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NUMERICAL SOLUTION OF MAXWELL’S EQUATIONS
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Abstract. We present an efficient method for computing numerically the solution to the time-
dependent Maxwell equations in an axisymmetric domain, with arbitrary (not necessarily ax-
isymmetric) data. The method is an extension of those introduced in [20] for Poisson’s equation,
and in [4] for Maxwell’s equations in the fully axisymmetric setting (i.e., when the data is also
axisymmetric). It is based on a Fourier expansion in the azimuthal direction, and on an improved
variant of the Singular Complement Method in the meridian section. When solving Maxwell’s
equations, this method relies on continuous approximations of the fields, and it is both HHHH(curl) -
and HHHH(div) -conforming. Also, it can take into account the lack of regularity of the solution
when the domain features non-convex edges or vertices. Moreover, it can handle noisy or ap-
proximate data which fail to satisfy the continuity equation, by using either an elliptic correction
method or a mixed formulation. We give complete convergence analyses for both mixed and
non-mixed formulations. Neither refinements near the reentrant edges or vertices of the domain,
nor cutoff functions are required to achieve the desired convergence order in terms of the mesh
size, the time step and the number of Fourier modes used.

1. Introduction

There exist many methods to compute numerically the solution to Maxwell’s equa-
tions. Among those methods, let us mention the edge finite element method, introduced
by Nédélec [41, 42]. This method proved very efficient for the static, harmonic and
eigenvalue problems related to Maxwell’s equations. To improve the flexibility of the
discretization, a discontinuous Galerkin method has been recently introduced [35]. On
the other hand, it is interesting for some applications to have a continuous approxima-
tion of the electromagnetic field, aimed at capturing both the curl and the divergence
of the fields. In particular, it allows to reduce the numerical noise, when the Maxwell
solver is embedded in a time-dependent Vlasov-Maxwell code. This is the method ear-
lier introduced by Heintzé et al. [6]. But the latter worked only in convex (curvilinear)
polyhedra.

However, three-dimensional computations can be very expensive. In a number
of cases, one reduces the problem to two-dimensional equations by assuming that the
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geometry is invariant by translation or by rotation. If in addition the data are also invari-
ant, then the problem can be further reduced to a single two-dimensional problem (cf.
[5, 4, 24]). When this is not the case, one has to consider a series of two-dimensional
problems, obtained by Fourier analysis. This approach, called the Fourier-Finite El-
ement Method (FFEM), was initiated by Mercier-Raugel [39] for elliptic problems.
More recent developments include: the works of Heinrich et al. [33, 34], which relied
on mesh refinement techniques; and also by the authors and co-workers [19, 20], which
relied on the Singular Complement Method (SCM). Both techniques allow one to im-
prove the convergence rate of the method. Recall briefly the principle of the SCM: the
space of solutions V is split with respect to regularity in a regular subspace VR and a
singular one VS , namely V =VR⊕VS . When the domain is regular, i.e., convex or with
a smooth boundary, there is no singularity in the solutions of the Poisson or Maxwell
equations, so that VS = {0} and VR =V , and no singular complement is required. When
this is not the case, one enlarges the discrete space by adding some approximation of a
singular field. Combining this method with the Fourier analysis in the third dimension
leads to the so-called Fourier-Singular Complement Method (FSCM).

As it is well-known, functions defined by continuous finite elements are of H1 reg-
ularity.1 Consequently, when solving Maxwell’s equations in a non-convex and non-
smooth domain, with a continuous, HHHH(curl)- and HHHH(div)-conforming discretization,
the discretized spaces are always included in a closed, strict subspace VR of V . In
other words, one cannot hope to approximate the part of the field which belongs to
VS [5]. In particular, mesh refinement techniques fail. The SCM addresses this prob-
lem by explicitly adding some singular complements. An alternate choice has been
devised recently by Nkemzi [43] to solve the time-harmonic Maxwell equations, which
combines singular complement and mesh refinement techniques. However, the singu-
lar complement technique used in [43] requires the use of cutoff functions, which are
difficult to handle numerically (due to their fast variations), as proven in [32]. More-
over, the time-dependent Maxwell equations are not easily solved when one uses mesh
refinement. Finally, the generalized Maxwell equations (see [7]) which require an ex-
plicit approximation of divergence of the fields, are not covered by the theory devel-
oped in [43]. Another alternative is the Weighted Regularization Method of Costabel-
Dauge [27, 28, 22], which recovers density of the discretized spaces by measuring the
electromagnetic fields in appropriately weighted Sobolev spaces.

In this article, we extend the FSCM to the solution of the time-dependent Maxwell
equations in an axisymmetric domain with arbitrary data. This work is a generalisation
of [4], where only axisymmetric data were considered, and no convergence analysis was
performed. Our analysis follows the spirit of [20], where the FSCM was applied to the
solution of Poisson’s equation. It also borrows the “abstract error estimate” approach
from [21], where we introduced a general framework to analyse the discretisation of
Maxwell’s equations by nodal (continuous) finite elements, while considering several
ways of taking into account the divergence condition satisfied by the fields. That is to
say, the FSCM will be applied to a generalized version of Maxwell’s equations, intro-

1For any piecewise polynomial vector field wwww defined on Ω ⊂ R3 , the conditions wwww ∈ HHHH(curl;Ω)∩
HHHH(div;Ω) , wwww ∈ H1(Ω)3 , and wwww ∈ C 0(Ω)3 are equivalent.
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duced in [7]. Among others, one can handle data which do not satisfy the continuity
equation; this is especially useful when the Maxwell solver is embedded in a Vlasov-
Maxwell code.

However, this article is not a straightforward application of [21]: in the latter work,
the whole computational domain was meshed by finite elements. Here, we use finite
elements in a two-dimensional section only, and a spectral method in the third dimen-
sion. We treat the time-dependent equations, including the mixed formulations, which
are used in a variety of applications in order to enforce the divergence condition. We
note that one can approximate the time-harmonic equations using the approach we de-
velop hereafter. Furthermore, we analyse the error due to the spectral analysis of the
data, as in [11, 9]. Finally, we propose an algorithm to implement the FSCM.

Our analysis treats the non-singular case (VS = {0} ) as a limiting case. This spe-
cific instance of the FFEM will be referred to as the Fourier-Usual Nodal Finite Element
Method (FUNFEM). A Fourier-Weighted Regularisation Method could be analysed in
a similar manner; this might be quite technical, as one would have to deal with dou-
bly weighted Sobolev spaces. The weights inherent to the regularisation method would
interact with those due to the use of cylindrical coordinates. On the other hand, edge
element methods cannot be processed within the same framework. A mixed method,
using edge elements conformal in a weighted HHHH(curl)-type space to solve the static
Maxwell equations with axisymmetric data, was described and analysed in [24]. In or-
der to analyse a Fourier-Edge Element Method for time-dependent Maxwell equations,
one would have to combine this approach with that of [23], as well as Fourier analysis.

The outline of the article is as follows. In section 2, we present the geometrical
setting, the various versions of the Maxwell equations which we study, as well as the
variational formulations in three dimensions and two dimensions. Then, in section 3,
we analyse the impact of the numerical Fourier analysis and truncation. Next, in section
4, we provide mode-wise, abstract (method-independent) error estimates. Section 5
describes the singularities of electromagnetic fields, and the theoretical foundations of
the (F)SCM. Practical approximation results are then obtained in section 6. Section 7
discusses a possible implementation of the FSCM.

2. Equations and dimension reduction

2.1. Geometric setting and notations

In this article, we consider an axisymmetric domain Ω , generated by the rotation
of a polygon ω around one of its sides, denoted γa . The boundary of ω is thus ∂ω =
γa ∪ γb , where γb generates the boundary Γ of Ω . We assume for simplicity that the
domain Ω is simply connected, with a connected boundary. The natural cylindrical
coordinates will be denoted by (r,θ ,z) . The geometrical singularities that may occur
on Γ are circular edges and conical vertices, which correspond respectively to off-axis
corners of γb and to its extremities. Figure 1 shows the various notations associated
to these singularities; a more complete description of the geometry of ω can be found
in [2, 3].
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Figure 1: Notations for the geometrical singularities; eeee : reentrant edge; cccc : conical vertex.

As we know from these references, the initial- and boundary-value problems asso-
ciated with the (static or time-dependent) Maxwell equations will be singular, i.e. their
solution will generically not be in HHHH1(Ω) – as it would be the case in a regular2 domain
– iff there are reentrant edges or sharp vertices in Γ . Sharp vertices are defined by the
condition (see Figure 1):

νc < 1/2, where: νc := min
{
ν > 0 : Pν

(
cos(π/βc)

)
= 0

}
, (2.1)

and Pν denotes the Legendre function. This is satisfied iff π/βc > π/β� � 130◦48′ .
We define the comparison operators � and ≈ as follows. a � b means a � Cb ,

where C is a constant which depends only on the geometry, and not on the mesh size h ,
the Fourier order k , or the data of the Maxwell problem. a≈ b denotes the conjunction
of a � b and b � a .

2.2. Three-dimensional equations

We start from the classical Maxwell equations in vacuum:

∂EEEE
∂ t

− c2 curlBBBB = − JJJJ
ε0

,

∂BBBB
∂ t

+ curlEEEE = 0,

divEEEE =
ρ
ε0

,

divBBBB = 0.

2Recall that a domain is regular if it is convex or if its boundary belongs to C 1,1 .



FOURIER SINGULAR COMPLEMENT METHOD FOR MAXWELL’S EQUATIONS 117

Let nnnn denote the unit outward normal vector to the boundary, and assume that the
domain in which we solve Maxwell’s equations is surrounded by a perfect conductor,
which imposes,

EEEE ×nnnn = 0 and BBBB ·nnnn = 0 on Γ. (2.2)

The initial condition is simply

(EEEE,BBBB)|t=0 = (EEEE0,BBBB0), (2.3)

for some given data (EEEE0,BBBB0) . A necessary condition for these equations to be well-
posed is the continuity equation

divJJJJ +
∂ρ
∂ t

= 0. (2.4)

REMARK 2.1. One can extend our results to the case of composite materials
(see [29, 37, 38, 22] for the treatment of singularities at the interfaces), or impose a
Silver-Müller absorbing boundary condition on a part of the boundary. For the latter,
see for instance [5, 4, 11].

In order to develop efficient finite element methods in our setting, it is preferable to
use equivalent second order formulations. Eliminating EEEE and BBBB between the evolution
equations, one finds that the electric and magnetic fields satisfy the following vector
wave equations:

∂ 2EEEE
∂ t2

+ c2 curlcurlEEEE = − 1
ε0

∂JJJJ
∂ t

, (2.5)

∂ 2BBBB
∂ t2

+ c2 curlcurlBBBB =
1
ε0

curlJJJJ. (2.6)

The constraint equations (divergence and boundary conditions) still hold; moreover, one
has to supply the second-order problem with initial conditions for the time derivatives:

∂EEEE
∂ t |t=0

= EEEE1, where EEEE1 = c2 curlBBBB0− 1
ε0

JJJJ|t=0, (2.7)

∂BBBB
∂ t |t=0

= BBBB1, where BBBB1 = −curlEEEE0, (2.8)

and the extra boundary condition for the magnetic field:(
c2 curlBBBB− 1

ε0
JJJJ
)
×nnnn = 0.

As they only involve the curl operator, the equations (2.5) and (2.6) are adapted to
discretisations by edge elements [23, 40]. If one wishes to use nodal finite elements –
which are generally more efficient for charged particle simulations, especially Vlasov-
Maxwell computations – one has to add terms related to the divergence of the fields [6,
5, 4], yielding the “augmented” formulations:

∂ 2EEEE
∂ t2

+ c2 (curlcurlEEEE −graddivEEEE) = − 1
ε0

∂JJJJ
∂ t

− c2

ε0
gradρ , (2.9)
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∂ 2BBBB
∂ t2

+ c2 (curlcurlBBBB−graddivBBBB) =
1
ε0

curlJJJJ. (2.10)

REMARK 2.2. In the time-harmonic regime, the addition of graddiv terms is
usually called “regularization”, see among others [14, 26, 27, 15].

If one wants the divergence constraints to be explicitly preserved in time, even though
the data may not satisfy exactly (a discrete version of) the continuity equation (2.4), one
can use “mixed” or saddle-point formulations. Here are the mixed augmented versions:

∂ 2EEEE
∂ t2

+ c2 (curlcurlEEEE −graddivEEEE)+gradPE (2.11)

= − 1
ε0

∂JJJJ
∂ t

− c2

ε0
gradρ ,

divEEEE =
ρ
ε0

; (2.12)

∂ 2BBBB
∂ t2

+ c2 (curlcurlBBBB−graddivBBBB)+gradPB =
1
ε0

curlJJJJ, (2.13)

divBBBB = 0. (2.14)

The mixed unaugmented versions simply lack the graddiv terms. Setting P =−c2∂t p ,
one obtains a formulation with elliptic correction [7] which does not have a saddle-
point structure, but actually is a non-mixed formulation with a modified right-hand side
devised to take into account the lack of charge conservation. It can be studied much
like the formulations (2.5)-(2.6) or (2.9)-(2.10), with ad hoc hypotheses [21].

In the sequel, we shall concentrate on the various augmented formulations for the
electric field, and mention along the way the adaptations for the magnetic field. For the
sake of simplicity, we also set c = ε0 = 1.

2.3. Variational formulations in 3D

Consider L2(Ω) the Lebesgue space of measurable and square integrable functions
over Ω , with (· | ·) and ‖ · ‖0 its associated scalar product and norm, Hs(Ω) the scale

of Sobolev spaces, for s ∈ R , and
◦
H1(Ω) the subspace of H1(Ω) made of elements

with a vanishing trace on Γ = ∂Ω . From now on, we adopt the notations:

LLLL2(Ω) = L2(Ω)3,

HHHHs(Ω) = Hs(Ω)3,

Hs(Ω) :=
⋂
σ<s

Hσ (Ω),

HHHHs(Ω) :=
⋂
σ<s

HHHHσ (Ω).

The electric field naturally belongs to the Sobolev space HHHH0(curl;Ω) , where

HHHH(curl;Ω) := {vvvv ∈ LLLL2(Ω) : curlvvvv ∈ LLLL2(Ω)} ,
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HHHH0(curl;Ω) := {vvvv ∈ HHHH(curl;Ω) : vvvv×nnnn|Γ = 0}.

At the same time, the augmented formulation, as described in Assous et al. [6], is set in
the functional space

XXXX(Ω) := HHHH0(curl;Ω)∩HHHH(div;Ω),

where: HHHH(div;Ω) := {vvvv ∈ LLLL2(Ω) : divvvvv ∈ L2(Ω)}.

The space XXXX(Ω) is compactly embedded in LLLL2(Ω) [44]. As a consequence, when Γ is
connected, one can define an equivalent scalar product and norm on XXXX(Ω) , as

a(uuuu,vvvv) := (curluuuu | curlvvvv)+ (divuuuu | divvvvv), ‖uuuu‖XXXX := a(uuuu,uuuu)1/2.

In other words, the L2 -norm is uniformly bounded by the XXXX -norm for elements of
XXXX(Ω) : this is the so-called Weber inequality.

