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NUMERICAL SOLUTION OF MAXWELL’S EQUATIONS
IN AXISYMMETRIC DOMAINS WITH THE
FOURIER SINGULAR COMPLEMENT METHOD

PATRICK CIARLET, JR. AND SIMON LABRUNIE

(Communicated by U. Stefanelli)

Abstract. We present an efficient method for computing numerically the solution to the time-
dependent Maxwell equations in an axisymmetric domain, with arbitrary (not necessarily ax-
isymmetric) data. The method is an extension of those introduced in [20] for Poisson’s equation,
and in [4] for Maxwell’s equations in the fully axisymmetric setting (i.e., when the data is also
axisymmetric). It is based on a Fourier expansion in the azimuthal direction, and on an improved
variant of the Singular Complement Method in the meridian section. When solving Maxwell’s
equations, this method relies on continuous approximations of the fields, and it is both H (curl)-
and H (div)-conforming. Also, it can take into account the lack of regularity of the solution
when the domain features non-convex edges or vertices. Moreover, it can handle noisy or ap-
proximate data which fail to satisfy the continuity equation, by using either an elliptic correction
method or a mixed formulation. We give complete convergence analyses for both mixed and
non-mixed formulations. Neither refinements near the reentrant edges or vertices of the domain,
nor cutoff functions are required to achieve the desired convergence order in terms of the mesh
size, the time step and the number of Fourier modes used.

1. Introduction

There exist many methods to compute numerically the solution to Maxwell’s equa-
tions. Among those methods, let us mention the edge finite element method, introduced
by Nédélec [41, 42]. This method proved very efficient for the static, harmonic and
eigenvalue problems related to Maxwell’s equations. To improve the flexibility of the
discretization, a discontinuous Galerkin method has been recently introduced [35]. On
the other hand, it is interesting for some applications to have a continuous approxima-
tion of the electromagnetic field, aimed at capturing both the curl and the divergence
of the fields. In particular, it allows to reduce the numerical noise, when the Maxwell
solver is embedded in a time-dependent Vlasov-Maxwell code. This is the method ear-
lier introduced by Heintzé et al. [6]. But the latter worked only in convex (curvilinear)
polyhedra.

However, three-dimensional computations can be very expensive. In a number
of cases, one reduces the problem to two-dimensional equations by assuming that the
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geometry is invariant by translation or by rotation. If in addition the data are also invari-
ant, then the problem can be further reduced to a single two-dimensional problem (cf.
[5, 4, 24]). When this is not the case, one has to consider a series of two-dimensional
problems, obtained by Fourier analysis. This approach, called the Fourier-Finite El-
ement Method (FFEM), was initiated by Mercier-Raugel [39] for elliptic problems.
More recent developments include: the works of Heinrich et al. [33, 34], which relied
on mesh refinement techniques; and also by the authors and co-workers [19, 20], which
relied on the Singular Complement Method (SCM). Both techniques allow one to im-
prove the convergence rate of the method. Recall briefly the principle of the SCM: the
space of solutions V is split with respect to regularity in a regular subspace Vg and a
singular one Vg, namely V = Vg & Vy. When the domain is regular, i.e., convex or with
a smooth boundary, there is no singularity in the solutions of the Poisson or Maxwell
equations, so that Vs = {0} and Vg =V, and no singular complement is required. When
this is not the case, one enlarges the discrete space by adding some approximation of a
singular field. Combining this method with the Fourier analysis in the third dimension
leads to the so-called Fourier-Singular Complement Method (FSCM).

As it is well-known, functions defined by continuous finite elements are of H' reg-
ularity.! Consequently, when solving Maxwell’s equations in a non-convex and non-
smooth domain, with a continuous, H(curl)- and H(div)-conforming discretization,
the discretized spaces are always included in a closed, strict subspace Vg of V. In
other words, one cannot hope to approximate the part of the field which belongs to
Vs [5]. In particular, mesh refinement techniques fail. The SCM addresses this prob-
lem by explicitly adding some singular complements. An alternate choice has been
devised recently by Nkemzi [43] to solve the time-harmonic Maxwell equations, which
combines singular complement and mesh refinement techniques. However, the singu-
lar complement technique used in [43] requires the use of cutoff functions, which are
difficult to handle numerically (due to their fast variations), as proven in [32]. More-
over, the time-dependent Maxwell equations are not easily solved when one uses mesh
refinement. Finally, the generalized Maxwell equations (see [7]) which require an ex-
plicit approximation of divergence of the fields, are not covered by the theory devel-
oped in [43]. Another alternative is the Weighted Regularization Method of Costabel-
Dauge [27, 28, 22], which recovers density of the discretized spaces by measuring the
electromagnetic fields in appropriately weighted Sobolev spaces.

In this article, we extend the FSCM to the solution of the time-dependent Maxwell
equations in an axisymmetric domain with arbitrary data. This work is a generalisation
of [4], where only axisymmetric data were considered, and no convergence analysis was
performed. Our analysis follows the spirit of [20], where the FSCM was applied to the
solution of Poisson’s equation. It also borrows the “abstract error estimate” approach
from [21], where we introduced a general framework to analyse the discretisation of
Maxwell’s equations by nodal (continuous) finite elements, while considering several
ways of taking into account the divergence condition satisfied by the fields. That is to
say, the FSCM will be applied to a generalized version of Maxwell’s equations, intro-

For any piecewise polynomial vector field w defined on Q C R3, the conditions w € H(curl;Q) N
H(div;Q), we H'(Q)?, and w € €°(Q)? are equivalent.
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duced in [7]. Among others, one can handle data which do not satisfy the continuity
equation; this is especially useful when the Maxwell solver is embedded in a Vlasov-
Maxwell code.

However, this article is not a straightforward application of [21]: in the latter work,
the whole computational domain was meshed by finite elements. Here, we use finite
elements in a two-dimensional section only, and a spectral method in the third dimen-
sion. We treat the time-dependent equations, including the mixed formulations, which
are used in a variety of applications in order to enforce the divergence condition. We
note that one can approximate the time-harmonic equations using the approach we de-
velop hereafter. Furthermore, we analyse the error due to the spectral analysis of the
data, as in [11, 9]. Finally, we propose an algorithm to implement the FSCM.

Our analysis treats the non-singular case (Vs = {0} ) as a limiting case. This spe-
cific instance of the FFEM will be referred to as the Fourier-Usual Nodal Finite Element
Method (FUNFEM). A Fourier-Weighted Regularisation Method could be analysed in
a similar manner; this might be quite technical, as one would have to deal with dou-
bly weighted Sobolev spaces. The weights inherent to the regularisation method would
interact with those due to the use of cylindrical coordinates. On the other hand, edge
element methods cannot be processed within the same framework. A mixed method,
using edge elements conformal in a weighted H (curl)-type space to solve the static
Maxwell equations with axisymmetric data, was described and analysed in [24]. In or-
der to analyse a Fourier-Edge Element Method for time-dependent Maxwell equations,
one would have to combine this approach with that of [23], as well as Fourier analysis.

