u∧(M−κ)>k}ξ dμ−
∫ 1

0

∫
Ω
χ{u∧(M−κ)>k} fξ

+
∫ 1

0

∫
Ω
(A(u∧ (M−κ),∇(w∧g(M−κ)))−A(k,0)) ·∇ξ )dμ

�
∫
Γ
ω+(x,k,a∧ (M−κ))ξ −

∫
Ω
ξ dμκ(u) (4.7)

and for all l � k ∈ R , for all ξ ∈W 1,p(Ω)∩L∞(Ω) such that ξ � 0 and (g(l))+ξ = 0
a.e. on Γ ,

−
∫ 1

0

∫
Ω

bα(u)χ{l>u}ξ dμ−
∫ 1

0

∫
Ω
χ{l>u}(A(u,∇w)−A(k,0)) ·∇ξ )dμ

+
∫ 1

0

∫
Ω
χ{l>u} fξ �

∫
Γ
ω−(x, l,a)ξ . � (4.8)
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Let us first prove that v < M a.e. on Ω : Let

ωκ :=
∫ A2∨v∧(M−κ)

A2

λ (r)
1

p−1 g′(r)dr.

Let us recall that g is increasing in [A2,+∞) and therefore ωκ ∈ W 1,p(Ω) . Taking
Tkωκ as test function in (4.1), applying the divergence theorem and taking into account
assumption (1.3), we get: ∫

Ω
|∇Tkωκ |p � k ‖ f ‖L1(Ω) .

This implies that (∇Tkωκ)κ is uniformly bounded in Lp(Ω)N and by a classical argu-
ment, it follows that |{wκ > k}| → 0 with k → ∞ . But on the set {v = M} , ωκ → ∞
which implies that v < M a.e. in Ω .

Now, we use the Minty Browder argument in order to prove that for 0 < β < M ,

∫
Ω

Ã(vκ ,∇g(vκ ∧ (M−β ))) ·∇ξ →
∫ 1

0

(∫
Ω

Ã(v,∇g(v∧ (M−β ))
)
·∇ξ )dμ , (4.9)

with κ → 0. Therefore, we need the following convergence result:

lim
L→0

lim
κ→0

∫
Ω

Ã(vκ ,∇g(vκ ∧ (M−β ))) ·∇TL(g(vκ ∧ (M−β ))−g(v∧ (M−β ))) = 0.

(4.10)
In order to prove (4.10), we decompose the above integral as follows for κ < α :∫
Ω

Ã(vκ ,∇g(vκ ∧ (M−β )) ·∇TL(g(vκ ∧ (M−β ))−g(v∧ (M−β )))

=
∫
Ω

Ã(vκ ,∇g(vκ ∧ (M−κ))) ·∇TL(g(vκ ∧ (M−κ))−g(v∧ (M−β )))

−
∫
{vκ�M−β}

Ã(vκ ,∇g(vκ ∧ (M−κ))) ·∇TL((g(vκ ∧ (M−κ))−g(v∧ (M−β )))

:= T1 +T2.

As vκ is a weak solution of Pbα ,g◦(·∧(M−κ))(a, f ) ,

lim
L→0

lim
κ→0

T1 = lim
L→0

lim
κ→0

[∫
Ω

Ã(vκ ,∇g(vκ ∧ (M−κ)))

·∇TL
(
g(vκ ∧ (M−κ))−g(v∧ (M−β )

)]
= − lim

L→0
lim
κ→0

[∫
Ω

bα(vκ)TL
(
g(vκ ∧ (M−κ))−g(v∧ (M−β ))

)
−

∫
Ω

f TL(g(vκ ∧ (M−κ))−g(v∧ (M−β )))
]

−
∫
Ω

A(vκ ,0) ·∇TL
(
g(vκ ∧ (M−κ))−g(v∧ (M−β ))

)
. (4.11)
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It is not difficult to pass to the limit in the first and second term in the R.H.S of inequality
(4.11). Now, we estimate the last term. In view of (3.22), for κ > 0 small enough,∫

Ω
A(vκ ,0) ·∇TL(g(vκ ∧ (M−κ))−g(v∧ (M−β )))

=
∫
{v∈]A1,A2[}

A(vκ ,0) ·∇TLg(vκ ∧ (M−κ))

+
∫
{v∈R\[A1,A2]}

A(vκ ,0) ·∇TL(g(vκ ∧ (M−κ))−g(v∧ (M−β )))

=
∫
{v∈]A1,A2[,vκ>A2}

A(vκ ,0) ·∇TLg(vκ ∧ (M−κ))

+
∫
{v∈]A1,A2[,vκ<A1}

A(vκ ,0) ·∇TLg(vκ)

+
∫
{v∈R\]A1,A2[}

A(vκ ,0) ·∇TL(g(vκ ∧ (M−κ))−g(v∧ (M−β )))

= I1 +I2 +I3.