In [21] we noticed that the vector wave equation (2.9) satisfied by the electric field
can be recast in the form:
Find EEEE ∈ H1(0,T ;LLLL2(Ω))∩L2(0,T ;XXXX(Ω)) such that

d2

dt2
(EEEE(t) | FFFF)+a(EEEE(t),FFFF) = (ψψψψ(t) | FFFF), ∀FFFF ∈ XXXX(Ω). (2.15)

Above, we have set: (ψψψψ | FFFF) = −(∂tJJJJ | FFFF)+ (ρ | divFFFF) , i.e., ψψψψ := −∂tJJJJ−gradρ . In
this article, we shall always assume that ψψψψ belongs to L2(0,T ;LLLL2(Ω)) ; so the equa-
tion (2.15) admits a unique solution

EEEE ∈ C 0(0,T ;XXXX(Ω))∩C 1(0,T ;LLLL2(Ω))∩H2(0,T ;XXXX(Ω)′)

by the Lions variational theory [36]. This is the case if, e.g., JJJJ ∈ H1(0,T ;LLLL2(Ω)) and

ρ ∈ L2(0,T ;
◦
H1(Ω)) .

As far as the magnetic field is concerned, it is worth noting that the formula-
tion (2.10) does not belong in the framework of the Lions theory. Moreover, some
underlying integrations by parts and certain traces considered are not justified a priori.
The well-posedness can be proved by following [10].

The mixed augmented formulation is given as:
Find EEEE ∈ H1(0,T ;LLLL2(Ω))∩L2(0,T ;XXXX(Ω)) and P ∈ L2(0,T ;L2(Ω)) such that

d2

dt2
(EEEE(t) | FFFF)+a(EEEE(t),FFFF)+b(FFFF,P(t)) = (ψψψψ(t) | FFFF), ∀FFFF ∈ XXXX(Ω), (2.16)

b(EEEE(t),q) = (ρ(t) | q), ∀q ∈ L2(Ω). (2.17)

where we have set: b(vvvv,q) := (q | divvvvv) . As remarked in [21], the well-posedness result
proved in [17, 7] for the mixed unaugmented formulation can be easily generalised to
the mixed augmented one.

We complete this paragraph with a simple, but useful continuity result.
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PROPOSITION 2.3. For some m ∈ N , assume that

JJJJ ∈ Hm+1(0,T ;LLLL2(Ω)) and ρ ∈ Hm(0,T ;
◦
H1(Ω)) .

Then the solution to the augmented formulation has the regularity

EEEE ∈ C m(0,T ;XXXX(Ω))∩C m+1(0,T ;LLLL2(Ω)),

and satisfies the continuity estimate:

‖∂m+1
t EEEE(t)‖0 +‖∂m

t EEEE(t)‖XXXX � ‖JJJJ‖Hm+1(0,t;LLLL2(Ω)) +‖ρ‖Hm(0,t;
◦
H1(Ω)). (2.18)

Similarly, if

JJJJ ∈ Hm+1(0,T ;LLLL2(Ω)) and ρ ∈ C m(0,T ;L2(Ω))∩Hm+2(0,T ;H−1(Ω)) ,

then the solution to the mixed augmented formulation has the regularity

EEEE ∈ C m(0,T ;XXXX(Ω))∩C m+1(0,T ;LLLL2(Ω)), P ∈ C m(0,T ;L2(Ω)),

with the continuity estimate:

‖∂m+1
t EEEE(t)‖0 +‖∂m

t EEEE(t)‖XXXX +‖∂m
t P(t)‖0

� ‖JJJJ‖Hm+1(0,t;LLLL2(Ω)) +‖ρ‖Cm(0,t;L2(Ω))∩Hm+2(0,t;H−1(Ω)). (2.19)

Proof. If m = 0, these are the classical well-posedness results, see [36, 17, 7].
In the general case, the above assumptions ensure that the variational formulations are
well-posed with JJJJ and ρ replaced with ∂m

t JJJJ and ∂m
t ρ ; therefore, they have a unique

solution satisfying the classical continuity estimate. Yet, this solution satisfies the same
equations (in the sense of distributions) as ∂m

t EEEE or (∂m
t EEEE,∂m

t P) ; we conclude by the
uniqueness of the temperate solution to a linear equation. �

2.4. Functional spaces in 2D

The scalar and vector fields defined on Ω will be characterised through their
Fourier series in θ , the coefficients of which are functions defined on ω , viz.

w(r,θ ,z) =
1√
2π ∑k∈Z

wk(r,z)eikθ , resp. wwww(r,θ ,z) =
1√
2π ∑k∈Z

wwwwk(r,z)eikθ ,

and the truncated Fourier expansion of wwww at order N is:

wwww[N](r,θ ,z) =
1√
2π

N

∑
k=−N

wwwwk(r,z)eikθ . (2.20)

The regularity of the function w (resp. wwww) in the scale Hs(Ω) (resp. HHHHs(Ω)), for
s � 0, can be characterised by that of the (wk)k∈Z (resp. the cylindrical components
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of the (wwwwk)k∈Z : wwwwk = wk
rer + wk

θ eθ + wk
zez ) in certain spaces of functions defined

over ω [12, §§II.1 to II.3], namely:

w ∈ Hs(Ω) ⇐⇒ ∀k ∈ Z, wk ∈ Hs
(k)(ω) and ∑

k∈Z

‖wk‖2
Hs

(k)(ω) < ∞,

wwww ∈ HHHHs(Ω) ⇐⇒ ∀k ∈ Z, wwwwk ∈ HHHHs
(k)(ω) and ∑

k∈Z

‖wwwwk‖2
HHHHs

(k)(ω) < ∞,

where the Hs
(k)(ω) and HHHHs

(k)(ω) are defined in turn with the help of two different types
of weighted Sobolev spaces. We shall now give these definitions for the values of s
and k chiefly needed in this article. The notations for the various spaces are the same
as in [12], where the interested reader can find the proofs and the most general versions
of the subsequent statements.3

First, for any τ ∈ R we consider the weighted Lebesgue space

L2
τ (ω) :=

{
w measurable on ω :

∫ ∫
ω
|w(r,z)|2 rτ drdz < ∞

}
.

This space, as well as all the spaces introduced in this article, is a Hermitian space of
functions with complex values. The scale (Hs

τ(ω))s�0 is the canonical Sobolev scale
built upon L2

τ (ω) , defined for s ∈ N as:

Hs
τ(ω) :=

{
w ∈ L2

τ (ω) : ∂ �
r ∂

m
z w ∈ L2

τ (ω), ∀�,m s.t. 0 � �+m � s
}

,

and by interpolation for s /∈ N . We denote by ‖ · ‖s,τ and | · |s,τ the canonical norm

and semi-norm of Hs
τ(ω) . We also define the subspace

�
H1

1(ω) (of H1
1(ω)) of func-

tions which vanish on γb : it is involved in the definition of the Fourier coefficients of

functions in
◦
H1(Ω) .

A prominent role will be played by L2
1(ω) , which appears to be the space of

Fourier coefficients (at all modes) of functions in L2(Ω) ; thus its scalar product is
also denoted (· | ·) . Upon this space, we build another, dimensionally homogeneous
Sobolev scale (Vs

1(ω))s�0 , defined as:

Vs
1(ω) :=

{
w ∈ Hs

1(ω) : r�+m−s ∂ �
r ∂

m
z w ∈ L2

1(ω), ∀�,m s.t. 0 � �+m � �s�
}

,

where �s� denotes the integral part of s . One can check that the general definition
reduces to

Vs
1(ω) =

{
w ∈ Hs

1(ω) : ∂ j
r w

∣∣
γa

= 0, for all j ∈ N s.t. j < s−1
}
,

when s is not an integer; while for the first values of s ∈ N , we have:

V 0
1(ω) = L2

1(ω), V 1
1(ω) = H1

1(ω)∩L2
−1(ω), V 2

1(ω) = H2
1(ω)∩H1

−1(ω).

The canonical norm of Vs
1(ω) is denoted by ||| · |||s,1 ; it is equivalent to | · |s,1 except

for s ∈ N\ {0} .
We are now ready to define the most useful spaces of Fourier coefficients.

3Much of this subsection parallels [43, §§2.2 to 2.4]. However, our statements are more general than those
of the latter work, which uses different notations for the weighted spaces, as in [39, 33].
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PROPOSITION 2.4. The spaces Hs
(k)(ω) , for s ∈ [0,2] , are characterized as fol-

lows.

∀s ∈ [0,1) : Hs
(k)(ω) = Hs

1(ω), ∀k ;

∀s ∈ [1,2) :

{
Hs

(0)(ω) = Hs
1(ω),

Hs
(k)(ω) = Vs

1(ω), ∀|k| � 1;

s = 2 :

⎧⎪⎪⎨⎪⎪⎩
H2

(0)(ω) =
{
w ∈ H2

1(ω) : ∂rw ∈ L2
−1(ω)

}
,

H2
(±1)(ω) =

{
w ∈ H2

1(ω) : w|γa = 0
}

,

H2
(k)(ω) = V 2

1(ω), ∀|k| � 2.

REMARK 2.5. The scales Hs
1(ω) , Vs

1(ω) , and Hs
(k)(ω) (for all k ) can be ex-

tended to negative values of the exponent s , by the usual duality procedure with respect
to the pivot space, which is L2

1(ω) in all cases. Thus the Hs
(k)(ω) , for s < 0, appear as

the spaces of Fourier coefficients of functions in Hs(Ω) , see §3 below.

PROPOSITION 2.6. The spaces HHHHs
(k)(ω) , for 0 � s < 2 , are characterized as fol-

lows.

s = 0 : HHHH0
(k)(ω) = LLLL2

1(ω) := L2
1(ω)3, ∀k ;

∀s ∈ (0,1) : HHHHs
(k)(ω) = Hs

1(ω)3, ∀k ;

s = 1 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
HHHH1

(0)(ω) = V 1
1(ω)×V 1

1(ω)×H1
1(ω),

HHHH1
(±1)(ω) =

{
(wr,wθ ,wz) ∈ H1

1(ω)×H1
1(ω)×V 1

1(ω) :

wr ± iwθ ∈ L2
−1(ω)

}
,

HHHH1
(k)(ω) = V 1

1(ω)3, ∀|k| � 2;

∀s ∈ (1,2) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
HHHHs

(0)(ω) = Vs
1(ω)×Vs

1(ω)×Hs
1(ω),

HHHHs
(±1)(ω) =

{
(wr,wθ ,wz) ∈ Hs

1(ω)×Hs
1(ω)×Vs

1(ω) :

wr ± iwθ
∣∣
γa

= 0
}
,

HHHHs
(k)(ω) = Vs

1(ω)3, ∀|k| � 2.

For |k| < s, the space HHHHs
(k)(ω) is endowed with the natural norm ‖ ·‖s,(k) given by the

above definition, while for |k| � s the canonical norm is:

‖wwww‖2
s,(k) = ‖wwww‖2

s,1 + |k|2s‖r−s wwww‖2
0,1. (2.21)

With this definition, there holds the equivalence of norms:

‖wwww‖2
HHHHs(Ω) ≈ ∑

k∈Z

‖wwwwk‖2
s,(k) .
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REMARK 2.7. In order to take into account the conditions on γa for the modes
k = ±1, we shall sometimes use the following representation for the vector fields
in HHHHs

(±1)(ω) : wwww= w+ e++w− e−+wz ez , with w± = 1√
2
(wr∓ iwθ ) and e± = 1√

2
(er±

ieθ ) . Thus, wwww ∈ HHHH1
(1)(ω) has a component w+ on γa , while w− vanishes in a weak

sense [2, Proposition 3.18]; and conversely for wwww ∈ HHHH1
(−1)(ω) .

Let us now examine the space of relevant Fourier coefficients for the electro-
magnetic fields. One easily checks that for w ∈ H1(Ω) , resp. w ∈ L2(Ω) such that
Δw ∈ L2(Ω) , there holds:

gradw =
1√
2π ∑k∈Z

gradk wk eikθ , resp. Δw =
1√
2π ∑k∈Z

Δk wk eikθ ,

while for wwww ∈ HHHH(div;Ω) , resp. HHHH(curl;Ω) :

divwwww =
1√
2π ∑k∈Z

divk wwwwk eikθ , resp. curlwwww =
1√
2π ∑k∈Z

curlk wwwwk eikθ .

Above, the operators for the mode k are defined as:

gradk w :=
∂w
∂ r

er +
ik
r

weθ +
∂w
∂ z

ez ; Δk w :=
1
r
∂
∂ r

(
r
∂w
∂ r

)
− k2

r2 w+
∂ 2w
∂ z2 ;

divk wwww :=
1
r
∂ (rwr)
∂ r

+
ik
r

wθ +
∂wz

∂ z
; (curlk wwww)r :=

ik
r

wz − ∂wθ
∂ z

;

(curlk wwww)θ :=
∂wr

∂ z
− ∂wz

∂ r
; (curlk wwww)z :=

1
r

(
∂ (rwθ )
∂ r

− ikwr

)
.

As an immediate consequence, we have the following characterisation.

PROPOSITION 2.8. Let XXXX (k)(ω) be the space

XXXX (k)(ω) :=
{
vvvv ∈ LLLL2

1(ω) : curlk vvvv ∈ LLLL2
1(ω) and divk vvvv ∈ L2

1(ω) and vvvv×nnnn|γb = 0
}

,

endowed with the canonical norm

‖vvvv‖2
XXXX ,(k) := ‖curlk vvvv‖2

0,1 +‖divk vvvv‖2
0,1.

The field uuuu belongs to XXXX(Ω) iff, for all k ∈ Z , its Fourier coefficients uuuuk ∈ XXXX (k)(ω) ,
and the sum ∑k∈Z ‖uuuuk‖2

XXXX ,(k) is finite. In this case, it is equal to ‖uuuu‖2
XXXX . A similar result

holds for the magnetic boundary condition.

These spaces enjoy an important property.

PROPOSITION 2.9. The space XXXX (k)(ω) is independent of k , for |k| � 2 .
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Proof. In the seminal work by Birman and Solomyak [13], the following result is
proved. Any field uuuu ∈ XXXX(Ω) can be decomposed as:

uuuu = uuuuBS−gradϕ , where: (2.22)

uuuuBS ∈ XXXX reg(Ω) := XXXX(Ω)∩HHHH1(Ω), (2.23)

ϕ ∈Φ(Ω) :=
{
ϕ ∈ ◦

H1(Ω) : Δϕ ∈ L2(Ω)
}

(2.24)

and: ‖uuuuBS‖1 +‖ϕ‖1 +‖Δϕ‖0 � ‖uuuu‖XXXX . (2.25)

Let us expand uuuu in Fourier series:

uuuu(r,θ ,z) =
1√
2π ∑k∈Z

uuuuk(r,z)eikθ ,

and similarly for uuuuBS and ϕ . The decomposition of the operator grad on the spectral
basis (see above) shows that, for each mode k ∈ Z , the following splitting holds:

uuuuk = uuuuk
BS−gradkϕk = uuuuk

BS− (ik/r)ϕk eθ −grad0ϕk. (2.26)

Furthermore, the decomposition of the Laplace operator, and Propositions 2.4, 2.6
and 2.8 imply the following regularity properties:

uuuuk
BS ∈ XXXX reg

(k)(ω) =
{
uuuu ∈ HHHH1

(k)(ω) : uuuu×nnnn|γb = 0
}
, (2.27)

ϕk ∈Φ(k)(ω) =
{
ϕ ∈ H1

(k)(ω)∩ �
H1

1(ω) : Δkϕ ∈ L2
1(ω)

}
. (2.28)

By Proposition 2.6 we know that the space HHHH1
(k)(ω) , and hence XXXX reg

(k)(ω) , is indepen-

dent of k for |k| � 2. The same holds for Φ(k)(ω) , as a consequence of [20, Thm 3.2].
This same theorem also shows that functions in Φ(k)(ω) are of V 2

1 regularity near the
axis γa . Therefore, (ik/r)ϕk is locally of V 1

1 regularity. Elsewhere, this function is of
H1 regularity and vanishes on γb . All together, we see that the vector field (ik/r)ϕk eθ
belongs to the regular space XXXX reg

(k)(ω) . Thus, (2.26) shows that:

∀k ∈ Z, uuuuk ∈ XXXX reg
(k)(ω)+grad0Φ(k)(ω).