The outline of the article is as follows. In section 2, we present the geometrical
setting, the various versions of the Maxwell equations which we study, as well as the
variational formulations in three dimensions and two dimensions. Then, in section 3,
we analyse the impact of the numerical Fourier analysis and truncation. Next, in section
4, we provide mode-wise, abstract (method-independent) error estimates. Section 5
describes the singularities of electromagnetic fields, and the theoretical foundations of
the (F)SCM. Practical approximation results are then obtained in section 6. Section 7
discusses a possible implementation of the FSCM.

2. Equations and dimension reduction

2.1. Geometric setting and notations

In this article, we consider an axisymmetric domain €, generated by the rotation
of a polygon @ around one of its sides, denoted ¥,. The boundary of ® is thus dw =
Ya U7, where ¥, generates the boundary I' of Q. We assume for simplicity that the
domain Q is simply connected, with a connected boundary. The natural cylindrical
coordinates will be denoted by (r,0,z). The geometrical singularities that may occur
on I' are circular edges and conical vertices, which correspond respectively to off-axis
corners of Y, and to its extremities. Figure 1 shows the various notations associated
to these singularities; a more complete description of the geometry of w can be found
in [2, 3].
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Figure 1: Notations for the geometrical singularities; e: reentrant edge; c: conical vertex.

As we know from these references, the initial- and boundary-value problems asso-
ciated with the (static or time-dependent) Maxwell equations will be singular, i.e. their
solution will generically not be in H'(Q) — as it would be the case in a regular> domain
— iff there are reentrant edges or sharp vertices in I". Sharp vertices are defined by the
condition (see Figure 1):

Ve <1/2, where: Ve :=min{v > 0: P, (cos(n/B.)) =0}, 2.1

and P, denotes the Legendre function. This is satisfied iff 7/, > 7/B, ~ 130°48’.

We define the comparison operators < and = as follows. a < b means a < Cbh,
where C is a constant which depends only on the geometry, and not on the mesh size #,
the Fourier order k, or the data of the Maxwell problem. a ~ b denotes the conjunction
of a<band b <a.

2.2. Three-dimensional equations

We start from the classical Maxwell equations in vacuum:

E J
— —c*curlB=-—

ot 8()’
B
8_ +curlE =0,
ot
divE =2,
&
divB =0.

ZRecall that a domain is regular if it is convex or if its boundary belongs to €.
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Let n denote the unit outward normal vector to the boundary, and assume that the
domain in which we solve Maxwell’s equations is surrounded by a perfect conductor,
which imposes,

Exn=0 and B-n=0onT. 2.2)

The initial condition is simply
(E7B>\t=0 = (EOaBO>7 (2.3)

for some given data (Eo,Bg). A necessary condition for these equations to be well-

posed is the continuity equation
ap

divli+ — =0. 2.4

ivJ + T 2.4)

REMARK 2.1. One can extend our results to the case of composite materials

(see [29, 37, 38, 22] for the treatment of singularities at the interfaces), or impose a

Silver-Miiller absorbing boundary condition on a part of the boundary. For the latter,

see for instance [5, 4, 11].

In order to develop efficient finite element methods in our setting, it is preferable to
use equivalent second order formulations. Eliminating E and B between the evolution
equations, one finds that the electric and magnetic fields satisfy the following vector
wave equations:

J’E 1 dJ

92 +¢? curleurlE = —8—0 a5 (2.5)
J°B 1

57 +¢? curlcurl B = % curlJ. (2.6)

The constraint equations (divergence and boundary conditions) still hold; moreover, one
has to supply the second-order problem with initial conditions for the time derivatives:

0E 1

—  =Ej, where E; = ¢* curlBy— —J |, (2.7)
dt =0 &

0B

— = B, where B = —curlE, (2.8)
dt |1=0

and the extra boundary condition for the magnetic field:

1
(c2 curl B — —J) xn=0.

€
As they only involve the curl operator, the equations (2.5) and (2.6) are adapted to
discretisations by edge elements [23, 40]. If one wishes to use nodal finite elements —
which are generally more efficient for charged particle simulations, especially Vlasov-
Maxwell computations — one has to add terms related to the divergence of the fields [6,
5, 4], yielding the “augmented” formulations:

J’E

J
Fr +¢? (curlcurlE — graddivE) = —— T gradp, (2.9)
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0°B 1
-5+ ¢ (curlcurl B — graddivB) = — curlJ. (2.10)
ot &

REMARK 2.2. In the time-harmonic regime, the addition of graddiv terms is
usually called “regularization”, see among others [14, 26, 27, 15].

If one wants the divergence constraints to be explicitly preserved in time, even though
the data may not satisfy exactly (a discrete version of) the continuity equation (2.4), one
can use “mixed” or saddle-point formulations. Here are the mixed augmented versions:

0’E
P ¢ (curlcurl E — graddivE) + grad Pg (2.11)
_1aJ & rad
g Ot & gracp,
divE = 2. (2.12)
€

Ji’’B . 1

e + ¢* (curlcurl B — graddivB) + grad Pg = @ curlJ, (2.13)
divB = 0. (2.14)

The mixed unaugmented versions simply lack the graddiv terms. Setting P = —c> 9, p,
one obtains a formulation with elliptic correction [7] which does not have a saddle-
point structure, but actually is a non-mixed formulation with a modified right-hand side
devised to take into account the lack of charge conservation. It can be studied much
like the formulations (2.5)-(2.6) or (2.9)-(2.10), with ad hoc hypotheses [21].

In the sequel, we shall concentrate on the various augmented formulations for the
electric field, and mention along the way the adaptations for the magnetic field. For the
sake of simplicity, we also set ¢ = & = 1.

2.3. Variational formulations in 3D

Consider L?(Q) the Lebesgue space of measurable and square integrable functions
over Q, with (-|-) and || - ||o its associated scalar product and norm, H*(Q) the scale

of Sobolev spaces, for s € R, and H 1(Q) the subspace of H'(Q) made of elements
with a vanishing trace on I' = dQ. From now on, we adopt the notations:

L(Q) =LX(Q)°,
H'(Q)=H'(Q),
H'(Q):= [ H(Q),

o<s

=

'(Q):=[H’(Q).

o<s

The electric field naturally belongs to the Sobolev space H(curl;Q), where

H(curl;Q) := {ve L*(Q) : curlve L*(Q)},
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Hy(curl; Q) := {v € H(curl;Q) : vxnp=0}.

At the same time, the augmented formulation, as described in Assous et al. [6], is set in
the functional space

X(Q) := Ho(curl; Q) N H(div;Q),
where: H(div;Q) := {v € L*(Q) : divv € L*(Q)}.

The space X (Q) is compactly embedded in L?(Q) [44]. As a consequence, when T is
connected, one can define an equivalent scalar product and norm on X (Q), as
a(u,v) := (curlu | curlv) + (divu | divv), |ux := a(u,u)"/>.
In other words, the L?-norm is uniformly bounded by the X -norm for elements of
X (Q): this is the so-called Weber inequality.
In [21] we noticed that the vector wave equation (2.9) satisfied by the electric field

can be recast in the form:
Find E € H'(0,T;L*(Q))NL*(0,T; X (Q)) such that

d2

G E@ | F)+a(E(),F)

(w(t)|F), VFeX(Q). (2.15)

Above, we have set: (y |F)=—(dJ|F)+(p |divF),ie., y:=—dJ—gradp. In
this article, we shall always assume that y belongs to L?(0,T;L*(Q)); so the equa-
tion (2.15) admits a unique solution

Ec%°0,T;X(Q)N%E'(0,T;L*(Q))NH*(0,T:X(Q)")

by the Lions variational theory [36]. This is the case if, e.g., J € H'(0,T;L*(Q)) and

p €L*(0,T;HY(Q)).