Taking into account (4.2) it is not difficult to pass to the limit with κ → 0 and then with
L → 0 in I3 to find

lim
L→0

lim
κ→0

I3 = 0.

Moreover,

(A(vκ ,0)χ{v∈]A1,A2[,vκ>A2}χ{|g(vκ∧(M−κ))−g(v∧(M−β ))|�L})κ → A(A2,0)

strongly in Lp′(Ω)N and

(A(vκ ,0)χ{v∈]A1,A2[,vκ∈]−∞,A1[}χ{|g(vκ∧(M−β ))−g(v∧(M−β ))|�L})κ → A(A1,0)

strongly in Lp′(Ω)N . Hence,

lim
L→0

lim
κ→0

I1 = lim
L→0

∫
{v∈]A1,A2[}

A(A2,0) ·∇TLg(A2) = 0

and with the same arguments, we prove that

lim
L→0

lim
κ→0

I2 = 0.

Next, we claim that
lim
L→0

limsup
κ→0

T2 � 0.

Indeed,

lim
L→0

limsup
κ→0

T2

= lim
L→0

limsup
κ→0

[
−

∫
{vκ�M−β}

Ã(vκ ,∇g(vκ ∧ (M−β ))
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·∇TL(g(vκ ∧ (M−κ))−g(v∧ (M−β ))
]

� lim
L→0

limsup
κ→0

[
−

∫
Ω

Ã(vκ ,∇g(vκ ∧ (M−κ))

·∇TL(g(vκ ∧ (M−κ))−g(vκ ∧ (M−β ))
]

+ lim
L→0

limsup
κ→0

[∫
{vκ�M−β}

Ã(vκ ,∇g(vκ ∧ (M−κ))

·∇g(v∧ (M−β ))χ{0<g(vκ∧(M−κ))−g(v∧(M−β ))<L}
]

:= L 1
2 +L 2

2 .

As vκ is a weak solution of Pbα ,g◦(.∧(M−κ))(a, f ) ,

L 1
2 = lim

L→0
limsup
κ→0

[
−

∫
Ω

bα(vκ)TL(g(vκ ∧ (M−κ))−g(vκ ∧ (M−β )))

+
∫
Ω

f TL(g(vκ ∧ (M−κ))−g(vκ ∧ (M−β )))

−
∫
Ω

A(vκ ,0) ·∇TL(g(vκ ∧ (M−κ))−g(vκ ∧ (M−β )))
]

= lim
L→0

limsup
κ→0

[
−

∫
Ω

bα(vκ)TL(g(vκ ∧ (M−κ))−g(vκ ∧ (M−β ))

+
∫
Ω

f (TL(g(vκ ∧ (M−κ))−g(vκ ∧ (M−β ))

−
∫
Ω

div
(∫ TL(g(vκ∧(M−κ))−g(vκ∧(M−β ))

A2

A(g−1(r),0)dr
)]

= 0,

where g−1 is the continuous inverse of g/]A2,M[ . The term L 2
2 can be estimated an in

the term L 3
2 in case (a).

Combining all the estimates, we get (4.10) and by the standard pseudo monotonic-
ity argument we prove that

∫
Ω
χk ·∇ξ =

∫ 1

0

∫
Ω

Ã(v,∇Tkg(v∧ (M−κ))) ·∇ξ for all ξ ∈ D(Ω). (4.12)

Indeed, for β > 0 with M − β > 0 and g(M − β ) = k , for ξ ∈ D(Ω) , ξ � 0 and
σ ∈ R ,

σ
∫
Ω
χg(M−β )∇ξ

= lim
κ→0

[∫
Ω
σ Ã(vκ ,∇g(vκ ∧ (M−β ))) ·∇ξ

]
� lim

L→0
limsup
κ→0

[∫
Ω

Ã(vκ ,∇g(vκ ∧ (M−κ)))

·∇TL(g(vκ ∧ (M−β ))−g(v∧ (M−β )))+σξ )
]
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= lim
L→0

limsup
κ→0

[∫
{|g(vκ∧(M−β ))−g(v∧(M−β ))|<L}

Ã(vκ ,∇g(vκ ∧ (M−β )))

·∇(g(vκ ∧ (M−β ))−g(v∧ (M−β ))+αξ )
]

+ lim
L→0

limsup
κ→0

[∫
{|g(vκ∧(M−β ))−g(v∧(M−β ))|�L}

Ã(vκ ,∇g(vκ ∧ (M−β ))) ·∇(σξ )
]

= P1 +P2.