Assume for the moment that uuuu has a single Fourier mode, i.e., let

uuuu(r,θ ,z) =
1√
2π

uuuuk0(r,z)eik0θ , for any uuuuk0 ∈ XXXX (k0)(ω) .

Setting k = k0 in the above statement, we see that

XXXX (k0)(ω) ⊂ XXXX reg
(k0)(ω)+grad0Φ(k0)(ω).

The converse inclusion is proved by a similar argument. Finally, XXXX (k0)(ω)= XXXX reg
(k0)

(ω)+
grad0Φ(k0)(ω) , which is independent of k0 for |k0| � 2.
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Finally, we prove that the decomposition is continuous. With the equivalence of
norms statements in Propositions 2.6 and 2.8, the bound (2.25) becomes:

∑
k∈Z

‖uuuuk
BS‖2

1,(k) +‖ϕk‖2
1,(k) +‖Δkϕk‖2

0,1 � ‖uuuuk0‖2
XXXX ,(k0).

On the left-hand side, the contribution of the mode k0 is, of course, less than the sum.
Evidently, it is possible to replace all others coefficients uuuuk

BS and ϕk with 0 without

changing the value of uuuuk0 = uuuuk0
BS − gradk0

ϕk0 . Substituting the symbol k for k0 , we
finally obtain:

‖uuuuk
BS‖1,(k) +‖ϕk‖1,(k) +‖Δkϕk‖0,1 � ‖uuuuk‖XXXX ,(k) , (2.29)

for any uuuuk ∈ XXXX (k)(ω) . Moreover, the linearity of the differential operators and their
decomposition on the spectral basis imply that (2.26)-(2.29) hold for all Fourier coeffi-
cients of all uuuu ∈ XXXX(Ω) . �

Combining the decomposition (2.26) with the description of primal singularities
of the Laplacian Δk in [12, §II.4], one characterises the regularity of these spaces in the
Sobolev scale.

THEOREM 2.10. The following statements hold true. (See Figure 1 and Eq. (2.1)
for the meaning of αe and νc .)

1. The elements of XXXX (k)(ω) are locally regular, i.e. HHHH1
(k) , except in the neighbour-

hood of the reentrant edges and, for k = 0 , of the sharp vertices.

2. The space XXXX (0)(ω) is continuously embedded in HHHHs
(0)(ω) for s < sM := min{αe :

eeee reentrant edge ; νc + 1
2 : cccc sharp vertex} .

3. The space XXXX (k)(ω), |k|� 1 is continuously embedded in HHHHs
(k)(ω) for s <αmin :=

min{αe : eeee reentrant edge} .

4. Consequently, XXXX(Ω) is continuously embedded in HHHHs(Ω) for s < sM . The bound
is sharp.

The Birman-Solomyak decomposition also holds with the magnetic boundary condi-
tion. In this case, there are no singularities in the vicinity of conical vertices, what-
ever their aperture [3, 30]; hence, the space is continuously embedded in HHHHs(Ω) for
s < αmin .

2.5. Dimension reduction

The linearity of Equations (2.15) or (2.16, 2.17), together with the orthogonality
of the different Fourier modes in LLLL2(Ω) , implies that the Fourier coefficients (EEEEk,BBBBk)
of EEEE and BBBB are solutions to similar formulations, with the operators curlk and divk .
Namely, let us define:{

ak(uuuu,vvvv) = (curlk uuuu | curlk vvvv)+ (divk uuuu | divk vvvv) ;

bk(vvvv,q) = (divk vvvv | q).
(2.30)
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Then, we have the augmented formulation:
Find EEEEk ∈ XXXX (k)(ω) such that, for all FFFF ∈ XXXX (k)(ω):

d2

dt2
(EEEEk(t) | FFFF)+ak(EEEEk(t),FFFF) = (ψψψψk(t) | FFFF). (2.31)

And the mixed augmented formulation writes:
Find (EEEEk,Pk) ∈ XXXX (k)(ω)×L2

1(ω) such that, for all (FFFF,q) ∈ XXXX (k)(ω)×L2
1(ω):

d2

dt2
(EEEEk(t) | FFFF)+ak(EEEEk(t),FFFF)+bk(FFFF,Pk(t)) = (ψψψψk(t) | FFFF), (2.32)

bk(EEEEk(t),q) = (ρk(t) | q). (2.33)

REMARK 2.11. Alternatively, the function (r,θ ,z) �→ EEEEk(r,z)eikθ (defined in Ω)
appears as the solution to (2.9) with single-mode sources JJJJk(r,z)eikθ and ρk(r,z)eikθ .
The same holds for

(r,θ ,z) �→ (EEEEk(r,z)eikθ ,Pk(r,z)eikθ )

as a solution to (2.11, 2.12). This allows to transpose directly many known results from
the three-dimensional framework to that of the weighted spaces adapted to each mode.

3. Analysis of the truncation error of the Fourier expansion

In order to evaluate this error, we introduce (as usual) the following scales of
anisotropic Sobolev spaces.

DEFINITION 3.1. Let W (Ω) be any Hilbert space of functions defined in Ω , and
s � 0. The space Hs,W (Ω) is defined:

• when s is an integer, as the space of functions in W (Ω) such that all their partial
derivatives in θ , up to order s , belong to W (Ω) ;

• otherwise, by appropriate interpolation between H�s�,W (Ω) and H�s�+1,W (Ω) .

In both cases, Hs,W (Ω) is a Hilbert space for its canonical norm. For the sake of
simplicity, we shall denote Hm,s(Ω) := Hs,Hm

(Ω) and HHHHm,s(Ω) := Hs,HHHHm
(Ω) when

W (Ω) = Hm(Ω) or HHHHm(Ω) .

In order to describe this regularity in spectral terms, we assume from now on that
W (Ω) fulfils either one of the following properties.

• Either, W (Ω) is continuously embedded in L2(Ω)d , d ∈ {1,3} . Then, the
Fourier coefficients (wk)k∈Z of w ∈ W (Ω) are defined in the usual way. Let
(W(k)(ω))k∈Z be the spaces of such coefficients; their norms can be chosen such
as to have: ‖w‖2

W(Ω) ≈ ∑k∈Z ‖wk‖2
W(k)(ω) .
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• Or, W (Ω) is the dual space of a space V (Ω) , itself continuously and densely
embedded in L2(Ω)d , seen as the pivot space. Then, the (wk)k∈Z are defined by
duality. The spaces W(k)(ω) which they span appear as the duals of the subspaces
V(k)(ω) of L2

1(ω)d . If the (V(k)(ω))k∈Z satisfy an equivalence of norms result as
above, so do the (W(k)(ω))k∈Z .

Then, it is standard matter to check (see e.g. [16, Thm 1.1]) the following result.

LEMMA 3.2. Let W (Ω) and (W(k)(ω))k∈Z as in one of the two above cases, and
s � 0 . The following equivalence of norms holds:

∀w ∈ Hs,W (Ω), ‖w‖2
Hs,W (Ω) ≈ ∑

k∈Z

(1+ |k|2s)‖wk‖2
W(k)(ω), (3.1)

from which one deduces the truncation estimate

∀w ∈ Hs,W (Ω), ∀N � 1,
∥∥w−w[N]∥∥2

W(Ω) � N−2s ‖w‖2
Hs,W (Ω), (3.2)

for the truncated Fourier expansion w[N] defined in (2.20).

The next Proposition is an immediate consequence of Lemma 3.2.

PROPOSITION 3.3. Assume that the electric field has the regularity

EEEE ∈ C 0(0,T ;Hσ ,XXXX (Ω))∩C 1(0,T ;HHHH0,σ (Ω)) for some σ � 0 .

There holds:

∀t ∈ [0,T ], ‖ĖEEE [N](t)− ĖEEE(t)‖2
0 +‖EEEE [N](t)−EEEE(t)‖2

XXXX

� N−2σ
{
‖ĖEEE(t)‖2

HHHH0,σ (Ω) +‖EEEE(t)‖2
Hσ ,XXXX (Ω)

}
, (3.3)

for any fixed integer N � 2 .

Above, the notation ĖEEE is simply ∂tEEEE . It is worth noting that such a regularity in θ
for the solution to Maxwell’s equations can follow from a similar regularity assumption
for the data: roughly speaking, the direction θ is orthogonal to the singularities and “it
does not see them”.

PROPOSITION 3.4. Assume that, for some m ∈ N and σ > 0 , the data satisfy:

JJJJ ∈ Hm+1(0,T ;HHHH0,σ (Ω)),

ρ ∈ Hm(0,T ;
◦
H1,σ (Ω)) in the augmented formulation,

ρ ∈ C m(0,T ;H0,σ (Ω))∩Hm+2(0,T ;H−1,σ (Ω)) in the mixed augmented formulation.

Then, the electric field has the regularity C m(0,T ;Hσ ,XXXX(Ω))∩C m+1(0,T ;HHHH0,σ (Ω)) ,
with continuous dependence.
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Proof. We examine the case m = 0; the general case can be deduced by combining
the following ideas with those of Proposition 2.3. By Remark 2.11, we can write the
continuity estimate for the solution to (2.31):∥∥ĖEEEk(t)

∥∥2
0,1 +

∥∥EEEEk(t)
∥∥2

XXXX ,(k) �
∥∥ψψψψk

∥∥2
L2(0,t;LLLL2

1(ω))

�
∥∥JJJJk

∥∥2
H1(0,t;LLLL2

1(ω)) +
∥∥ρk

∥∥2
L2(0,t;

◦
H1

(k)(ω)).

Then, we multiply this bound by (1+ |k|2σ) , and add the bounds for the values k =−N
to N :

N

∑
k=−N

(1+ |k|2σ )
{
‖ĖEEEk(t)‖2

0,1 +‖EEEEk(t)‖2
XXXX,(k)

}
�

N

∑
k=−N

(1+ |k|2σ)
{∥∥JJJJk

∥∥2
H1(0,t;LLLL2

1(ω)) +
∥∥ρk

∥∥2
L2(0,t;

◦
H1

(k)(ω))

}
.

If JJJJ ∈H1(0, t;HHHH0,σ (Ω)) and ρ ∈ L2(0,t;
◦
H1,σ (Ω)) , then the right-hand side is bounded

by the squared norms of JJJJ and ρ in these spaces when N →∞ , according to Lemma 3.2.
Thus, the same Lemma implies that ĖEEE(t) ∈ HHHH0,σ (Ω) and EEEE(t) ∈ Hσ ,XXXX(Ω) , and that
their squared norms are controlled by the aforementioned squared norms of JJJJ and ρ .
Of course, the same reasoning holds for the solution to (2.32, 2.33). �

Before ending this section, it must be observed that in many practical situations
the Fourier coefficients ρk and JJJJk cannot be computed exactly. So they have to be
approximated by quadrature formulas. Introducing the nodes θm := 2mπ/(2N + 1) ,
for −N � m � N , we define the approximate Fourier coefficients and approximate
truncated expansion of the function w by the formulas:

wk
�(r,z) :=

√
2π

2N +1

N

∑
m=−N

w(r,θm,z)e−ikθm ; (3.4)

w[N]
� (r,θ ,z) :=

1√
2π

N

∑
k=−N

wk
�(r,z)eikθ . (3.5)

These approximate coefficients are the same as in [12, 11, 9]; however, we shall need
slightly more general approximation estimates than in those References.

PROPOSITION 3.5. Let s > t � 0 such that s− t > 1
2 . The following estimates

hold for all w ∈ Hs,W (Ω) : ∥∥w[N]
� −w[N]∥∥2

W (Ω) � N−2s
∥∥w

∥∥2
Hs,W (Ω) ; (3.6)

N

∑
k=−N

(1+ |k|2t)‖wk −wk
�‖2

W(k)(ω) � N−2(s−t) ‖w‖2
Hs,W (Ω). (3.7)
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Proof. The first estimate is a particular case of the second; both rely on the iden-
tity [16]: wk

� = ∑�∈Z wk+(2N+1)� . One can easily adapt the proof of [12, Proposi-
tion VI.4.1], remarking that only regularity in θ is involved; see also [16, Thm 1.2].
�

The linearity of Maxwell’s equations and the previous Proposition imply the fol-
lowing results.

PROPOSITION 3.6. Let ρk
�(t) , JJJJk

�(t) , EEEEk
�(t) , Pk

� (t) and ρ [N]
� (t) , JJJJ[N]

� (t) , EEEE [N]
� (t) ,

P[N]
� (t) be defined as in (3.4) and (3.5), at each instant t .

1. EEEEk
� , respectively (EEEEk

�,P
k
� ) , is the solution to (2.31), resp. (2.32)-(2.33), with data

(ρk,JJJJk) replaced with (ρk
� ,JJJJ

k
�) .

2. EEEE [N]
� , respectively (EEEE [N]

� ,P[N]
� ) is the solution to (2.15), resp. (2.16)-(2.17), with

data (ρ ,JJJJ) replaced with (ρ [N]
� ,JJJJ[N]

� ) .

3. Assuming EEEE ∈ C 0(0,T ;HHHHσ ,XXXX(Ω)) ∩ C 1(0,T ;HHHH0,σ (Ω)) for some σ > 1
2 , we

have:

∀t ∈ [0,T ], ‖ĖEEE [N](t)− ĖEEE [N]
� (t)‖2

0 +‖EEEE [N](t)−EEEE [N]
� (t)‖2

XXXX

� N−2σ
{
‖ĖEEE(t)‖2

HHHH0,σ (Ω) +‖EEEE(t)‖2
HHHHσ ,X (Ω)

}
. (3.8)

In the following Section, we shall examine the discretisation of the variational
formulations (2.31) and (2.32, 2.33), with data (ρk

� ,JJJJk
�) .

4. Discretisations and abstract approximation results

4.1. General framework

The discretisation of the variational formulations for each mode k , viz. (2.31) or
(2.32,2.33) will follow the usual principles. We suppose that we are given a family of
regular triangulations (Th)h>0 of the meridian domain ω . The space of electric fields
XXXX (k)(ω) will be approached by nodal elements, complemented by singular functions in
the case of the SCM. Thus, for the UNFEM we use:

X
h
(k) = X

reg;h
(k) :=

{
vvvvh ∈ C 0(ω)3∩XXXX (k)(ω) : vvvvh|T ∈ Pκ(T )3, ∀T ∈ Th

}
, (4.1)

(κ � 1 is an integer and Pκ(T ) denotes the set of polynomials of degree at most κ
over T ) seen as a subspace of XXXX (k)(ω) . Whereas, for the SCM, we use the space

X
h
(k) = X

reg;h
(k) ⊕X

sing;h
(k) , (4.2)

where the singular complement X
sing;h
(k) will be described in §§5.1 and 6.1.
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The multiplier space Q = L2
1(ω) of the mixed formulation will be approached by

the space Qh , which will also be generated by nodal finite elements. We will always
choose the couple (Xh

(k),Qh) such as to satisfy the two usual requirements, namely,
the ellipticity of ak on the discrete kernel of bk , and a uniform (with respect to h )
discrete inf-sup condition. For the UNFEM and SCM, one can use Qh = Pκ−1,h , the
space of Pκ−1 finite elements seen as a subspace of L2(Ω) . This amounts to using the
well-known Pκ −Pκ−1 Taylor-Hood finite element [31, pp. 176 ff.].