As far as the magnetic field is concerned, it is worth noting that the formula-
tion (2.10) does not belong in the framework of the Lions theory. Moreover, some
underlying integrations by parts and certain traces considered are not justified a priori.
The well-posedness can be proved by following [10].

The mixed augmented formulation is given as:

Find E € H'(0,T;L*(Q))NL?*(0,T;X(Q)) and P € L*(0,T;L?*(Q)) such that

2
j?(E(t) | F)+a(E(t),F)+b(F,P(t))=(w(t)|F), VF eX(Q), (2.16)

b(E(1),q) = (p(1) |q), VgeL*(Q). (2.17)

where we have set: b(v,q) := (¢| divv). As remarked in [21], the well-posedness result
proved in [17, 7] for the mixed unaugmented formulation can be easily generalised to
the mixed augmented one.

We complete this paragraph with a simple, but useful continuity result.
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PROPOSITION 2.3. For some m € N, assume that
J € H™(0,T;L2(Q)) and p € H™(0,T;HY(Q)).
Then the solution to the augmented formulation has the regularity
Ec¢™"(0,T:X(Q)NE" (0, T;L*(Q)),

and satisfies the continuity estimate:

107 E@llo+ 19EOx S Lm0z + lolamosir@y-  218)
Similarly, if

J € H™Y(0,T;L*(Q)) and p € €™(0,T;L*(Q))NH"2(0,T;H'(Q)),
then the solution to the mixed augmented formulation has the regularity

Ec€™(0,T:X(Q)NE" 1 (0,T:L*(Q)), P €™ (0,T;L*(Q)),

with the continuity estimate:

18" E (0)[lo + 19/ E (@) |[x + 197"P() o
S M gmer0,:22(0)) + 10l 0,122 @)nmm 20081 (@) (2:19)

Proof. If m = 0, these are the classical well-posedness results, see [36, 17, 7].
In the general case, the above assumptions ensure that the variational formulations are
well-posed with J and p replaced with d/"J and 9/"p; therefore, they have a unique
solution satisfying the classical continuity estimate. Yet, this solution satisfies the same
equations (in the sense of distributions) as 9/"E or (d/"E,d/"P); we conclude by the
uniqueness of the temperate solution to a linear equation. [

2.4. Functional spaces in 2D
The scalar and vector fields defined on Q will be characterised through their
Fourier series in 0, the coefficients of which are functions defined on , viz.
R
w(r,0,7) = Y wh(rz)e*?, resp. w(r,0,z) Zw rz)eld
271' keZ T keZ
and the truncated Fourier expansion of w at order N is:

\/_ iy

The regularity of the function w (resp. w) in the scale H*(Q) (resp. H*(Q)), for
s > 0, can be characterised by that of the (w*)zcz (resp. the cylindrical components

wiM(r,0,7) = wh(r,z)elt?. (2.20)
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of the (Wh)iez: wk = whe, + wheg +wke,) in certain spaces of functions defined

over @ [12, §8I1.1 to I1.3], namely:

weH (Q) <= VkeZ, w' e Hj(w) and ke% Hwkuggk)(w) < oo,

weH(Q) < VkeZ, whe H{,(0) and ke%llwknlz‘lfmw) < oo,
where the H{, (w) and H ) (w) are defined in turn with the help of two different types
of weighted Sobolev spaces. We shall now give these definitions for the values of s
and k chiefly needed in this article. The notations for the various spaces are the same
as in [12], where the interested reader can find the proofs and the most general versions
of the subsequent statements.”

First, for any 7 € R we consider the weighted Lebesgue space

LX) := {w measurable on @ : // lw(r,2)|? rfdrdz < oo}.
()

This space, as well as all the spaces introduced in this article, is a Hermitian space of
functions with complex values. The scale (H3(®))~ is the canonical Sobolev scale

built upon L2(w), defined for s € N as:
Hi(0) = {w € L2(w): 9L0Mw € I2(w), Ye,mst. 0< L+ m < s} 7

and by interpolation for s ¢ N. We denote by |- ||s,c and |- | the canonical norm

and semi-norm of H3(w). We also define the subspace I<->I%(w) (of H{(w)) of func-
tions which vanish on ¥, : it is involved in the definition of the Fourier coefficients of
functions in ;II(Q)

A prominent role will be played by L?(w), which appears to be the space of
Fourier coefficients (at all modes) of functions in L?(Q); thus its scalar product is
also denoted (- | -). Upon this space, we build another, dimensionally homogeneous
Sobolev scale (Vi(®)),. defined as:

Vi(0) = {w € Hi(0) : 9l € I3 (w), Ve,mst. 0< L+ m< |s] } :
where [s] denotes the integral part of s. One can check that the general definition
reduces to

Vi(w)={weH}(0): B,jw’ya =0, forall j€E Ns.t. j<s—1},
when s is not an integer; while for the first values of s € N, we have:
Vi(o) = Li(w), Vi(w)=Hi(0)NL(0), Vi(e)=Hi(0)nH (o).

The canonical norm of V{(w) is denoted by || - ||s,1; it is equivalent to |- |, except
for s € N\ {0}.
We are now ready to define the most useful spaces of Fourier coefficients.

3Much of this subsection parallels [43, §§2.2 to 2.4]. However, our statements are more general than those
of the latter work, which uses different notations for the weighted spaces, as in [39, 33].
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PROPOSITION 2.4. The spaces H|, ( ), for s €]0,2], are characterized as fol-
lows.

{WEHz( ): 3rW€L31(w)},
s=2: H(zil)(a)) {weH}(w): w\ya=O}7
Hjy(0) =Vi(w), Y[k >

REMARK 2.5. The scales Hj(w), V{(w), and H(Sk)(w) (for all k) can be ex-

tended to negative values of the exponent s, by the usual duality procedure with respect
to the pivot space, which is L7 () in all cases. Thus the H(Sk)(w), for s < 0, appear as

the spaces of Fourier coefficients of functions in H*(L2), see §3 below.

PROPOSITION 2.6. The spaces H‘Ek)(w),for 0 < s < 2, are characterized as fol-
lows.

)
H), (0) = V}(0) x Vi(0) x H}(0),
A @) = {Orwew) € HY(0) x Bl (@) x Vi(0):
wrtiwg € L2 (0)},

Hj(0) =Vi(0)’, VI >2;
Hy, () = Vi(0) < V(@) x H (o).