By assumption (1.4),

P1 � lim
L→0

limsup
κ→0

[∫
{|g(vκ∧(M−β ))−g(v∧(M−β ))|<L}

Ã(vκ ,∇(g(v∧ (M−β ))−σζ ))

·∇(
g(vκ ∧ (M−β ))−g(v∧ (M−β ))+σζ

)]
= lim

L→0
limsup
κ→0

[∫
{|g(vκ∧(M−β))−g(v∧(M−β))|<L}

Ã(vκ ,∇(g(v∧ (M−β ))−σζ )) ·∇(αζ )
]

+ lim
L→0

limsup
κ→0

[∫
{v∈]A2 ,M[,|g(vκ∧(M−β))−g(v∧(M−β))|<L}

Ã(vκ ,∇(g(v∧ (M−β ))−σζ ))

·∇(g(vκ ∧ (M−β ))−g(v∧ (M−β )))
]

+ lim
L→0

limsup
κ→0

[∫
{v∈]A1 ,A2[,|g(vκ∧(M−β))−g(v∧(M−β))|<L}

Ã(vκ ,∇(g(A1)−σζ ))

·∇(
g(vκ ∧ (M−β ))−g(A1)

)]
+ lim

L→0
limsup
κ→0

[∫
{vκ∈]−∞,A1[,v∈]A1 ,A2[,|g(vκ∧(M−β))−g(v∧(M−β))|<L}

Ã(vκ ,∇g(A1)−σζ ))

·∇(g(vκ ∧ (M−β ))−g(A1))
]

= P1
1 +P2

1 +P3
1 +P4

1 .

It is not difficult to pass to the limit in the first term in the R.H.S of the above inequality
to find

P1
1 =

∫ 1

0

(∫
Ω

Ã(v,∇(g(v∧ (M−β ))−σζ )) ·∇(σζ )
)

dμ .

As to P2
1 , this term is equal to 0 by (3.21) and it is easy to see that P3

1 = P4
1 = 0.

Now, in order to estimate P2 , we use the growth condition (1.2),

P2 � lim
L→0

limsup
κ→0

(∫
Ω
|A(vκ ,∇(g(v∧ (M−β ))−σζ )|p′

) 1
p′

(∫
{|g(vκ∧(M−β ))−g(v∧(M−β ))|�L}

|∇(σζ )|p
) 1

p
= 0.
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Hence,

α
∫
Ω
χkσζ �

∫ 1

0
(
∫
Ω

Ã(v,∇(g(v∧ (M−β ))−σζ )) ·∇(σζ ))dμ .

Dividing by σ > 0 (resp. α < 0), passing to the limit with σ → 0, we obtain (3.25).
The rest of the proof follows the same lines as those of in case (a). �
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[15] D. BLANCHARD, O. GUIBÉ AND H. REDWANE, Nonlinear equations with unbounded heat conduc-
tion and integrable data, Ann. Mat. Pura Appl. (4), 187, 3 (2008), 405–433.

[16] D. BLANCHARD AND A. PORRETA, Stefan problems with nonlinear diffusion and convection, J.
Differential Equations, 210 (2005), 383–428.

[17] J. CARRILLO, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147
(1999), 269–361.

[18] J. CARRILLO AND P. WITTBOLD, Uniqueness of renormalized solutions of degenerate elliptic-
parabolic problems, J. Differential Equations, 156 (1999), 93–121.

[19] J. CARRILLO AND P. WITTBOLD, Renormalized entropy solutions of scalar conservation laws with
boundary condition, J. Differential Equations, 185 (2002), 137–160.

[20] R. DIPERNA, Measure-valued solutions to conservation laws, Arch. Ration. Mech. Anal., 88 (1985),
223–270.

[21] R. EYMARD, R. HERBIN AND A. MICHEL, Mathematical study of a petroleum engineering scheme,
M2AN Math. Model. Numer. Anal., 37, 6 (2003), 937–972.
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[26] R. EYMARD, T. GALLOUËT AND R. HERBIN, Finite Volume Methods, Handb. Numer. Anal., VII,
North-Holland, Amsterdam, 2000.
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