As for the time discretisation, we shall concentrate upon a totally implicit scheme
which is inconditionally stable [21]. An explicit variant will be briefly discussed at
the end of §6. The time mesh being defined by the instants tn = nτ , the value of the
field uuuu at time tn is denoted uuuun ; for its k -th Fourier coefficient uuuuk , we shall write uuuuk;n .
If this field is defined in continuous time, its successive time derivatives are denoted
u̇uuuk;n = ∂t uuuuk(tn), üuuuk;n = ∂ 2

t uuuuk(tn) , etc. The discrete time derivatives of the field uuuuk are
given by: ∂τuuuuk;n := τ−1 (uuuuk;n −uuuuk;n−1) , or ∂2τuuuuk;n := (2τ)−1 (uuuuk;n −uuuuk;n−2) .

4.2. Fully discrete formulations

For the augmented formulations, the totally implicit scheme writes:
Find EEEEk;n+1

h ∈ Xh
(k) such that, for all FFFFh ∈ Xh

(k) ,

(∂ 2
τ EEEEk;n+1

h | FFFFh)+ak(EEEE
k;n+1
h ,FFFFh) = −(∂τJJJJk;n+1

� | FFFFh)+ (ρk;n+1
� | divFFFFh). (4.3)

This equation must be supplemented with initial conditions; so one sets:

EEEEk;0
h = ΠΠΠΠhEEEE

k
0, EEEEk;1

h solution to: (4.4)

τ−2 (EEEEk;1
h −EEEEk;0

h − τ ΠΠΠΠhEEEE
k
1 | FFFFh)+ak(EEEE

k;1
h − 1

2 EEEEk;0
h ,FFFFh)

= −(∂τJJJJk;1
� − 1

2∂τJJJJ
k;0
� | FFFFh)+ (ρk;1

� − 1
2ρ

k;0
� | divFFFFh) . (4.5)

The operator ΠΠΠΠh is an interpolation/projection operator which depends on the numeri-
cal method.

As a natural extension, we have the mixed augmented formulation:
Find (EEEEk;n+1

h ,Pk;n+1
h ) ∈ Xh

(k) ×Qh such that, for all (FFFFh,qh) ∈ Xh
(k)×Qh ,

(∂ 2
τ EEEEk;n+1

h | FFFFh)+ak(EEEE
k;n+1
h ,FFFFh)+bk(FFFFh,P

k;n+1
h ) (4.6)

= −(∂τJJJJk;n+1
� | FFFFh)+ (ρk;n+1

� | divFFFFh) ;

bk(EEEE
k;n+1
h ,qh) = (ρk;n+1

� | qh). (4.7)

4.3. Mode-wise estimates

To obtain such estimates, we suppose that there exists a subspace XXXXs(Ω)⊂ XXXX(Ω) ,
to which the solution to Maxwell’s equation belongs provided the data are regular
enough, and such that its spaces of Fourier coefficients XXXXs

(k)(ω) satisfy an approxi-
mation inequality of the form:

∀uuuu ∈ XXXXs
(k)(ω), ∃uuuuh ∈ X

h
(k), ‖uuuu−uuuuh‖XXXX ,(k) � ε(s,h,k)‖uuuu‖XXXX ,s,(k). (4.8)
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Moreover, the anisotropic Sobolev space Hσ ,XXXXs
(Ω) will be denoted XXXXs,σ (Ω) , for the

sake of simplicity. The construction of this space and the establishment of the approx-
imation inequality will be carried out in §§5 and 6. For the moment, we assume that
the data and the solution are regular enough, typically EEEE ∈ H2(−δ ,T ;XXXXs,q+σ (Ω))∩
H3(−δ ,T ;HHHH0,σ (Ω)) and JJJJ ∈ H2(−δ ,T ;HHHH0,σ (Ω)) , where σ > 1

2 and q ∈ [1,2] , and
δ is a small multiple of the time step τ . The relevance of these conditions will be
examined in §6.3 below.

PROPOSITION 4.1. Let
(
EEEEk;n

h

)
n be the solution to the discrete formulation (4.3).

The following error estimates hold:

‖∂τEEEEk;n
h − ĖEEE

k;n
� ‖2

0,1 +‖EEEEk;n
h −EEEEk;n

� ‖2
XXXX ,(k) � m(s,h,k) , (4.9)

‖EEEEk;n
h −EEEEk;n

� ‖2
0,1 � m(s,h,k) , (4.10)

where

m(s,h,k) := ε(s,h,k)2 ‖EEEEk
�‖2

H2(XXXXs
(k)(ω)) + τ2

[
‖EEEEk

�‖2
H3(LLLL2

1(ω)) +‖JJJJk
�‖2

H2(LLLL2
1(ω))

]
.

Proof. This follows, mutatis mutandis, from the estimates of [21, §5], thanks to
the interpretation of (4.3) as the trace, in a meridian half-plane, of a 3D formulation in
which the sources have only one Fourier mode. �

Now we examine the mixed augmented formulation, following the lines of [21,
§7]. The usual difficulty in the numerical analysis of mixed problems is the derivation
of a uniform (with respect to h ) discrete inf-sup condition (DISC). Here, this issue is
compounded by that of the dependence of this condition on the Fourier mode k . To
our knowledge, no DISC uniform in both h and k has been yet derived for Maxwell or
other mixed equations. So, we shall work with a (maybe not optimal) condition, which
is uniform in h , but depends weakly on k .

LEMMA 4.2. For the P2 -P1 Taylor-Hood element, there exists a constant β , in-
dependent of h and k , such that:

∀qh ∈ Qh, sup
vvvvh∈Xh

(k)

bk(vvvvh,qh)
‖vvvvh‖XXXX ,(k)

� β (1+ |k|)−1‖qh‖0,1 . (4.11)

Proof. In [9, Lemma 3.5], the following DISC is proven for the Stokes problem:

∀qh ∈ Qh(k), sup
vvvvh∈H�

h(k)

(divk vvvvh | qh)
‖vvvvh‖1,(k)

� β̃ (1+ |k|)−1‖qh‖0,1 . (4.12)

For k �= 0, one has Qh(k) = Qh , whereas Qh(0) = {qh ∈ Qh :
∫ ∫

ω
qh rdrdz = 0} . Then

H�
h(k) is

H
�
h(k) :=

{
wwwwh ∈ C 0(ω)3∩ ◦

HHHH1
(k)(ω) : wwwwh|K ∈ P2(K)3, ∀K ∈ Th

}
,
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thus, it is a subspace of our Xh
(k) . According for instance to [1, Rmk 2.6], there holds

|wwww|1 = ‖wwww‖XXXX , for all wwww ∈ ◦
HHHH1(Ω) , and it follows that ‖wwww‖1,(k) = ‖wwww‖XXXX ,(k) for wwww ∈

◦
HHHH1

(k)(Ω) . So, one can replace the norm ‖vvvvh‖1,(k) with ‖vvvvh‖XXXX ,(k) in (4.12), for all vvvvh ∈
H�

h(k) . For k �= 0, this implies (4.11) since the supremum is greater on the bigger

space Xh
(k) .

For k = 0, one has to deal with discrete Lagrange multipliers whose mean value
over Ω is not 0 (recall that Qh = Qh(0)⊕R). This difficulty can be overcome by using
an ad hoc discrete field of Xh

(0) to provide a lower bound in (4.11) for qh = 1. A similar
result has been already obtained in [18, pp. 830-831] in an unweighted framework, and
its proof can be easily adapted to our case. Let us sketch briefly how it is obtained.
Consider γ ′ , a side of γb that does not include any conical vertex. One checks easily
that there exists v′ ∈ C 2(ω) such that: the support of v′|∂ω is a compact subset of γ ′ ;
the support of v′ is included in {(r,z) : r � r0} for some r0 > 0; last,

∫
γ ′ v

′rdr = 1.

Defining vvvv′ = v′ nnnn|γ ′ , one has vvvv′ ∈ C 2(ω)2 and (div0 vvvv′ | 1) = 1.
Then, one builds a suitable approximation v′h of v′ , and vvvv′h = v′h nnnn|γ ′ , such that

(div0 vvvv′h | 1) = 1. Thanks to the smoothness of v′ , one has ‖vvvv′h‖XXXX ,(0) � 1. For qh ∈ R ,
one now derives the lower bound in (4.11) by choosing vvvv′h as the ad hoc test-field.
Finally, given any qh ∈Qh , let us split it as qh = qh(0) +qh , with qh(0) ∈Qh(0) and qh ∈
R . One derives (4.11) by choosing vvvvh = αvvvvh(0) +qhvvvv

′
h , with vvvvh(0) a test-field achieving

the condition for qh(0) (since we already know that (4.11) holds when qh spans Qh(0) ),
and α ∈ R . An ad hoc value of α is obtained by elementary computations (using for
instance Young’s inequality), leading to condition (4.11), for any qh ∈ Qh . �

With this result, we can derive two important properties. The first is the so-called
strong approximability of the kernel of bk ; we recall that the continuous and discrete
kernels are defined as:

KKKK(k)(ω) :=
{
vvvv ∈ XXXX (k)(ω) : bk(vvvv,q) = 0, ∀q ∈ L2

1(ω)
}
,

K
h
(k) :=

{
vvvvh ∈ X

h
(k) : bk(vvvvh,qh) = 0, ∀qh ∈ Qh

}
.

The second is the error estimate between the solution to the static mixed problem:
Given ffff ∈ XXXX (k)(ω)′ and g∈ L2

1(ω) , find (uuuu, p) ∈ XXXX (k)(ω)×L2
1(ω) such that, ∀(vvvv,q) ∈

XXXX (k)(ω)×L2
1(ω) :

ak(uuuu,vvvv)+bk(vvvv, p) = 〈 ffff ,vvvv〉, (4.13)

bk(uuuu,q) = (g | q), (4.14)

and that of its finite element discretisation, which writes:
Find (uuuuh, ph) ∈ Xh

(k) ×Qh such that, ∀(vvvvh,qh) ∈ Xh
(k) ×Qh :

ak(uuuuh,vvvvh)+bk(vvvvh, ph) = 〈 ffff ,vvvvh〉, (4.15)

bk(uuuuh,qh) = (g | qh). (4.16)
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PROPOSITION 4.3. The following approximation inequality holds:{
∀uuuu ∈ KKKK(k)(ω)∩XXXXs

(k)(ω), ∃uuuuh ∈ K
h
(k), such that,

‖uuuuh−uuuu‖XXXX,(k) � (1+ |k|)ε(s,h,k)‖uuuu‖XXXX,s,(k) .
(4.17)

Therefore, if the solution (uuuu, p) to (4.13,4.14) belongs to XXXXs
(k)(ω)×H1

1(ω) , the fol-
lowing estimate holds:

‖uuuuh−uuuu‖XXXX ,(k) +‖ph− p‖0,1 � (1+ |k|)ε(s,h,k)‖uuuu‖XXXX ,s,(k) +h‖p‖1,1 . (4.18)

Proof. Use [31, Chapter II, Thm 1.1] and the previous lemma; the p part of the
error is bounded using the weighted Clément operator of [8, §4.3]. �

The analysis of [21, §7] can be carried over to our case. Compared with their coun-
terparts in that article, the error estimate (4.18) and the approximation inequality (4.17)
contain a factor 1+ |k| in front of ε(s,h,k) . Also, it is better to use L2

1 error estimates
for (4.15,4.16) derived from the Weber inequality than those derived from the Nitsche
trick, which yields a bound in (1+ k2)ε(s,h,k)2 . The term of higher power in h is of
no use, being hidden by other terms with a smaller exponent; thus, the higher power
in k appears unwelcome.

PROPOSITION 4.4. Let
(
EEEEk;n

h ,Pk;n
h

)
n be the solution to the discrete formulation

(4.6,4.7) . The following error estimates hold:

‖∂τEEEEk;n
h − ĖEEE

k;n
� ‖2

0,1 +‖EEEEk;n
h −EEEEk;n

� ‖2
XXXX ,(k) � m′(s,h,k) , (4.19)

‖EEEEk;n
h −EEEEk;n

� ‖2
0,1 � m′(s,h,k) , (4.20)

where

m′(s,h,k) := (1+ k2)ε(s,h,k)2 ‖EEEEk
�‖2

H2(XXXXs
(k)(ω))

+ τ2
[
‖EEEEk

�‖2
H3(LLLL2

1(ω)) +‖JJJJk
�‖2

H2(LLLL2
1(ω))

]
.

5. Theoretical foundations of the SCM and FSCM

In this section, we describe the fields in XXXX(Ω) near the edges and vertices and
study the regularising properties of the elliptic operators associated to the forms ak(·, ·)
and a(·, ·) .

We use the notations of Figure 1: near any corner jjjj of ∂ω , we choose two neigh-
bourhoods ω j ⊂⊂ω ′

j which stay away from the other corners and from the sides which
do not contain jjjj . Local polar coordinates (ρ j,φ j) are used in ω ′

j ; we choose a cutoff
function η j , depending on ρ j only, such that η j ≡ 1 in ω j and η j ≡ 0 outside ω ′

j .
The symbol jjjj will be replaced by eeee (resp. cccc), when the corner is off-axis (resp. on
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the axis), i.e. it is the trace of a circular edge (resp. a conical vertex). For any off-axis
corner eeee , we denote ae = r(eeee) its distance to the z-axis, and φ0

e the angle between the
r -axis and the side φe = 0. Near an on-axis corner cccc , we always take φc = 0 on the
axis γa .

5.1. Description of singularities

Let uuuu be an arbitrary field in XXXX(Ω) . We start from the Birman-Solomyak de-
composition (2.26) at the mode k : uuuuk = uuuuk

BS − gradkϕk , with uuuuk
BS ∈ XXXX reg

(k)(ω) , ϕk ∈
Φ(k)(ω) , see (2.27), (2.28). We combine this with the regular-singular decomposition
of the functions in Φ(k)(ω) from [12, §II.4]:

ϕ0 = ϕ0
∗ +∑

r.e.
λ e

0 Se
0 +∑

s.v.
λ c

0 Sc
0 ; ϕk = ϕk

∗ +∑
r.e.
λ e

k Se
k for |k| � 1 , (5.1)

with ϕk∗ ∈ H2
(k)(ω)∩ �

H1
1(ω) , ∀k , and:

Se
k(ρe,φe) = ηe(ρe)e−|k|ρe ραe

e sin(αeφe), (5.2)

Sc
0(ρc,φc) = ηc(ρc)ρνc

c Pνc(cosφc). (5.3)

Thus we arrive at:

uuuu0 = uuuu0
∗ −∑

r.e.
λ e

0 grad0 Se
0−∑

s.v.
λ c

0 grad0 Sc
0 ; (5.4)

uuuuk = uuuuk
∗ −∑

r.e.
λ e

k gradk Se
k for |k| � 1; (5.5)

with: uuuuk
∗ = uuuuk

BS−gradkϕk
∗ ∈ XXXX reg

(k)(ω) ∀k.