Vse (1.2): Hfil)(a)) {(wr,wo,w;) € H(w) x H}(0) x V§ (o) :

wriiwe}ya =0},
Hy, () = Vi(0), VK >2
For |k| < s, the space H fk)( ) is endowed with the natural norm || - |, ) given by the

above definition, while for |k| > s the canonical norm is:
2 2 PXRTIE 2
WIS, = Wl + &7 lr wllg, - (2.21)

With this definition, there holds the equivalence of norms:

HWH%P'(Q) ~ Y, Hwk”i(k)

keZ
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REMARK 2.7. In order to take into account the conditions on ¥, for the modes
k = £1, we shall sometimes use the following representation for the vector fields
in Hi, ) (0): w=wie +w_e +we;, withws = % (w,Fiwg) and e+ = % (e, +
ieg). Thus, w € H(ll)(w) has a component w on y,, while w_ vanishes in a weak

sense [2, Proposition 3.18]; and conversely for w € H 371)({*’)'

Let us now examine the space of relevant Fourier coefficients for the electro-
magnetic fields. One easily checks that for w € H'(Q), resp. w € L*(Q) such that
Aw € L*(Q), there holds:

gradw = % kezz grad, wk eik97 resp. Aw = \/%_n kezzAk wk eik97
while for w € H(div;Q), resp. H(curl;Q):
divw = L Y divew e resp. curlw= L Y curl, wf k0,
T kez \/E keZ

Above, the operators for the mode k are defined as:

ow ik ow 10 ow k2 *w
grad,w:= ——e,+ —wep+—=—e€;; Agwi=—— —=w+ =
r r Z ror

d 9 "o 2 02’
. 1 d(rw,) ik ow; L owg
div, w = 7W9+8—z’ (curlkw)r._7wz—a—z,
_Ow, dw; 1 (d(rwe) .
(curlyw)y == 5 o’ (curlyw), := - (7(% —ikw, | .

As an immediate consequence, we have the following characterisation.

PROPOSITION 2.8. Let X (1)(@) be the space
X (o) :={veL}(w): curlyv € L}(0) and divyv € Li(0) and v x n|y, =0},
endowed with the canonical norm
V115, ¢y = Il eurlvi[g, + || divev][5 .-

The field u belongs to X(Q) iff. for all k € Z, its Fourier coefficients u* € X(k)(w),
and the sum Y7 HukH;(k) is finite. In this case, it is equal to ||u|%. A similar result
holds for the magnetic boundary condition.

These spaces enjoy an important property.

PROPOSITION 2.9. The space X y)(w) is independent of k, for k| > 2.
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Proof. In the seminal work by Birman and Solomyak [13], the following result is
proved. Any field u € X(Q2) can be decomposed as:

u =ups—gradp, where: (2.22)
ugs € X™¢(Q) :=X(Q)NH (Q), (2.23)
ped(@):={pe H'(Q):Ap e @)} (2.24)
and:  [|lugs|[1 +[|@[l1 + |A@lo < [fullx - (2.25)

Let us expand u in Fourier series:

u(r,0,z) = uk(r,z)e*?,

V2 T kez

and similarly for ugs and ¢@. The decomposition of the operator grad on the spectral
basis (see above) shows that, for each mode k € Z, the following splitting holds:

u* = ulg —grad, of = uk, — (ik/r) p* ey — grad, o*. (2.26)

Furthermore, the decomposition of the Laplace operator, and Propositions 2.4, 2.6
and 2.8 imply the following regularity properties:

uBSEX() {ueH 1 (@) 1uxnly, =0}, (2.27)
<
oF € Dy (0) = {9 € Hjy(0) NH(0) : &g € Li(0) }. (2.28)
By Proposition 2.6 we know that the space H % (@), and hence XEC%( ), is indepen-
dent of k for |k| > 2. The same holds for ®;)(®), as a consequence of [20, Thm 3.2].

This same theorem also shows that functions in @, (w) are of V% regularity near the

axis y,. Therefore, (ik/r) @* is locally of V' regularity. Elsewhere, this function is of
H' regularity and vanishes on ;. All together, we see that the vector field (ik/r) @*eq
belongs to the regular space X%(w) . Thus, (2.26) shows that:

VkeZ, u'eX§(w)+grady®p (o).

Assume for the moment that # has a single Fourier mode, i.e., let

1
V21

Setting k = kg in the above statement, we see that

X(ko)(w) C Xzii)(w) +grad0 d)(ko)(w)

u(r,0,z) = w0 (r,z2)e*?  for any ubo ¢ X () (@)

The converse inclusion is proved by a similar argument. Finally, X () (@) =X Eii) (0)+
grad, @ (), which is independent of ko for [ko| > 2
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Finally, we prove that the decomposition is continuous. With the equivalence of
norms statements in Propositions 2.6 and 2.8, the bound (2.25) becomes:

> sl o+ 19517 @) + 1Ak
k€Z

(2)71 S ||“k°||§(7(k0)-

On the left-hand side, the contribution of the mode k is, of course, less than the sum.
Evidently, it is possible to replace all others coefficients “lfes and ¢f with 0 without
changing the value of uf = u];g — grady, @%0 . Substituting the symbol k for ko, we
finally obtain:

sl .0 + 1051110 + 1A o1 S Nl x) » (2.29)

for any uf € X (k)(w). Moreover, the linearity of the differential operators and their
decomposition on the spectral basis imply that (2.26)-(2.29) hold for all Fourier coeffi-
cientsofall u € X(Q). O

Combining the decomposition (2.26) with the description of primal singularities
of the Laplacian A; in [12, §11.4], one characterises the regularity of these spaces in the
Sobolev scale.

THEOREM 2.10. The following statements hold true. (See Figure 1 and Eq. (2.1)
for the meaning of o, and Vv..)

1. The elements of X(k)(a)) are locally regular, i.e. Hék), except in the neighbour-
hood of the reentrant edges and, for k = 0, of the sharp vertices.

2. The space X )(w) is continuously embedded in HY, (w) for s < sy :=min{o :

e reentrant edge ; V. + % : ¢ sharp vertex}.

3. The space X (1) (®), |k| > 1 is continuously embedded in ka)(w) for s < Omin 1=
min{ o, : e reentrant edge}.

4. Consequently, X (Q) is continuously embedded in H*(Q) for s < sy . The bound
is sharp.

The Birman-Solomyak decomposition also holds with the magnetic boundary condi-
tion. In this case, there are no singularities in the vicinity of conical vertices, what-
ever their aperture [3, 30]; hence, the space is continuously embedded in H*(Q) for
S < Olin -

2.5. Dimension reduction

The linearity of Equations (2.15) or (2.16, 2.17), together with the orthogonality
of the different Fourier modes in L?(Q), implies that the Fourier coefficients (E¥, B¥)
of E and B are solutions to similar formulations, with the operators curl; and divy.
Namely, let us define:

(2.30)

ar(u,v) = (curlyu | curly v) + (divy u | divg v);
br(v,q) = (divgv | q).
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Then, we have the augmented formulation:
Find E* € X 1) (@) such that, for all F € X ;) (®):

d2

(B [ F)+a(E* (1), F) = (' (1) | F). (231)

And the mixed augmented formulation writes:
Find (E*,P¥) ¢ X (1) (@) x L3(o) such that, for all (F,q) € X (1) (0) x L} w):

2
%(Ek(l) | F) +an(EX (1), F) + by (F,PX(1)) = (w*(t) | F), (232

bi(E*(1),q) = (p"(t) | ). (2.33)

REMARK 2.11. Alternatively, the function (r,0,z) — E*(r,z) ¢'*? (defined in Q)
appears as the solution to (2.9) with single-mode sources J*(r,z)e'*? and p*(r,z)e*? .
The same holds for

(r,0,2) — (E*(r,2) e*® PX(r,z) )

as a solution to (2.11, 2.12). This allows to transpose directly many known results from
the three-dimensional framework to that of the weighted spaces adapted to each mode.