The above decompositions are hardly adapted to numerical computations, as the singu-
lar fields used in them depend on the mode and contain cutoff functions. This point will
be addressed below. However, they have nice properties which we now state.

LEMMA 5.1. The singularity coefficients λ j
k satisfy the bounds:

|λ e
0 | � ‖uuuu0‖XXXX,(0), ∀eeee, |λ c

0 | � ‖uuuu0‖XXXX ,(0), ∀cccc ; (5.6)

|λ e
k | � |k|αe−1 ‖uuuuk‖XXXX ,(k), ∀eeee, ∀|k| � 1. (5.7)

As a consequence,

‖λ e
k gradk Se

k‖XXXX,(k) � ‖uuuuk‖XXXX ,(k) and ‖uuuuk∗‖XXXX ,(k) � ‖uuuuk‖XXXX ,(k) ;

thus, the series ∑uuuuk∗ eikθ and ∑λ e
k (gradk Se

k)eikθ for any reentrant edge eeee converge
in XXXX(Ω) .
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Proof. Let f k := divk(uuuuk −uuuuk
BS) = −Δkϕk . By the continuity estimate (2.29), we

have ‖ f k‖0,1 � ‖uuuuk‖XXXX ,(k) . The coefficients λ j
k are clearly the same in (5.4) or (5.5)

and in (5.1); yet the latter satisfy: |λ j
k |� ‖ f k‖0,1 for |k|� 1 and |λ e

k |� |k|αe−1 ‖ f k‖0,1

for |k| � 2, as shown in [20], respectively Equations (36,49) and Lemma 3.1 of this
Reference. Hence (5.6) and (5.7).

On the other hand, it is easy to check (calculating like in Lemma 5.5 of [3]) that
‖gradk Se

k‖XXXX ,(k) = ‖Δk Se
k‖0,1 � |k|1−αe . Thus, ‖λ e

k gradk Se
k‖XXXX ,(k) � ‖uuuuk‖XXXX ,(k) for all eeee

and finally ‖uuuuk∗‖XXXX ,(k) � ‖uuuuk‖XXXX ,(k) . �

Similar decompositions and estimates hold in the magnetic case (recall the absence
of vertex singularities in this case), with Se

k(ρe,φe) = ηe(ρe)e−|k|ρe ραe
e cos(αeφe) .

5.2. Regularity results

As we remarked in Theorem 2.10, the global regularity of the electromagnetic
field is quite low. In order to have good approximation properties, one has to estimate
the regularity of the regular part of the field, which is approximated by finite elements.
We shall see that it can be limited by all edges and vertices – not only the reentrant or
sharp ones. Moreover, even with very smooth data, it can be hardly better than HHHH1 ; this
condition requires the use of the modified Clément operator defined in §6.2.

DEFINITION 5.2. The space XXXXs
(k)(ω) , for s � 1, is the subspace of all uuuuk ∈

XXXX (k)(ω) whose regular part uuuuk∗ , as defined in (5.4) or (5.5), belongs to HHHHs
(k)(ω) . Its

norm is chosen as:

k = 0 : ‖uuuu0‖2
XXXX,s,(0) := ‖uuuu0

∗‖2
s,(0) +∑

r.e.
|λ e

0 |2 +∑
s.v.

|λ c
0 |2 ; (5.8)

|k| � 1 : ‖uuuuk‖2
XXXX ,s,(k) := ‖uuuuk

∗‖2
s,(k) +∑

r.e.
|k|2(1−αe) |λ e

k |2 . (5.9)

As a particular case, XXXX1
(k)(ω) = XXXX (k)(ω) , and the norms are equivalent.

The space XXXXs(Ω) is the subspace of all uuuu∈ XXXX(Ω) such that its Fourier coefficients
uuuuk belong to XXXXs

(k)(ω) for all k . It is endowed with the canonical norm ‖uuuu‖2
XXXX,s :=

∑k∈Z ‖uuuuk‖2
XXXX,s,(k) .

The finiteness of the norm ‖uuuu‖XXXX,s if uuuuk ∈ XXXXs
(k)(ω) for all k follows from Lemma 5.1.

The latter, together with the well-known [2, §4] equivalence of the norms ‖ ·‖XXXX and ‖ ·
‖1 on XXXX reg(Ω) , hence of ‖ · ‖XXXX ,(k) and ‖ · ‖1,(k) on XXXX reg

(k)(ω) , yields the equivalence of

norms ‖ · ‖XXXX and ‖ · ‖XXXX,1 on XXXX(Ω) .

DEFINITION 5.3. Let νk;�
c be the � -th singularity exponent of the Laplacian (with

Dirichlet boundary condition) at the conical vertex cccc for the Fourier mode k , i.e. the
� -th smallest positive root of Pk

ν (cosπ/βc) = 0. (Thus, νc = ν0;1
c .)
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The limiting regularisation exponent of the Laplacian at the mode k is sk
Δ :=

minSk , where the set Sk is defined as a function of |k| as:

S0 =
{
αe : eeee salient edge ; 2αe : eeee reentrant edge ;

ν0;1
c + 1

2 : cccc non-sharp vertex ; ν0;2
c + 1

2 : cccc sharp vertex
}

;

S1 =
{
αe : eeee salient edge ; 2αe : eeee reentrant edge ; ν1;1

c + 1
2 : cccc any vertex

}
;

Sk =
{
αe : eeee salient edge ; 2αe : eeee reentrant edge

}
, k � 2.

The limiting regularisation exponent of the Maxwell operator at the mode 0 is

s0
� := min

(
αe : eeee salient edge ; 2αe : eeee reentrant edge ;

ν0;1
c + 1

2 : cccc non-sharp vertex ; ν0;1
c + 3

2 : cccc sharp vertex
)

;

while for the modes |k| � 1, one has sk
� = sk

Δ . Notice [12, p. 48] that the only expo-
nents ν whose value is possibly less than 2 are ν0;1

c , ν0;2
c , and ν1;1

c , the latter two
being always greater than 1. This is the reason why, for |k| � 2, regularity is limited
by the edges only.

The global limiting regularisation exponent of the Maxwell operator is

s� := min(s0
�,s

1
�) = min

k∈Z

sk
�.

REMARK 5.4. We see that s� < 2 as soon as one edge aperture is greater than π/2.
As for the conical vertices, there holds sk

� < 2 for |k|= 0, 1 when the aperture is greater
than ϑ|k| , with ϑ0 � 68◦8′ and ϑ1 � 114◦48′ . As a consequence, P1 finite elements
will be sufficient for non-mixed formulations (including correction methods) in most
situations. When using mixed formulations, however, one has to use P2 elements for
the field (and P1 for the multiplier) in order to have the theoretical framework for prov-
ing convergence, see Lemma 4.2 and Propositions 4.3 and 4.4. This is what we assume
in the rest of this article.

PROPOSITION 5.5. Let ffff ∈ XXXX(Ω)′ and g ∈ L2(Ω) , and let (uuuu, p) ∈ XXXX(Ω) ×
L2(Ω) be the solution to:

a(uuuu,vvvv)+b(vvvv, p) = 〈 ffff ,vvvv〉, ∀vvvv ∈ XXXX(Ω), (5.10)

b(uuuu,q) = (g | q), ∀q ∈ L2(Ω). (5.11)

If ffff ∈ HHHHs−2(Ω) and g ∈ Hs−1(Ω) for some s ∈ [1,sk
�) , then uuuuk ∈ XXXXs

(k)(ω) and pk ∈
Hs

(k)(ω) . Consequently, uuuu ∈ XXXXs(Ω) and p ∈ Hs(Ω) for s < s� .

Proof. Thanks to [2], we can adapt the result of [25, Thm 5.2] to the case of the
axisymmetric domain: the (non-unique) Birman-Solomyak decomposition (2.22) can
be chosen such that ffff ∈ HHHHs−2(Ω) and g ∈ Hs−1(Ω) imply that

Δϕ ∈ Hs−1(Ω) , uuuuBS ∈ HHHHσ+1(Ω) , and p ∈ Hτ+1(Ω) ,
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for: {
σ � s−1 and σ < min

{
αe,μD

c + 1
2 ,μN

c + 1
2

}
,

τ � s−1 and τ < min
{
αe,μD

c + 1
2

}
,

where μD
c (resp. μN

c ) is the smallest singularity exponent of the Laplacian with Dirich-
let (resp. Neumann) boundary condition at the vertex cccc . Moreover, this decomposition
is continuous with respect to the norms ‖ ffff‖s−2 and ‖g‖s−1 . We remark that μD

c co-
incides with ν0;1

c ; moreover, it is known [30] that μN
c � μN > 0.84. Thus, at least for

s < 2.34, there holds uuuuBS ∈HHHHs(Ω) and p∈Hs(Ω) iff s < 1+αe (reentrant edges) and
s < ν0;1

c + 3
2 (sharp vertices).

Reasoning mode by mode (see Remark 2.11), we thus have:

uuuuk
BS ∈ HHHHs

(k)(ω) , pk ∈ Hs
(k)(ω) and Δkϕk ∈ Hs−1

(k) (ω) .

By Thms II.4.10 and II.4.11 of [12], the latter property implies that ϕk∗ (defined in (5.1))
belongs to Hs+1

(k) (ω) , i.e. gradkϕk∗ ∈ HHHHs
(k)(ω) for s < sk

Δ . Finally, we notice that for

any reentrant edge, 2αe < 1+αe ; and one can check that ν0;1
c +1 � ν0;2

c for all values
of the aperture π/βc , the equality being possible only if βc = 1. (For the values ν � 2,
see Figure II.4.1 in [12]). Hence the conclusion. �

PROPOSITION 5.6. Let uuuu ∈ XXXX(Ω) and s < s� . Then we have:

uuuu belongs to XXXXs(Ω) iff (curluuuu,divuuuu) ∈ HHHHs−1(Ω)×Hs−1(Ω) .

Proof. Assume (curluuuu,divuuuu)∈HHHHs−1(Ω)×Hs−1(Ω) . It is easy to check that if we
denote by uuuuT the solenoidal part of uuuu (curluuuuT = curluuuu and divuuuuT = 0), (uuuuT ,0) is the
solution to (5.10,5.11), with g = 0 and ffff = curlcurluuuu∈HHHHs−2(Ω) . Hence uuuuT ∈ XXXXs(Ω)
by the previous proposition. On the other hand, the gradient part of uuuu , uuuuL = gradψ , is
characterized by ψ ∈H1

0 (Ω) and Δψ = divuuuu∈Hs−1(Ω) . One finds that ψ ∈Hs+1(Ω) ,
cf. §II.4 of [12]. Thus, uuuuL belongs to XXXXs(Ω) and so does uuuu .

Conversely, uuuu∈XXXX(Ω) implies (curlk uuuuk∗,divk uuuuk∗)∈HHHHs−1
(k) (ω)×Hs−1

(k) (ω) for all k .
As far as the singular parts are concerned, there holds:

curlk gradk S j
k = 0 and divk gradk S j

k = Δk S j
k .

When jjjj is the reentrant edge eeee , this function vanishes near the axis and is smooth
everywhere except near eeee . In addition, in ωe , one finds by direct computations:

Δk Se
k = Δ⊥Se

k + l.s.t. = e−|k|ρe ραe−1
e sin(αeφe){|k|ρe − (1+2αe) |k|}+ l.s.t.

Here, Δ⊥ denotes the Laplacian in the (r,z) plane, and l.s.t. means less singular terms.
Therefore, Δk Se

k ∈ Hαe(ωe) , and globally Δk Se
k ∈ Hs−1

(k) (ω) since αe > 2αe −1 � s−
1. Now, for a sharp vertex cccc , one checks that Δ0 Sc

0 vanishes in ωc , and is smooth
elsewhere. All together, we have thus (curlk uuuuk,divk uuuuk) ∈ HHHHs−1

(k) (ω)×Hs−1
(k) (ω) for

all k , i.e. (curluuuu,divuuuu) ∈ HHHHs−1(Ω)×Hs−1(Ω) . �
The above results can be rephrased for the magnetic boundary condition, provided

one adapts the results of [25] to this case, and uses the description of conical singulari-
ties from [30].
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6. Practical approximation results

6.1. Mode-independent singular fields

For the practical purpose of the SCM, the singular parts can be described with
other singular fields xk, j

S . Generally speaking, these fields should be easy to compute
and satisfy the following conditions.

1. They are independent of k for |k| � 2.

2. They are smooth (i.e., at least C κ+1 if Pκ elements are used) away from the
relevant edge or vertex jjjj .

3. Near the edge or vertex jjjj , they are equal to −gradk S j
k + wwwwk

j , where wwwwk
j ∈

HHHH
sj

(k)(ω j) for some s j > 1 large enough.

4. They satisfy the suitable condition of the mode k on γa .

5. They satisfy the electric boundary condition on γb .

The last two conditions imply that the regular and singular parts of the field satisfy sep-
arately the relevant boundary conditions on ∂ω , so the latter can be treated as essential
for the regular part. Conditions 2 and 3 ensure, first, that the singularity coefficients
will be the same as in (5.4) and (5.5), and then, that the regular part will not be “pol-
luted” by terms not smooth enough to guarantee a good convergence rate of the finite
elements. Finally, the first condition appears mandatory in order to keep the overall
cost of the method at a reasonable level. There is, however, a price to pay: one has to
assume some extra regularity in θ for the field.

We now construct such singular fields. Let Se = −(r/ae) grad0 [ραe
e sin(αeφe)]

and Sc = −grad0 [ρνc
c Pνc(cosφc)] ; their expression in the basis (er,eθ ,ez) writes:

Se = − r
ae
αe ραe−1

e

⎛⎝sin((αe −1)φe−φ0
e )

0
cos((αe −1)φe−φ0

e )

⎞⎠ ; (6.1)

Sc = −ρνc−1

⎛⎝ νc Pνc(cosφc)sinφc +P1
νc

(cosφc)cosφc

0
−νc Pνc(cosφc)cosφc +P1

νc
(cosφc)sinφc

⎞⎠ . (6.2)

These fields obviously satisfy Conditions 1 and 2. For the vertex singular field Sc , Con-
dition 4 for k = 0 follows from the properties of Legendre functions, and Condition 3
is trivially satisfied since this field is exactly equal to −grad0 Sc

0 in ωc (where ηc ≡ 1).
As far as Se is concerned, its three components vanish on the axis thanks to the fac-
tor (r/ae) , hence Condition 4 is satisfied for all modes. Then, we shall see below that
Se + gradk Se

k is equal in ωe to ραe
e gggg(φe)+ higher-order terms, cf. (6.9) below. This

belongs to HHHH1+αe(ωe) = HHHH1+αe
(k) (ωe) , since the function gggg(φe) and the higher-order

terms are smooth.
On the other hand, Se and Sc do not satisfy Condition 5, except on the side(s)

of γb that touch the corner eeee or cccc . Therefore, we take the following
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DEFINITION 6.1. Let x0,e
S :=−(r/ae)σσσσ e , where σσσσ e is grad0 [ραe

e sin(αeφe)] mi-

nus a lifting of its tangential trace on γb , which is smooth. Similarly, x0,c
S is defined as

Sc minus a lifting of its tangential trace on γb , which is smooth.
For the coherence of our notations, we set xk,e

S = x0,e
S for all k ; but let us emphasize

that these fields are independent of k .

LEMMA 6.2. For any field uuuu ∈ XXXX(Ω) , its Fourier coefficient uuuuk can be decom-
posed as:

k = 0 : uuuu0 = uuuu0
R +∑

r.e.
λ e

0 x0,e
S +∑

s.v.
λ c

0 x0,c
S , (6.3)

|k| � 1 : uuuuk = uuuuk
R +∑

r.e.
λ e

k xk,e
S , (6.4)

where:

uuuuk
R ∈ XXXX reg

(k)(ω) ; xk,e
S ∈ XXXX (k)(ω), ∀k ; x0,c

S ∈ XXXX (0)(ω) ;

xk,e
S +gradk Se

k ∈ HHHH1+αe
(k) (ωe), xk,e

S is smooth elsewhere;

x0,c
S = −grad0 Sc

0 in ωc, x0,c
S is smooth elsewhere.

In order to use the decompositions (6.3) and (6.4) for numerical computations, we
have to check their stability in the various norms used for the fields. This is the purpose
of the next two Lemmas.

LEMMA 6.3. The following bounds hold for all modes k and for 1 � s < 1+αe :

‖xk,e
S ‖XXXX ,(k) ≈ ‖Se‖XXXX ,(k) � 1+ |k| ; (6.5)

‖xk,e
S +gradk Se

k‖0,−1 ≈ ‖Se +gradk Se
k‖0,−1 � 1; (6.6)

‖xk,e
S +gradk Se

k‖s,1 ≈ ‖Se +gradk Se
k‖s,1 � 1+ |k|s−αe . (6.7)

Proof. The estimate for Se in (6.5) follows from simple calculations, see (7.3)
and (7.4) below. As for xk,e

S , we remark, as the tangential trace of grad0 [ραe
e sin(αeφe)]

on γb is smooth, there exists a continuous lifting in Hκ+1
1 (ω)3 . Then, multiplying

by −(r/ae) we obtain a continuous lifting in Hκ+1
1 (ω)3 ∩V 1

1(ω)3 , whose norm is
independent of k . Thus:

‖xk,e
S −Se‖s,1 +‖xk,e

S −Se‖0,−1 � 1, for 1 � s < 2. (6.8)

Note that neither xk,e
S nor Se belong to Hs

1(ω)3 , but their difference does. Then, using
the equivalence of the norms ‖·‖XXXX,(k) and ‖·‖1,(k) for regular fields, we get the estimate

for xk,e
S in (6.5).
We now establish the estimates for Se in (6.6) and (6.7); once we have them, the

bounds for xk,e
S will follow thanks to (6.8). The calculations are quite tedious, so we
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will only sketch them. The integrals defining the squared norms ‖Se +gradk Se
k‖2

s,1 and

‖Se +gradk Se
k‖2

0,−1 are made of three contributions, corresponding to different parts of
the domain ω .

1. The region where the cutoff function ηe ≡ 0. There, gradk Se
k = 0, so the result is

independent of k .

2. The region where ηe varies. In this part of the domain, ρe � ρ > 0 and r � r > 0,
so the norm of gradk Se

k (which is smooth there) in any Sobolev space is exponentially
decreasing in |k| , and one can bound the contribution by a constant.

3. The region where ηe ≡ 1, viz. ωe . There, we have the following expression
for gradk Se

k – for the sake of legibility, we generally drop the edge subscript e :

e−|k|ρ ρα−1

⎛⎝α sin((α −1)φ−φ0)−|k|ρ sin(αφ) cos(φ +φ0)
ik r−1ρ sin(αφ)

α cos((α−1)φ −φ0)−|k|ρ sin(αφ) sin(φ +φ0)

⎞⎠ .

To compare the previous expression with (6.1), we keep in mind that r = a+ρ cos(φ +
φ0) , and that the function E defined as E(x) = (ex −1)/x is smooth. Thus, we arrive
at the following form for wwwwe

k := Se +gradk Se
k :

wwwwe
k = |k|e−|k|ρ ρα gggg1(φ)+ |k|E(−|k|ρ)ρα gggg2(φ) (6.9)

+ ik r−1 e−|k|ρ ρα gggg3(φ)+ρα gggg4(φ),
:= wwww1 +wwww2 +wwww3 +wwww4,

where all the functions ggggi(φ) are smooth and independent of k .
We begin by estimating the norm ‖wwwwe

k‖L2
−1(ωe) . As we are away from the axis, it

is bounded above and below by ‖wwwwe
k‖L2(ωe) . Actually, we calculate an Lp norm which

will be needed below. The p -th power of the norm of wwww1 is bounded as

‖wwww1‖p
Lp(ωe)

=
∫ ∫

ωe

|k|p e−p |k|ρ ρ pα |gggg1(φ)|pρ dρ dφ

� Cp,α

∫ +∞

0
|k|p e−p |k|ρ ρ pα+1 dρ

= Cp,α |k|p
∫ +∞

0
e−pξ

(
ξ
|k|

)pα+1 dξ
|k| � |k|p−pα−2.

The calculation goes the same for wwww2 and wwww3 (as r−1 is bounded from above and from
below in ωe ); as for wwww4 , its norm is independent of k . Hence the bounds:

∀p � 2/(1−α), ‖wwwwe
k‖Lp(ωe) � 1; ‖wwwwe

k‖L2−1(ωe) ≈ ‖wwwwe
k‖L2(ωe) � 1.

The bound (6.6) follows, given that the contributions of the other parts of the domain
are also bounded.

Then we proceed with the norm ‖wwwwe
k‖Hs

1(ωe) . It is bounded above and below
by ‖wwwwe

k‖Hs(ωe) ; in turn, a Sobolev injection allows us to bound the latter by

‖wwwwe
k‖W2,p(ωe) ≈ ‖wwwwe

k‖Lp(ωe) + |wwwwe
k|W 2,p(ωe),
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with p = 2/(3−s) . If s < 1+α , then p < 2/(2−α)< 2/(1−α) , and the Lp(ωe) norm
is bounded by a constant. To bound the W 2,p(ωe) semi-norm, we have to estimate the
Lp(ωe) norms of

∂ 2w
∂ρ2 ,

1
ρ

∂ 2w
∂ρ ∂φ

− 1
ρ2

∂w
∂φ

,
1
ρ2

∂ 2w
∂φ2 +

1
ρ
∂w
∂ρ

,

where w is any cylindrical component of any wwwwi . It is easy to see that, for the compo-
nents of wwww1 , these functions are linear combinations of terms of the form

|k|3 e−|k|ρ ρα h1(φ), |k|2 e−|k|ρ ρα−1 h2(φ), |k|e−|k|ρ ρα−2 h3(φ),

where the hi(φ) are smooth and independent of k . Computing as above, we find that
all these terms have their norm bounded by |k|3−α−2/p = |k|s−α . A similar calculation
can be done for wwww2 and wwww3 (as r−1 is smooth in ωe , there holds ‖wwww3‖W 2,p(ωe) �
‖k e−|k|ρ ρα gggg3(φ)‖W 2,p(ωe) ); while the norm of wwww4 is once more constant. Finally:

‖wwwwe
k‖Hs

1(ωe) � ‖wwwwe
k‖W2,p(ωe) � 1+ |k|s−α .

This bound, together with the estimates on the contributions of the other parts of the
domain, leads to (6.7). �

Of course, a similar result holds for the sharp vertices at the mode 0.

LEMMA 6.4. Assume that 1 � s < ν0;1
c + 3

2 . The singular parts associated to the
sharp vertices satisfy:

‖x0,c
S ‖XXXX ,(0) ≈ ‖Sc‖XXXX ,(0) � 1; ‖x0,c

S +grad0 Sc
0‖s,1 ≈ ‖Sc +grad0 Sc

0‖s,1 � 1. (6.10)

As a consequence of the previous two Lemmas and the definition of the norm ‖·‖XXXX ,s,(k)
we have:

LEMMA 6.5. Assume that 1 � s < s� . The regular and singular parts in (6.3)
and (6.4) satisfy, for all uuuu ∈ XXXX(Ω) or XXXXs(Ω) :

‖uuuu0
R‖XXXX ,(0) � ‖uuuu0‖XXXX ,(0), ‖λ j

0 x0, j
S ‖XXXX ,(0) � ‖uuuu0‖XXXX ,(0) ; (6.11)

‖uuuu0
R‖s,1 � ‖uuuu0‖XXXX ,s,(0) ; (6.12)

for the mode k = 0 , while for |k| � 1 there holds:

‖uuuuk
R‖XXXX ,(k) � (1+ |k|α�

)‖uuuuk‖XXXX ,(k), (6.13)

‖λ e
k xk,e

S ‖XXXX ,(k) � (1+ |k|αe)‖uuuuk‖XXXX ,(k) ; (6.14)

‖uuuuk
R‖s,1 � (1+ |k|s−1)‖uuuuk‖XXXX,s,(k) , ‖uuuuk

R‖0,−1 � ‖uuuuk‖XXXX ,s,(k) . (6.15)

Above, we have set α� := max{αe < 1} . As a consequence, the series ∑uuuuk
R eikθ and

∑λ e
k xk,e

S eikθ for any reentrant edge eeee, converge in XXXX(Ω) for all uuuu ∈ H1,XXXX(Ω) .
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For the numerical implementation, one can also orthonormalise the basis (xk, j
S ) j

and compute basis vectors (xk, j
S⊥) j which are orthogonal to one another and to the reg-

ular space XXXX reg
(k)(ω) with respect to the bilinear form ak(·, ·) for |k| � 2. This is the

approach taken, at the discrete level, in §7. The adaptation to the magnetic boundary
condition is once more immediate, with Se = −(r/ae) grad0 [ραe

e cos(αeφe)] .

6.2. The Clément operator

We briefly explain its construction, which follows §§4.3 and 4.4 of [8]. For each
node aaaai in the principal lattice of the triangulation, one selects a triangle Ti which con-
tains aaaai . Then, one introduces πi , the L2

1 -orthogonal projection operator onto Pκ(Ti) :
for any w ∈ L1

1(Ti), πiw ∈ Pκ(Ti) and

∀p ∈ Pκ(Ti),
∫ ∫

Ti

(w−πiw) prdω = 0.

Let us begin with the case of regular fields. In order to enforce the various boundary
conditions for the different modes, one classifies the nodes into four categories:

1. the interior nodes, which do not stand on ∂ω ;

2. the nodes standing on the axis γa , excluding the extremities;

3. those on the sides of the physical boundary γb , excluding the corners;

4. the corners, at the intersection of γa and γb , or of two sides of γb .

One denotes K� = {i : the node aaaai is of category �} , for � = 1, . . . , 4. Notice that:
(i) the outgoing normal and tangent vectors νννν i and ττττ i are unambiguously defined at
each node of category 2 or 3, since the sides are straight; (ii) the regular fields vanish at
the nodes of category 4.

DEFINITION 6.6. Let ϕi be the basis function associated with aaaai . The regularisa-
tion operator ΠΠΠΠσ

h;k : LLLL2
1(ω)→X

reg;h
(k) for the mode k and the boundary condition σ (σ =

ν is the electric b.c., σ = τ is the magnetic b.c.) is the sum ΠΠΠΠσ
h;k :=ΠΠΠΠ 1

h +ΠΠΠΠ 2
h;k +ΠΠΠΠ 3;σ

h ,
where:

ΠΠΠΠ 1
huuuu(xxxx) := ∑

i∈K1

{πiur(aaaai)er +πiuθ (aaaai)eθ +πiuz(aaaai)ez} ϕi(xxxx) ; (6.16)

ΠΠΠΠ 2
h;0uuuu(xxxx) := ∑

i∈K2

πiuz(aaaai)ezϕi(xxxx) ; (6.17)

ΠΠΠΠ 2
h;±1uuuu(xxxx) := ∑

i∈K2

πiu±(aaaai)e±ϕi(xxxx) ; ΠΠΠΠ 2
h;kuuuu(xxxx) := 0 for |k| � 2; (6.18)

ΠΠΠΠ 3;ν
h uuuu(xxxx) := ∑

i∈K3

πiuν(aaaai)νννν iϕi(xxxx) ; (6.19)

ΠΠΠΠ 3;τ
h uuuu(xxxx) := ∑

i∈K3

{πiuτ(aaaai)ττττ i +πiuθ (aaaai)eθ} ϕi(xxxx). (6.20)
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This operator automatically satisfies the electric or magnetic boundary condition on the
physical boundary γb , as well as the boundary condition for regular fields of the mode k
on the axis γa . Let us investigate its approximation properties.

PROPOSITION 6.7. Let uuuu ∈ Hs
1(ω)3 ∩V 1

1(ω)3 such that uuuu× nnnn = 0 , resp. uuuu · nnnn
on γb . The following estimate holds for s ∈ [1,κ +1]:

h−1
∥∥uuuu−ΠΠΠΠσ

h;kuuuu
∥∥

0,1
+

∣∣∣∣∣∣uuuu−ΠΠΠΠσ
h;kuuuu

∣∣∣∣∣∣
1,1 � hs−1 {‖uuuu‖s,1 +‖uuuu‖0,−1} . (6.21)

Hence, for |k| � 2 , s ∈ [1,2] and uuuu ∈ HHHHs
(k)(ω)∩XXXX (k)(ω):

∥∥uuuu−ΠΠΠΠσ
h;kuuuu

∥∥2
1,(k) � h2s−2 (1+ |k|2) {‖uuuu‖2

s,1 +‖uuuu‖2
0,−1

}
. (6.22)

Proof. For integral values of s , the estimate (6.21) is obtained by following the
proof of [8] step by step. To extend it to other values, we rely on interpolation arguments
in suitable scales of weighted spaces. We give the detail in the case s ∈ (1,2) , which is
the one needed in the framework of this article.

It is known (see §2.4) that the following spaces are equal, algebraically and topo-
logically, for 1 < s < 2:

Vs
1(ω) = Hs

(1)(ω) = Hs
1(ω)∩V 1

1(ω) = {w ∈ Hs
1(ω) : w = 0 on γa}. (6.23)

For s = 1, the first two equalities hold; for s = 2, the last three spaces are equal,
while V 2

1(ω) is algebraically and topologically embedded in them. Thus, for s∈ (1,2) ,
Hs

1(ω)∩V 1
1(ω) appears as the interpolate of order s−1 between V 1

1(ω) and H2
1(ω)∩

V 1
1(ω) : this amounts to do interpolation in the scale (Hs(Ω))s in the special case of

scalar functions having only one non-zero Fourier mode, corresponding to k = 1.
Assume now that uuuu ∈H2

1(ω)3∩V 1
1(ω)3 , with uuuu×nnnn|γb = 0. The magnetic bound-

ary condition can be handled in the same manner. The bound (6.21) holds for s = 1 and
s = 2; the above interpolation property implies that it is also true for all s ∈ [1,2] . As
the definition (2.21) implies: ‖·‖2

1,(k) � (1+ |k|2) ∣∣∣∣∣∣ · ∣∣∣∣∣∣1,1 , the estimate (6.22) follows.

In order to extend it to the case of uuuu ∈ HHHHs
(k)(ω)∩XXXX (k)(ω) , i.e., uuuu ∈ Hs

1(ω)3 ∩V 1
1(ω)3

with uuuu×nnnn|γb = 0, we need a density argument which we now give.