3. Analysis of the truncation error of the Fourier expansion

In order to evaluate this error, we introduce (as usual) the following scales of
anisotropic Sobolev spaces.

DEFINITION 3.1. Let W(Q) be any Hilbert space of functions defined in Q, and
s > 0. The space H*Y (Q) is defined:

e when s is an integer, as the space of functions in W(Q) such that all their partial
derivatives in 0, up to order s, belong to W(Q);

e otherwise, by appropriate interpolation between H L"'J’W(Q) and H L"'HLW(Q).

In both cases, H*Y (Q) is a Hilbert space for its canonical norm. For the sake of
simplicity, we shall denote H™*(Q) := H**"(Q) and H™*(Q) := H*H"(Q) when
W(Q)=H"(Q) or H"(Q).

In order to describe this regularity in spectral terms, we assume from now on that
W (Q) fulfils either one of the following properties.

e Either, W(Q) is continuously embedded in L*(Q)?, d € {1,3}. Then, the
Fourier coefficients (wWK)icz of w € W(Q) are defined in the usual way. Let
(W) (@))kez be the spaces of such coefficients; their norms can be chosen such

as to have: (||, o) ~ Ziez ||WkH‘2}V(k)(w) '
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e Or, W(Q) is the dual space of a space V(Q), itself continuously and densely
embedded in L?(Q)?, seen as the pivot space. Then, the (w*);cz are defined by
duality. The spaces Wy, (@) which they span appear as the duals of the subspaces

Vg (@) of L3 (w)?. If the (Vix)(@))rez satisfy an equivalence of norms result as
above, so do the (W) (®))rez -

Then, it is standard matter to check (see e.g. [16, Thm 1.1]) the following result.

LEMMA 3.2. Let W(Q) and (W) (®))rez as in one of the two above cases, and
s 2 0. The following equivalence of norms holds:

e Y@, (W~ TA+K) I R @ GD
keZ

from which one deduces the truncation estimate
wwe BV (Q), =1, [w—w|L o SN wldw g, (3.2)

for the truncated Fourier expansion wN) defined in (2.20).

The next Proposition is an immediate consequence of Lemma 3.2.

PROPOSITION 3.3. Assume that the electric field has the regularity
E c¢°0,T;H X (Q))N€' (0, T; H*° (Q)) for some & > 0.

There holds:

ve0.7], |EM@-EOR+IEM0) -E@)|}
SN2 LB 3000+ IEO o x g o 33)
for any fixed integer N > 2.

Above, the notation E is simply ¢,E . It is worth noting that such a regularity in 0
for the solution to Maxwell’s equations can follow from a similar regularity assumption
for the data: roughly speaking, the direction 6 is orthogonal to the singularities and “it
does not see them”.

PROPOSITION 3.4. Assume that, for some m € N and o > 0, the data satisfy:
J e H™(0,T:H*°(Q)),

p € H™(0,T;H"“9(Q)) in the augmented formulation,
p € €™(0,T;H*(Q))NH"™(0,T;H "7 (Q)) in the mixed augmented formulation.

Then, the electric field has the regularity €™ (0,T;H°X(Q))N€"+1(0,T;H*°(Q)),
with continuous dependence.
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Proof. We examine the case m = 0; the general case can be deduced by combining
the following ideas with those of Proposition 2.3. By Remark 2.11, we can write the
continuity estimate for the solution to (2.31):

, 2 2 2
HEk(f)Hm +E Oy 0 S HwkHLz(O,t‘Lz( )
< 1941 (0413 ( +||pk||L20zH(lk)( 0)

Then, we multiply this bound by (1 -+ |k|?>®), and add the bounds for the values k = —N
to N:

N

> 1+ P {1E @)

=—N

B+ IS 0 b

N
$ X AP I Gonaiion + 10 Wiy o0

If JeH'(0,t;H*°(Q)) and p € L2(07t;1(-)117"(§2)), then the right-hand side is bounded
by the squared norms of J and p in these spaces when N — o, according to Lemma 3.2.
Thus, the same Lemma implies that E(r) € H%°(Q) and E(¢) € H°*(Q), and that
their squared norms are controlled by the aforementioned squared norms of J and p.
Of course, the same reasoning holds for the solution to (2.32,2.33). [

Before ending this section, it must be observed that in many practical situations
the Fourier coefficients p* and J* cannot be computed exactly. So they have to be
approximated by quadrature formulas. Introducing the nodes 6, := 2mn /(2N + 1),
for —N < m < N, we define the approximate Fourier coefficients and approximate
truncated expansion of the function w by the formulas:

V2r X >
wh(r,2) = T 2 w(nng)e ikOy (3.4)
m=—N
(V] 1 u wk ik
wi (r,0,2) := Ner t(r,z) € (3.5)
k=N

These approximate coefficients are the same as in [12, 11, 9]; however, we shall need
slightly more general approximation estimates than in those References.

PROPOSITION 3.5. Let s >t > 0 such that s —t > . The following estimates
hold for all w € HV (Q) :

e Ll 1

HS: W ) (36)

N

2 (LRI =il o) S N2 o - (3.7)
=—N
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Proof. The first estimate is a particular case of the second; both rely on the iden-
tity [16]: wk = Yy Wk ¥+DL " One can easily adapt the proof of [12, Proposi-
tion VI.4.1], remarking that only regularity in 6 is involved; see also [16, Thm 1.2].
d

The linearity of Maxwell’s equations and the previous Proposition imply the fol-
lowing results.
PROPOSITION 3.6. Let pk(¢), J¥(t), EX(r), PX(t) and p™ (1), 3™ (1), EM (1),
*[N] (t) be defined as in (3.4) and (3.5), at each instant t.
1. EX, respectively (EX,P*), is the solution to (2.31), resp. (2.32)-(2.33), with data
(%, J%) replaced with (pk,J%).
[N] p[N]

2. ELN], respectively (E}",P,") is the solution to (2.15), resp. (2.16)-(2.17), with

data (p,J) replaced with (p*[N]7 LN]).

3. Assuming E € €°(0,T;H°X(Q)) N €1 (0,T;H*°(Q)) for some o > %, we
have:
veeo,7), [1EV () - EN @R+ IEN () - EN )%
SN2 LIEW) 000+ IEO) o gy} B:B)

In the following Section, we shall examine the discretisation of the variational
formulations (2.31) and (2.32, 2.33), with data (p%,J).

4. Discretisations and abstract approximation results

4.1. General framework

The discretisation of the variational formulations for each mode k, viz. (2.31) or
(2.32,2.33) will follow the usual principles. We suppose that we are given a family of
regular triangulations (.9},),~¢ of the meridian domain @ . The space of electric fields
X (1) (@) will be approached by nodal elements, complemented by singular functions in
the case of the SCM. Thus, for the UNFEM we use:

ih. o .

Xty =X = {wm e €°(@) NX (@) :var €Pe(T), VT € Z4}, (4D
(k > 1 is an integer and P (T) denotes the set of polynomials of degree at most k
over T') seen as a subspace of X (k) (w). Whereas, for the SCM, we use the space

X{y = X" @ X(E, 4.2)

where the singular complement X?gg;h will be described in §§5.1 and 6.1.
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The multiplier space Q = L% (w) of the mixed formulation will be approached by
the space O, which will also be generated by nodal finite elements. We will always
choose the couple (X]Zk)7Qh) such as to satisfy the two usual requirements, namely,
the ellipticity of a; on the discrete kernel of by, and a uniform (with respect to /)
discrete inf-sup condition. For the UNFEM and SCM, one can use Oy = Py_1, the
space of P_; finite elements seen as a subspace of L?(Q). This amounts to using the
well-known Py — P, Taylor-Hood finite element [31, pp. 176 ff.].

As for the time discretisation, we shall concentrate upon a totally implicit scheme
which is inconditionally stable [21]. An explicit variant will be briefly discussed at
the end of §6. The time mesh being defined by the instants " = nt, the value of the
field u at time " is denoted u”; for its k-th Fourier coefficient u*, we shall write 2% .
If this field is defined in continuous time, its successive time derivatives are denoted
Wk = 9k (1™, Wk = 92uk (1), etc. The discrete time derivatives of the field u* are
given by: dpu® 1= 171 (1" — w1 or Ohu® = (27) 7 (Wb — uk2).

4.2. Fully discrete formulations

For the augmented formulations, the totally implicit scheme writes:

Find EZ;"H € Xf’k) such that, for all F), € X}(lk)’

(FE" | Fo)+ ax (B Fp) = —(0 5" | Fp) + (08 | divFy).  (43)

This equation must be supplemented with initial conditions; so one sets:

Ez;o =II,E}, Eﬁ;l solution to: 4.4)
v 2 (B} — E° —tILEY | Fy) + au(E)' — L E° Fy)
= —(0I5" = 300 | Fa) + (08" — 3050 [divFy). (45

The operator IT;, is an interpolation/projection operator which depends on the numeri-
cal method.

As a natural extension, we have the mixed augmented formulation:
Find (EZ;"H,P}IL“"H) € Xf’k) X Qy, such that, for all (Fy,qp) € X]Zk) x O,

(O2EF™1 | Fy) + ar(EE" Fy) + by(Fy, BE") (4.6)
= — (T Fp) + (05" | divFy,);
b(EF" ™ qn) = (05 | q). (4.7

4.3. Mode-wise estimates

To obtain such estimates, we suppose that there exists a subspace X*(Q) C X (Q),
to which the solution to Maxwell’s equation belongs provided the data are regular
enough, and such that its spaces of Fourier coefficients X fk)(a)) satisfy an approxi-
mation inequality of the form:

Vu € X{jy (@), Fup € Xf’k), |0 — wnllx k) S €(s,hk) ||ullx 5, 5)- (4.8)
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Moreover, the anisotropic Sobolev space H°X' (Q) will be denoted X*°(Q), for the
sake of simplicity. The construction of this space and the establishment of the approx-
imation inequality will be carried out in §§5 and 6. For the moment, we assume that
the data and the solution are regular enough, typically E € H?(—§,T;X*71°(Q))N
H3(—8,T;H%°(Q)) and J € H*(—§,T;H*°(Q)), where 6 > § and ¢ € [1,2], and
0 is a small multiple of the time step 7. The relevance of these conditions will be
examined in §6.3 below.

PROPOSITION 4.1. Let (Eﬁ;")n be the solution to the discrete formulation (4.3).
The following error estimates hold:

|0:ER" — B 5,0+ | EF" = EX"|[ o S m(s, k), (4.9)
ES" —ES" 51 S m(s,h,k), (4.10)
where
m(s k) = e(s.m k)" B Fooe, o)+ 7 1B a2 + 942 0200 ))}

Proof. This follows, mutatis mutandis, from the estimates of [21, §5], thanks to
the interpretation of (4.3) as the trace, in a meridian half-plane, of a 3D formulation in
which the sources have only one Fourier mode. [

Now we examine the mixed augmented formulation, following the lines of [21,
§7]. The usual difficulty in the numerical analysis of mixed problems is the derivation
of a uniform (with respect to /) discrete inf-sup condition (DISC). Here, this issue is
compounded by that of the dependence of this condition on the Fourier mode k. To
our knowledge, no DISC uniform in both h and k has been yet derived for Maxwell or
other mixed equations. So, we shall work with a (maybe not optimal) condition, which
is uniform in %, but depends weakly on k.

LEMMA 4.2. For the P,-1Py Taylor-Hood element, there exists a constant 3, in-
dependent of h and k, such that:

b
vqh c Qh, sup k(Vha‘Ih)

> B(1+ k)" llgnllo.r - (4.11)
e, il

Proof. In [9, Lemma 3.5], the following DISC is proven for the Stokes problem:

div, v ~ _
Van€ Ouyr sup VL) o gy g, @12)
vl 1,(K)

For k # 0, one has Q) = QOn, whereas Qo) = {qn € On : / gnrdrdz =0}. Then
. w
HZ(k) is

H ) = {wh e @) NHy (0) : wilg € P2(K)?, VK € %} 7
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thus, it is a subspace of our X’Zk) . According for instance to [1, Rmk 2.6], there holds

w1 = |[wllx, for all we H'(Q), and it follows that w1, = llwllx,u for we

;I(lk)(Q). So, one can replace the norm |[vy||; ) With [[vp[/x ) in (4.12), for all v, €
HZ(k)' For k # 0, this implies (4.11) since the supremum is greater on the bigger
space X’Zk).

For k = 0, one has to deal with discrete Lagrange multipliers whose mean value
over Q is not 0 (recall that Q;, = Qo) ® R). This difficulty can be overcome by using
an ad hoc discrete field of Xh to prov1de alower boundin (4.11) for g, = 1. A similar
result has been already obtained in [18, pp. 830-831] in an unweighted framework, and
its proof can be easily adapted to our case. Let us sketch briefly how it is obtained.
Consider ¢', a side of ¥, that does not include any conical vertex. One checks easily
that there exists v/ € €>(@) such that: the support of v[ 9, is @ compact subset of y';
the support of V' is included in {(r,z) : r > ro} for some ro > 0; last, [,V'rdr=1.
Defining v/ = V' nj,/, one has v € €%(@)? and (divov' [ 1) = 1.