First, we know [2, Proposition 4.7 & Remark 4.3] that XXXX(Ω)∩C ∞(Ω)3 is dense
within XXXX reg(Ω) ; with suitable adaptations, the same proof shows the density in XXXX(Ω)∩
HHHH2(Ω) . Then, an interpolation argument in the scale HHHHs(Ω) yields the density in XXXX(Ω)∩
HHHHs(Ω) . As a consequence, XXXX(Ω)∩HHHH2(Ω) is dense in XXXX(Ω)∩HHHHs(Ω) . For the modes
|k| � 2, this means that XXXX (k)(ω)∩HHHH2

(k)(ω) = {uuuu ∈ V 2
1(ω)3 : uuuu× nnnn|γb = 0} is dense

within XXXX (k)(ω)∩HHHHs
(k)(ω) . A fortiori, this is true for the bigger space {uuuu ∈ H2

1(ω)3 ∩
V 1

1(ω)3 : uuuu×nnnn|γb = 0} . �

The operators corresponding to the modes |k| � 1 can be estimated likewise (tak-
ing care of the conditions satisfied by the various components on the axis), giving an
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error in hs−1‖uuuu‖1,(k) . Thus, when the singular space is null, we get the approximation
result (4.8) with:

XXXXs
(k)(ω) := HHHHs

(k)(ω)∩XXXX (k)(ω), ε(s,h,k) = hs−1 (1+ |k|). (6.24)

Now we proceed with the general case. Near a geometrical singularity jjjj = eeee or cccc ,
the numerical space Xh

(k) is spanned by the finite elements plus the singular field S j ;
away from it, the singular field is generally (according to the details of the numerical
method) represented by an interpolate, or a lifting of its trace. This is of no importance,
since S j is C ∞ there, so the approximation will be as good as the finite elements allow.
For instance, the Lagrange interpolation operator Ih satisfies the following bound for
wwww ∈ Hs

1(ω)3 ∩V 1
1(ω)3 and s ∈ [2,κ+1] :

h−1 ‖wwww−Ihwwww‖0,1 +
∣∣∣∣∣∣wwww−Ihwwww

∣∣∣∣∣∣
1,1 � hs−1‖wwww‖s,1 ,

see Proposition 6.1 in [39] and Proposition 4.1 in [8]. Globally, X
h
(k) can be thus de-

scribed as:

X
h
(k) = X

reg;h
(k) ⊕

⊕
g.s.

spanxk, j;h
S , where:

xk, j;h
S ∈ XXXX (k)(ω), xk, j;h

S = S j on ω j, ‖xk, j;h
S −xk, j

S ‖XXXX ,(k) � hκ (1+ |k|).
Consequently, we can define a modified operator ΠΠΠΠσ

h;k on XXXX (k)(ω) as follows:

ΠΠΠΠσ
h;k : uuuu = uuuuR +∑

g.s.
λ j x

k, j
S �−→ ΠΠΠΠσ

h;kuuuuR +∑
g.s.

λ j x
k, j;h
S . (6.25)

Combining Lemma 6.5 with the estimate (6.22) for regular fields, one immediately
obtains:

PROPOSITION 6.8. The operator ΠΠΠΠσ
h;k satisfies the following bound, for any k

and uuuu ∈ XXXXs
(k)(ω): ∥∥uuuu−ΠΠΠΠσ

h;kuuuu
∥∥2

XXXX ,(k) � h2s−2 (1+ |k|2s)‖uuuu‖2
XXXX ,s,(k) . (6.26)

Hence the general form of the approximation result (4.8):

XXXXs
(k)(ω) as in Definition 5.2, ε(s,h,k) = hs−1 (1+ |k|s). (6.27)

6.3. Error estimates for the FUNFEM and FSCM

We recall that the approximate numerical solution is reconstructed by the formula:

{EEEE [N];n
h ,P[N];n

h }(r,θ ,z) :=
1√
2π

N

∑
k=−N

{EEEEk;n
h ,Pk;n

h }(r,z)eikθ ,

where
(
EEEEk;n

h

)
n
, resp.

(
EEEEk;n

h ,Pk;n
h

)
n

is the solution to the fully discrete mode-wise aug-

mented (resp. mixed augmented) formulation.
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THEOREM 6.9. Assume that EEEE ∈ H2(−δ ,T ;XXXXs,q+σ (Ω))∩H3(−δ ,T ;HHHH0,σ (Ω))
and JJJJ ∈ H2(−δ ,T ;HHHH0,σ (Ω)) , where σ > 1

2 , s ∈ (1,s�) and q is defined according to
the numerical method, in the following way:

UNFEM SCM
Non-mixed 1 s
Mixed 2 1+ s

Then we have the error estimates on the reconstructed solutions:∥∥∂τEEEE [N];n
h − ĖEEEn∥∥2

0 +
∥∥EEEE [N];n

h −EEEEn
∥∥2

XXXX � M1 (h2s−2 + τ2 +N−2σ ), (6.28)∥∥EEEE [N];n
h −EEEEn

∥∥2
0 � M2 (h2s−2 + τ2 +N−2σ ). (6.29)

The constants Mi depend on the norms of EEEE and JJJJ in the aforementioned spaces.

REMARK 6.10. Provided that the data JJJJ(t) and ρ(t) are smooth enough, we re-
call (see §5.2) that EEEE(t) belongs automatically to XXXXs(Ω) , for 1 � s < s� .

Proof. Adding the estimates (4.9) or (4.19) from k = −N to N , with the values
of ε(s,h,k) given by (6.24) or (6.27), we obtain:∥∥∂τEEEE [N];n

h − ĖEEE [N];n
�

∥∥2
0 +

∥∥EEEE [N];n
h −EEEE [N];n

�

∥∥2
XXXX

� MN(EEEE,JJJJ) := h2s−2
N

∑
k=−N

(1+ |k|2q)
∥∥EEEEk

�

∥∥2
H2(XXXXs

(k)(ω))

+ τ2
[∥∥EEEE [N]

�

∥∥2
H3(LLLL2(Ω)) +

∥∥JJJJ[N]
�

∥∥2
H2(LLLL2(Ω))

]
.

Using Proposition 3.5, we bound:

MN(EEEE,JJJJ) � h2s−2
[∥∥EEEE [N]∥∥2

H2(XXXXs,q(Ω)) +N−2σ ‖EEEE‖2
H2(XXXXs,q+σ (Ω))

]
+ τ2

[∥∥JJJJ[N]∥∥2
H2(LLLL2(Ω)) +N−2σ ‖JJJJ‖2

H2(HHHH0,σ (Ω))

]
+ τ2

[∥∥EEEE [N]∥∥2
H3(LLLL2(Ω)) +N−2σ ‖EEEE‖2

H3(HHHH0,σ (Ω))

]
.

Then we use the triangle inequality:∥∥EEEE [N];n
h −EEEEn

∥∥2
XXXX �

∥∥EEEE [N];n
h −EEEE [N];n

�

∥∥2
XXXX +

∥∥EEEE [N];n
� −EEEE [N];n∥∥2

XXXX +
∥∥EEEE [N];n −EEEEn

∥∥2
XXXX ,

and similarly for the L2 norm of the time derivative. The last two errors are bounded
by Propositions 3.3 and 3.6; hence (6.28). The bound (6.29) is obtained in the same
manner. �

REMARK 6.11. Combining the arguments of Propositions 3.4 and 5.5, we see
that the hypotheses: ⎧⎪⎨⎪⎩

ψψψψ ∈ H2(−δ ,T ;HHHH0,q+σ (Ω)),
ËEEE ∈ H2(−δ ,T ;HHHH0,q+σ (Ω)),

ρ ∈ H2(−δ ,T ;
◦
H1,q+σ (Ω)),
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together imply EEEE ∈ H2(−δ ,T ;XXXXs,q+σ (Ω)) . The second condition clearly implies EEEE ∈
H4(−δ ,T ;HHHH0,σ (Ω)) . In the augmented formulation, the three conditions are satisfied
if e.g. {

JJJJ ∈ H4(−δ ,T ;HHHH0,q+σ (Ω)),

ρ ∈ H3(0,T ;
◦
H1,q+σ (Ω))∩H5(0,T ;H−1,s(Ω)).

In the mixed augmented formulation, it is enough to have{
JJJJ ∈ H4(−δ ,T ;HHHH0,q+σ (Ω)),

ρ ∈ H2(0,T ;
◦
H1,q+σ (Ω))∩H4(0,T ;H−1,q+σ (Ω)).

REMARK 6.12. If the Fourier coefficients ρk, JJJJk are exactly known, it is suffi-
cient to assume EEEE ∈H2(−δ ,T ;XXXXs,q(Ω))∩C 0(0,T ;XXXX1,σ (Ω))∩C 1(0,T ;HHHH0,σ (Ω)) (for
σ > 0) and JJJJ ∈ H2(−δ ,T ;LLLL2(Ω)) .

REMARK 6.13. The analyses of §4.3 and Theorem 6.9 can be extended to ex-
plicit time schemes. For instance, one can replace the augmented (4.3) and mixed
augmented (4.6) formulations with the explicit centred versions:

(∂ 2
τ EEEEk;n+1

h | FFFFh)+ak(EEEE
k;n
h ,FFFFh) (6.30)

= −(∂2τJJJJ
k;n+1
� | FFFFh)+ (ρk;n

� | divFFFFh),

resp. (∂ 2
τ EEEEk;n+1

h | FFFFh)+ak(EEEE
k;n
h ,FFFFh)+bk(FFFFh,P

k;n+1
h ) (6.31)

= −(∂2τJJJJ
k;n+1
� | FFFFh)+ (ρk;n

� | divFFFFh),

which are formally of higher order in time, and computationally very efficient when
mass lumping is used. If JJJJ is known at the instants tn+1/2 , the derivative ∂2τJJJJk;n+1

� can

be replaced by ∂τJJJJ
k;n+1/2
� , without changing the order of the scheme.

As in [21], one shows that the L2 -error on the field is indeed of order 2 in τ :
provided the fields are regular enough, the estimates (4.10) and (4.20) become respec-
tively: ∥∥EEEEk;n

h −EEEEk;n
�

∥∥2
0,1 � ε(s,h,k)2

∥∥EEEEk
�

∥∥2
H2(XXXXs

(k)(ω)) (6.32)

+ τ4
[∥∥EEEEk

�

∥∥2
H4(LLLL2

1(ω)) +
∥∥JJJJk

�

∥∥2
H3(LLLL2

1(ω))

]
,∥∥EEEEk;n

h −EEEEk;n
�

∥∥2
0,1 � (1+ k2)ε(s,h,k)2

∥∥EEEEk
�

∥∥2
H2(XXXXs

(k)(ω)) (6.33)

+ τ4
[∥∥EEEEk

�

∥∥2
H4(LLLL2

1(ω)) +
∥∥JJJJk

�

∥∥2
H3(LLLL2

1(ω))

]
.

On the other hand, the bounds (4.9) or (4.19) hold without change. Furthermore, all
these estimates are valid under the CFL condition Λτ2 < 4, where the Rayleigh quo-
tient

Λ := sup
vvvvh∈Xh

(k)

‖vvvvh‖2
XXXX ,(k)

‖vvvvh‖2
0,1
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should behave as Λ � h−2 + |k|2 .
Under the assumptions EEEE ∈ H2(−δ ,T ;XXXXs,q+σ (Ω)) ∩ H4(−δ ,T ;HHHH0,σ (Ω)) and

JJJJ ∈ H3(−δ ,T ;HHHH0,σ (Ω)) , where s , q and σ are as in Theorem 6.9, we obtain the
bound (6.28) on the reconstructed solution, and the L2 estimate:

‖EEEE [N];n
h −EEEEn‖2

0 � M3 (h2s−2 + τ4 +N−2σ ). (6.34)

But they are valid under a CFL condition strongly dependent on the number of Fourier
modes used. Thus, explicit schemes may be difficult to use in practice unless the fields
are very regular in θ (i.e. σ is large enough), which allows one to use very few modes.

7. Numerical algorithms

A practical implementation of the SCM in the case where the data are axisymmet-
ric was exposed in [4]. In the case of general data, the method can be applied to the
equations of the mode 0. Let us recall the principle of the SCM [5]: the basis of the
singular space X

sing;h
(0) is computed, once and for all, as a first part of the algorithm,

before solving the Maxwell evolution problem in the suitable space:

X
h
(0) = X

reg;h
(0) ⊕X

sing;h
(0) .

These various versions of the SCM also take advantage of the following specific points:

• At the mode 0, the Maxwell equations decouple into problems involving the merid-
ian (r,z) and azimuthal (θ ) components, which are orthogonal, both in LLLL2

1(ω) and
XXXX (0)(ω) . Moreover, the azimuthal components are regular and are not affected by the
divergence constraint.

• The singular space is spanned by suitably chosen fields: e.g. the gradients of sin-
gular functions of the Laplacian, or fields orthogonal to the regular space; this yields
simple expressions of the various terms coupling the regular and singular parts in the
variational formulations.

We now present an extension of this approach to the modes k �= 0. The principle
consists in choosing an orthogonal complement

X
h
(k) = X

reg;h
(k)

⊥⊕ X
sing;h
(k)

for the modes |k| � 2, while the modes ±2 serve as the “fundamental modes” for
the higher modes |k| > 2, thanks to the stabilisation of spaces for these modes (see
Proposition 2.9). This is the method already used in [20] for the Poisson problem.
Thus, at the continuous level, the practical decomposition of the solution to Maxwell’s
equations is chosen as at the end of §6.1:

EEEEk;n = EEEEk;n
reg +∑

jjjj
κk;n

j x�(k), j
S⊥ , where: EEEEk;n

reg ∈ XXXX reg
(k)(ω), (7.1)
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�(k) = k for |k| � 1, �(k) = 2sign(k) for |k| � 2,

jjjj ∈ {eeee,cccc} for k = 0, jjjj ∈ {eeee} for |k| � 1;

moreover, the basis (xk, j
S⊥) j is orthonormal, and orthogonal to the regular space

XXXX reg
(k)(ω) = XXXX reg

(�(k))(ω)

with respect to the form a�(k)(·, ·) .

7.1. Computation of a basis of the singular space X
sing;h
(k) , for |k| � 2 .

At the discrete level, we define the counterparts of the various terms in (7.1):

EEEEk;n
h = EEEEk;n

reg;h +∑
jjjj

κk;n
j;h x�(k), j;h

S⊥ , where: EEEEk;n
reg;h ∈ X

reg;h
(k) , (7.2)

and the numerical singular fields xk, j;h
S⊥ (|k| � 2) are computed as follows. In the first

step, one defines the fields

xk, j;h
S := S j + x̂k, j;h, such that xk, j;h

S ∈ XXXX (k)(ω) and xk, j;h
S ⊥ak X

reg;h
(k) ,

i.e. the non-principal part x̂k, j;h of the field belongs to the finite element space and
satisfies the appropriate variational formulation and boundary conditions, namely:

ak(x̂k, j;h,wwwwh) = −ak(S j,wwwwh)

= −(curlk S j | curlk wwwwh)− (divk S j | divk wwwwh), ∀wwwwh ∈ X
reg;h
(k) ;

x̂k, j;h×nnnn = −S j ×nnnn on γb , for |k| � 2;

x̂0, j;h · er = 0 and x̂0, j;h · eθ = 0 on γa ,

x̂±1, j;h · e∓ = 0 and x̂±1, j;h · ez = 0 on γa , x̂±2, j;h = 0 on γa.