Then, one builds a suitable approximation v}, of v/, and v} = v%n‘y/, such that
(divow), | 1) = 1. Thanks to the smoothness of v/, one has [|v}[[x,0) < 1. For g, €R,
one now derives the lower bound in (4.11) by choosing v}, as the ad hoc test-field.
Finally, given any g, € Oy, letus splititas g, = g;(o )+qh » With gp(0) € On(o) and g, €
R. One derives (4.11) by choosing v, = oo )+qhvh, with vy,g) a test ﬁeld achieving
the condition for gy (since we already know that (4.11) holds when g, spans Qjq) ).
and o € R. An ad hoc value of ¢ is obtained by elementary computations (usmg for
instance Young’s inequality), leading to condition (4.11), for any ¢, € Q;,. U

With this result, we can derive two important properties. The first is the so-called
strong approximability of the kernel of by ; we recall that the continuous and discrete
kernels are defined as:

Ky (o) :={v e X () : b(v,q) =0, Vg € L(w)},
Ky = {vn € X{y : bu(va,an) =0, Vi, € On -
The second is the error estimate between the solution to the static mixed problem:
Given f € Xy (w) and g € L}(w), find (u,p) € X () (w) x L}(w) suchthat, ¥(v,q) €
X () x Li(w) :

ak(u,V)+bk(V,p) = <f,V>, (413)
bi(u,q) = (g19), (4.14)
and that of its ﬁnite element discretisation, which writes:
Find (uy,py) € )% Oy, such that, ¥(vy,qp) € X )% On:
ai(up,vy) +bi(vi, pn) = (f,vn), (4.15)

bi(un,qn) = (g | qn)- (4.16)
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PROPOSITION 4.3. The following approximation inequality holds:

{Vu €Kp(w) ﬁX‘Ek)(a))7 Juy, € Kf’k), such that, 4.17)

| —ullx, ) S (L+[k|) €(s, R, k) [|ulx ,0)

Therefore, if the solution (u,p) to (4.13,4.14) belongs to ka)(a)) x Hi(w), the fol-
lowing estimate holds:

5 (1 + ‘k|)£(s7h7k) HuHX,.\',(k)

l|n — ullx ) + [[Pn = Pllo,1 (4.18)
Proof. Use [31, Chapter II, Thm 1.1] and the previous lemma; the p part of the
error is bounded using the weighted Clément operator of [8, §4.3]. [

The analysis of [21, §7] can be carried over to our case. Compared with their coun-
terparts in that article, the error estimate (4.18) and the approximation inequality (4.17)
contain a factor 1+ |k| in front of &(s,h,k). Also, it is better to use L? error estimates
for (4.15,4.16) derived from the Weber inequality than those derived from the Nitsche
trick, which yields a bound in (1+ k%) é&(s,h,k)?. The term of higher power in 7 is of
no use, being hidden by other terms with a smaller exponent; thus, the higher power
in k appears unwelcome.

PROPOSITION 4.4. Let (EIZ;",P;;")" be the solution to the discrete formulation
(4.6,4.7). The following error estimates hold:

ki goking2 k; k:
H&TEh”—E*"HOJ—i—HE "—E n”X(k
£y~ B

m' (s, h,k), (4.19)

S
< ml(s,h,k), (4.20)

2
0,1

where

m/(s,h,k) = (l +k2) E(S,h,k)z ||E]i||%{2(x(r)(w))

+ 2 (B s g2y + 19402 200 )

5. Theoretical foundations of the SCM and FSCM

In this section, we describe the fields in X(Q) near the edges and vertices and
study the regularising properties of the elliptic operators associated to the forms ay(-,)
and a(-,-).

We use the notations of Figure 1: near any corner j of dw, we choose two neigh-
bourhoods w; CC w which stay away from the other corners and from the sides which
do not contain j. Local polar coordinates (p;,¢;) are used in w ; we choose a cutoff
function 1;, depending on p; only, such that n; =1 in w; and n; = 0 outside w;
The symbol j will be replaced by e (resp. ¢), when the corner is off-axis (resp. on
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the axis), i.e. it is the trace of a circular edge (resp. a conical vertex). For any off-axis
corner e, we denote a, = r(e) its distance to the z-axis, and ¢0 the angle between the
r-axis and the side ¢, = 0. Near an on-axis corner ¢, we always take ¢, = 0 on the
axis Y.

5.1. Description of singularities

Let u be an arbitrary field in X (Q) We start from the Birman Solomyak de-

reg

composition (2.26) at the mode k: u* = ukg — grad, ¢*, with uk € X i )( ), ok €

dJ(k)(w), see (2.27), (2.28). We combine this with the regular-singular decomposition
of the functions in @) (@) from [12, §11.4]:

® —¢*+ZAOS0+Z/IOSO, ® —cp*+2?tksk for k| > (5.1)

S.V.

with ok € B, (0) N H}(0)., Yk, and:

S5(0e: 9e) = Me(pe) e 1P pe sin(0t ), (5.2)
S6(Pc; 0c) = Ne(pe) P° Py, (cos @ ). (5.3)
Thus we arrive at:
u’ =ud — Y 2§ grad, S5 — Y A§ grad, S§; (5.4)
r.e. S.V.
ub =ul — Y Af grad, S for [k| > 1; (5.5)

r.e.

with:  u¥ = ukg — grad, o EXEC%( ) Vk.

The above decompositions are hardly adapted to numerical computations, as the singu-
lar fields used in them depend on the mode and contain cutoff functions. This point will
be addressed below. However, they have nice properties which we now state.

LEMMA 5.1. The singularity coefficients )L,g satisfy the bounds:

ol S lullx 0, Ve, |A5] < [lu”llx,0)5 Ves :
251 < 11| Ve, [Ag] < (|| v (5.6)
L] S K% x5, Ve, VK| > 1. (5.7)

As a consequence,
I14¢ grad; S¢lIx @) < llu(lx ) and [|uf]lx ) < lle*x @)

thus, the series Yuke*® and Y Af (grad, S¢)e? for any reentrant edge e converge
in X(Q).
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Proof. Let f*:= divy(u* — uks) = —Ar@*. By the continuity estimate (2.29), we
have [ f*]lo1 < [[u¥|x ). The coefficients A/ are clearly the same in (5.4) or (5.5)
and in (5.1); yet the latter satisfy: \)Lk’| SN0 for |k < 1 and |AE] < K% £5oa
for |k| > 2, as shown in [20], respectively Equations (36,49) and Lemma 3.1 of this
Reference. Hence (5.6) and (5.7).

On the other hand, it is easy to check (calculating like in Lemma 5.5 of [3]) that
| grad; Sillx. ;) = 1k Stllon S [k|'~%. Thus, [|A¢ grad Sillx,«) < [lu*]x.x) forall e
and finally [|uf[|x () < [lu']x @. O

Similar decompositions and estimates hold in the magnetic case (recall the absence
of vertex singularities in this case), with S¢(pe, ¢c) = Ne(pe) eIkl pe P& cos(Cde) .

5.2. Regularity results

As we remarked in Theorem 2.10, the global regularity of the electromagnetic
field is quite low. In order to have good approximation properties, one has to estimate
the regularity of the regular part of the field, which is approximated by finite elements.
We shall see that it can be limited by all edges and vertices — not only the reentrant or
sharp ones. Moreover, even with very smooth data, it can be hardly better than H L. this
condition requires the use of the modified Clément operator defined in §6.2.