Above, we have curl0 Sc = 0 and div0 Sc = −Δ0[ρνc Pνc(cosφc)] = 0, while for the
edge singularity:

divk Se = −2αe

ae
ραe−1

e sin((αe −1)φe−φ0
e ) ; (7.3)

curlk Se =
αe ραe−1

e

ae

⎛⎝−ik cos((αe −1)φe−φ0
e )

cos((αe −1)φe−φ0
e )

ik sin((αe −1)φe−φ0
e )

⎞⎠ . (7.4)

These fields belong to L2
1(ω) ; the corresponding integrals should be computed by an

appropriate quadrature formula in the neighbourhood of the corner eeee ; elsewhere, the
usual mass matrix can be used, cf. [4, §4.4].

At the end of this step, the singular complement X
sing;h
(k) is defined as the space

generated by the (xk, j;h
S ) j , for |k| � 2 and jjjj in the relevant set of singularities. The
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stabilisation of spaces then allows to set X
sing;h
(k) = X

sing;h
(2) for |k|� 2; notice furthermore

that X
sing;h
(−2) = X

sing;h
(2) as we shall see below. Thus, the total space Xh

(k) is spanned by

the usual nodal finite elements plus (Se)e , for all k , and also plus (Sc)c , for k = 0: we
are in the framework of §6, which validates the error estimates.

The second step consists in orthormalising the basis of X
sing;h
(k) , i.e. one determines

the fields
xk, j;h

S⊥ =∑
iiii

ck, j;h
i xk,i;h

S s.t. ak(x
k,i;h
S⊥ ,xk, j;h

S⊥ ) = δi, j,

for |k| � 2 and iiii, jjjj in the relevant set of singularities. This involves the computation
of the scalar products

ak(x
k, j;h
S ,xk,i;h

S ) = ak(x̂k, j;h, x̂k,i;h)+ak(S j, x̂k,i;h)+ak(x̂k, j;h,Si)+ak(S j,Si);

the first term is computed by the stiffness matrix, while the other three need the same
treatment near the corners as above. Then the orthonormalisation itself is performed by
the usual Schmidt or Arnoldi procedure.

7.2. Solution of the evolution problem

The solution of the mixed augmented evolution problem at the mode 0 follows
the principle of [4, §4.3], except that we are now using orthogonal complements. As
said above, the azimuthal component of EEEE0 is regular; it is solution to a wave-like
equation which can be easily solved by nodal finite elements [4, §2.3]. We now expose
the solution of the meridian problem. Notice that the orthogonalisation procedure only
modifies the meridian components, so the x0, j;h

S⊥ are meridian.
We use the following notations: u = ur er +uz ez is the meridian component of uuuu ;

the scalar curl (or rotational) and divergence operators of meridian fields are:

rotu := ∂ruz− ∂zur, divu := r−1 ∂r(rur)+ ∂zuz,

and the bilinear forms a0 and b0 reduce to

a0(u,v) = (rotu | rotv)+ (divu | divv), b0(u, p) = (divu | p).

Now, we are able to put the splitting (7.2) (restricted to the meridian components) into
the suitable variational formulation. As an example, we show the totally implicit, mixed
augmented formulation (4.6)- (4.7), with the time index n+1 shifted to n . The adapta-
tion to the non-mixed case is obvious. Taking successively as test functions Fh ∈ X

reg;h
(0)

and x0,i;h
S⊥ in (4.6), and then qh ∈ Qh in (4.7), we arrive at the coupled mixed problem:

Find (E0;n
reg;h,P

0;n
h ) ∈ X

reg;h
(0) ×Qh and −→κ 0;n

h =
(
κ0;n

j;h

)
j
∈ R

Ne+Nc (4) such that, for all

(Fh, iiii,qh) ∈ X
reg;h
(0) ×{eeee,cccc}×Qh:

∂ 2
τ

(
E0;n

reg;h | Fh

)
+∑∂ 2

τ κ
0;n
j;h

(
x0, j;h

S⊥ | Fh

)
+a0

(
E0;n

reg;h,Fh

)
(7.5)

4 Ne and Nc are the numbers of reentrant edges and sharp vertices.
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+b0

(
Fh,P

0;n
h

)
= −(

∂τJ0;n
� | Fh

)
+

(
ρ0;n

� | divFh
)
,

∂ 2
τ

(
E0;n

reg;h | x0,i;h
S⊥

)
+∑∂ 2

τ κ
0;n
j;h

(
x0, j;h

S⊥ | x0,i;h
S⊥

)
+κ0;n

i;h (7.6)

+b0

(
x0,i;h

S⊥ ,P0;n
h

)
= −

(
∂τJ0;n

� | x0,i;h
S⊥

)
+

(
ρ0;n

� | divx0,i;h
S⊥

)
,

b0

(
E0;n

reg;h,qh

)
+∑κ0;n

j;h b0

(
x0, j;h

S⊥ ,qh

)
=

(
ρ0;n

� | qh
)
. (7.7)

The summation runs on all singularities jjjj ∈ {eeee,cccc} . The numerical solution of this
problem then follows the principle of [4, §4.3].

The method for the modes k = ±1 is similar, as the singular fields are adapted to
these modes. The differences are: the meridian and azimuthal components cannot be
decoupled, as they are not orthogonal for the form a±1(·, ·) , and the boundary condition
on the axis γa mixes them. Instead, one has to use the basis (e+,e−,ez) , as remarked
above (cf. Remark 2.7). Moreover, there are no singularities at the sharp vertices. Thus,
we arrive at the following formulation:

Find (EEEEk;n
reg;h,P

k;n
h )∈X

reg;h
(k) ×Qh and −→κ k;n

h =
(
κk;n

e;h

)
e
∈RNe such that, for all (FFFFh, iiii,qh)∈

X
reg;h
(k) ×{eeee}×Qh:

∂ 2
τ

(
EEEEk;n

reg;h | FFFFh

)
+∑∂ 2

τ κ
k;n
e;h

(
xk,e;h

S⊥ | FFFFh

)
+ak

(
EEEEk;n

reg;h,FFFFh

)
(7.8)

+bk

(
FFFFh,P

k;n
h

)
= −

(
∂τJJJJk;n

� | FFFFh

)
+

(
ρk;n

� | divk FFFFh

)
,

∂ 2
τ

(
EEEEk;n

reg;h | xk,i;h
S⊥

)
+∑∂ 2

τ κ
k;n
e;h

(
xk,e;h

S⊥ | xk,i;h
S⊥

)
+κk;n

i;h (7.9)

+bk

(
xk,i;h

S⊥ ,Pk;n
h

)
= −

(
∂τJJJJk;n

� | xk,i;h
S⊥

)
+

(
ρk;n

� | divk xk,i;h
S⊥

)
,

bk

(
EEEEk;n

reg;h,qh

)
+∑κk;n

e;h bk

(
xk,e;h

S⊥ ,qh

)
=

(
ρk;n

� | qh

)
. (7.10)

This time, the summation runs on the reentrant edges eeee only.
We now examine the cases of the modes |k| � 2. First, we show that the meridian

and azimuthal components are orthogonal w.r.t. the form ak(·, ·) . Let uuuu, vvvv be vector
fields in the space

HHHH(k)(curlk,divk;ω) :=
{
wwww ∈ LLLL2

−1(ω) : curlk wwww ∈ LLLL2
1(ω) and divk wwww ∈ L2

1(ω)
}

.

A simple integration by parts shows

ak(uuuu,vvvv) = a0(u,v)+ k2
(u

r

∣∣∣ v
r

)
(7.11)

+(curluθ | curlvθ )+ k2
(uθ

r

∣∣∣ vθ
r

)
+ ikB(uuuu,vvvv)

:= ak(u,v)+ ak(uθ ,vθ )+ ikB(uuuu,vvvv),

where the vector curl of a scalar field is defined as curlw := −∂zwer + r−1∂r(rw)ez .
Thanks to the absence of singularities at the sharp vertices, the fields in XXXX (k)(ω) are
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of HHHH1
(k) regularity near the axis, and thus automatically belong to LLLL2

−1(ω) . (The same

holds for the magnetic boundary condition). The boundary term B(uuuu,vvvv) is equal to

B(uuuu,vvvv) =
∫
γb
{(uuuu ·nnnn)vθ −uθ (vvvv ·nnnn)}dγ,

so it vanishes when uuuu×nnnn = vvvv×nnnn = 0 (and likewise when uuuu ·nnnn = vvvv ·nnnn = 0). As far as
the form bk is concerned, there holds:

bk(uuuu, p) = b0(u, p)+ ik
(uθ

r

∣∣∣ p
)

.

Unlike the mode 0, the divergence constraint mixes the meridian and azimuthal com-
ponents. Fully decoupling these components is therefore possible in the non-mixed
formulation (4.3) only.

The formula (7.11) has several consequences. First, ak = a−k , so the orthogo-
nalisation procedure of §7.1 gives x−2,e;h

S⊥ = x2,e;h
S⊥ . Moreover, given that the azimuthal

component of Se is zero, and the azimuthal component of any field in XXXX (k)(ω) is regu-
lar (recall the proof of Proposition 2.9), the orthogonalisation procedure only modifies
the meridian components of Se , and so the x2,e;h

S⊥ are meridian. Finally, there holds:

ak(uuuu,vvvv) = a2(uuuu,vvvv)+ (k2−4)
(uuuu

r

∣∣∣ vvvv
r

)
:= a2(uuuu,vvvv)+ (k2−4) [uuuu | vvvv]−1. (7.12)

If we take successively as test functions FFFFh ∈ X
reg;h
(k) and x0,i;h

S⊥ in (4.6), and take into

account the orthogonality of the basis
(
x2,e;h

S⊥
)

e
for the form a2 , we arrive at the cou-

pled mixed problem:

Find (EEEEk;n
reg;h,P

k;n
h )∈X

reg;h
(k) ×Qh and −→κ k;n

h =
(
κk;n

e;h

)
e
∈RNe such that, for all (FFFFh, iiii,qh)∈

X
reg;h
(k) ×{eeee}×Qh:

∂ 2
τ

(
EEEEk;n

reg;h | FFFFh

)
+∑∂ 2

τ κ
k;n
e;h

(
x2,e;h

S⊥ | FFFFh

)
+ak

(
EEEEk;n

reg;h,FFFFh

)
(7.13)

+(k2−4)∑κk;n
e;h

[
x2,e;h

S⊥ | FFFFh

]
−1

+bk

(
FFFFh,P

k;n
h

)
= −

(
∂τJJJJk;n

� | FFFFh

)
+

(
ρk;n

� | divk FFFFh

)
,

∂ 2
τ

(
EEEEk;n

reg;h | x2,i;h
S⊥

)
+∑∂ 2

τ κ
k;n
e;h

(
x2,e;h

S⊥ | x2,i;h
S⊥

)
+κk;n

i;h (7.14)

+(k2−4)∑κk;n
e;h

[
x2,e;h

S⊥ | x2,i;h
S⊥

]
−1

+b0

(
x2,i;h

S⊥ ,Pk;n
h

)
= −

(
∂τJJJJk;n

� | x2,i;h
S⊥

)
+

(
ρk;n

� | divk x2,i;h
S⊥

)
,

bk

(
EEEEk;n

reg;h,qh

)
+∑κk;n

e;h b0

(
x2,e;h

S⊥ ,qh

)
=

(
ρk;n

� | qh

)
. (7.15)

The summation runs on the reentrant edges eeee .
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From a numerical point of view, notice that the various terms in (7.5-7.7), (7.8-
7.10), and (7.13-7.15) involving the xk, j;h

S⊥ correspond to integrals with singular inte-
grands near the geometrical singularities; similarly, the integrals defining the forms
ak(·, ·) and [· | ·]−1 need special care near the axis γa . See [4, §4.4] for an efficient
implementation.

7.3. Miscellaneous

Let us now explain briefly the decoupling of meridian and azimuthal components
in the non-mixed formulation.

The meridian component Ek;n
reg;h is solution to a problem similar to (7.13)-(7.14),

without the bk and b0 terms, and with div instead of divk .
As for the azimuthal component, we recall that it is regular. Indeed, at the contin-

uous level, Ek := Ek
θ belongs to

H1
(k)(ω)∩ �

H1
1(ω) = V 1

1(ω)∩ �
H1

1(ω),

and is solution to (cf. (2.31)):〈
Ëk,F

〉
+ ak(Ek,F) = −

(
J̇k | F

)
+ ik

(
ρk

r

∣∣∣ F

)
, ∀F ∈V 1

1(ω)∩ �
H1

1(ω). (7.16)

This is a wave-like equation whose strong form writes:

∂ 2
t Ek −Δ1E

k +(k2/r2)Ek = −∂tJ
k +(ik/r)ρk ;

its numerical solution by nodal finite elements is no difficulty. The azimuthal compo-
nents of fields in Xh

(k) belong to

Vh
◦ =

{
wh ∈ C 0(ω) : vh|T ∈ Pκ(T ), ∀T ∈ Th, and vh|∂ω = 0

}
.

Taking an azimuthal test function in (4.3), we arrive at the following formulation:

∂ 2
τ

(
Ek;n

h | Fh

)
+ ak(E

k;n
h ,Fh) = −

(
∂τJk;n

� | Fh

)
+ ik

(
ρk;n

�

r

∣∣∣ Fh

)
∀Fh ∈Vh

◦ .

Finally, we show that the overall cost of the method can be slightly reduced, as
in [19, 20], by setting κk;n

e;h := 0 for |k| large enough, i.e., setting EEEEk;n
h := EEEEk;n

reg;h , where

EEEEk;n
reg;h is the solution to the mixed augmented problem:

Find (EEEEk;n
reg;h,P

k;n
h ) ∈ X

reg;h
(k) ×Qh such that, for all (FFFFh,qh) ∈ X

reg;h
(k) ×Qh :

∂ 2
τ

(
EEEEk;n

reg;h | FFFFh

)
+ak

(
EEEEk;n

reg;h,FFFFh

)
+bk

(
FFFFh,P

k;n
h

)
(7.17)

= −
(
∂τJJJJk;n

� | FFFFh

)
+

(
ρk;n

� | divk FFFFh

)
,

bk

(
EEEEk;n

reg;h,qh

)
=

(
ρk;n

� | qh

)
, (7.18)
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or of the similar explicit centred or non-mixed versions.
To see that this can be done without deteriorating the convergence rate, we remark

that |κk;n
e;h |� |λ k;n

e;h | , where λ k;n
e;h is the singularity coefficient of EEEEk;n

h defined as in (5.5).
Then, using (5.7) and (7.12), we bound:

‖EEEEk;n
h −EEEEk;n

reg;h‖2
XXXX ,(k) � ∑

∣∣∣κk;n
e;h

∣∣∣2 ‖x2,e;h
S⊥ ‖2

XXXX ,(k)

� ∑ |k|2αe−2 ‖EEEEk;n
h ‖2

XXXX ,(k)

[
1+(k2−4)‖x2,e;h

S⊥ ‖2
0,−1

]
� |k|2α� ‖EEEEk;n‖2

XXXX ,(k),

where α� = maxe{αe < 1} (the maximum runs over reentrant edges). The squared
error of the SCM is controlled by h2s−2 |k|2q , where q = s in the non-mixed case and
q = 1+ s in the mixed case, if one recalls the required regularity of the electric field in
Theorem 6.9. Thus, one can neglect the singular part provided that

|k|α� � hs−1 |k|q, i.e. |k| � C� h
− s−1

q−α� , for some constant C�.

As α� < 1, we see that the exponent of h , viz. − s−1
q−α� , is always less than 1 in absolute

value.
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