DEFINITION 5.2. The space X'Ek)(w), for s > 1, is the subspace of all uk e

X (1)(w) whose regular part u’, as defined in (5.4) or (5.5), belongs to H'Ek)(w). Its
norm is chosen as:

k=02 [z o) = 18013 )+ 212617 + 2145 (5.8)
r.e. S.V.
K= 1 [0 = 1507 o+ 2 P 128 (5.9)
r.e.

As a particular case, X %k) (®) =X ()(w), and the norms are equivalent.

The space X*(Q) is the subspace of all u € X(Q) such that its Fourier coefficients

A

u* belong to X (k)(w) for all k. It is endowed with the canonical norm HuH%S =

Ykez ||“k||§(,57(k)-

The finiteness of the norm ||u||x , if #* € X fk)(w) for all k follows from Lemma 5.1.
The latter, together with the well-known [2, §4] equivalence of the norms ||-||x and || -
|1 on X™8(Q), hence of ||-[|x ) and |- [ ) on XE%'(@), yields the equivalence of
norms |- ||x and ||-|/x,1 on X(Q).

DEFINITION 5.3. Let Vf;é be the ¢-th singularity exponent of the Laplacian (with
Dirichlet boundary condition) at the conical vertex ¢ for the Fourier mode k, i.e. the
¢-th smallest positive root of PX(cosm/B.) = 0. (Thus, v, = v¥1.)
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The limiting regularisation exponent of the Laplacian at the mode k is s’g =
minSy, where the set S is defined as a function of |k as:

So = {Oce : e salient edge ; 2 ¢, : e reentrant edge ;
01, 1. L 02 1. .
V. + 3 :cnon-sharp vertex ; v.”“ + 5 : ¢ sharp Vertex} ;
S| = {(xe : e salient edge ; 2 0, : e reentrant edge ; vj” + % : c any vertex} ;
Sk = {Oce : e salient edge ; 2 o, : e reentrant edge}, k>2.
The limiting regularisation exponent of the Maxwell operator at the mode 0 is

Y :=min <o¢e : e salient edge ; 2 0, : e reentrant edge ;

vc(.);1 + % : ¢ non-sharp vertex ; vc(.);1 + % : ¢ sharp vertex) ;

while for the modes [k| > 1, one has s* = sk . Notice [12, p. 48] that the only expo-
nents v whose value is possibly less than 2 are v%!, v%2 and v!:!, the latter two
being always greater than 1. This is the reason why, for |k| > 2, regularity is limited
by the edges only.

The global limiting regularisation exponent of the Maxwell operator is

s, :=min(s", s!) = mins*.
keZ

REMARK 5.4. We see that s, < 2 as soon as one edge aperture is greater than 7 /2.
As for the conical vertices, there holds s < 2 for [k| =0, 1 when the aperture is greater
than 9y, with 9 ~ 68°8’ and ¥ ~ 114°48'. As a consequence, IP; finite elements
will be sufficient for non-mixed formulations (including correction methods) in most
situations. When using mixed formulations, however, one has to use P, elements for
the field (and P; for the multiplier) in order to have the theoretical framework for prov-
ing convergence, see Lemma 4.2 and Propositions 4.3 and 4.4. This is what we assume
in the rest of this article.

PROPOSITION 5.5. Let f € X(Q) and g € L*(Q), and let (u,p) € X(Q) x
L?(Q) be the solution to:

a(u,v)+b(v,p) = (f,v), YweX(Q), (5.10)
b(u.q) = (g|q), VYqeL*Q). (5.11)

If f € H2(Q) and g € H~Y(Q) for some s € [1,s5), then u* € X‘Ek)(w) and pk ¢
H(“k)(w). Consequently, u € X*(Q) and p € H*(Q) for s < s,.

(v
(u

Proof. Thanks to [2], we can adapt the result of [25, Thm 5.2] to the case of the
axisymmetric domain: the (non-unique) Birman-Solomyak decomposition (2.22) can
be chosen such that f € H*"2(Q) and g € H*~!(Q) imply that

Ap € HY(Q), ugs € H°T(Q), and p € H*(Q),
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for:
o <s—1land o <min{o,uP + 1 ¥+ 11,
T<s—1 andr<min{06e,!«l?+%}»

where u? (resp. uY ) is the smallest singularity exponent of the Laplacian with Dirich-
let (resp. Neumann) boundary condition at the vertex ¢. Moreover, this decomposition
is continuous with respect to the norms || f||;_> and ||g|/s_1. We remark that u” co-
incides with v%!; moreover, it is known [30] that u > EN > 0.84. Thus, at least for
§ < 2.34, there holds ugs € H*(Q) and p € H*(Q) iff s < 1 + ¢, (reentrant edges) and
s < vS” + % (sharp vertices).
Reasoning mode by mode (see Remark 2.11), we thus have:
uko e Hy(0), phe Hjy (o) and A ok e Hi‘kf)l(w).

By Thms I1.4.10 and I1.4.11 of [12], the latter property implies that @* (defined in (5.1))

belongs to H(Sgl(w), ie. grad,of € Hj, () for s < sk . Finally, we notice that for

any reentrant edge, 20, < 1+ ¢ ; and one can check that v¥! + 1 < v¥2 for all values
of the aperture 7/f3., the equality being possible only if 8. = 1. (For the values v < 2,
see Figure 11.4.1 in [12]). Hence the conclusion. [

PROPOSITION 5.6. Let u € X(Q) and s < s.. Then we have:
u belongs to X*(Q) iff (curlu,divu) € H~1(Q) x H*1(Q).

Proof. Assume (curlu,diva) € H~1(Q) x H*~1(Q). Itis easy to check that if we
denote by ur the solenoidal part of u (curluy = curlu and divur =0), (ur,0) is the
solution to (5.10,5.11), with g =0 and f = curlcurlu € H*~%(Q). Hence ur € X*(Q)
by the previous proposition. On the other hand, the gradient part of u, u; = grad v, is
characterized by y € H} (Q) and Ay = divu € H*~1(Q). One finds that y € H**1(Q),
cf. §I1.4 of [12]. Thus, u;, belongs to X*(L2) and so does u.

Conversely, u € X (Q) implies (curly ¥, div; u¥) € HfIZ)I (w) x H(Sk_)1 (o) forall k.
As far as the singular parts are concerned, there holds:

curlygrad, S} =0 and div; grad,S] = A;S].
When j is the reentrant edge e, this function vanishes near the axis and is smooth
everywhere except near e. In addition, in ®,, one finds by direct computations:

ASE = A SE+1s.t. = e KPe p&elgin( o, 0,) {|k| pe — (14 20t) [k|} + Ls.t.
Here, A denotes the Laplacian in the (7,z) plane, and L.s.t. means less singular terms.
Therefore, ArS; € H* (w,), and globally A S € H(“k’)l(w) since 0 > 20, —1 > 5 —
1. Now, for a sharp vertex ¢, one checks that AgSj vanishes in @, and is smooth
elsewhere. All together, we have thus (curl,u*, div; u¥) € H‘(“,{*)l(w) X H&“k’) Yw) for
all k,ie. (curlu,dive) € H* Q) x H*~1(Q). O

The above results can be rephrased for the magnetic boundary condition, provided

one adapts the results of [25] to this case, and uses the description of conical singulari-
ties from [30].
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6. Practical approximation results

6.1. Mode-independent singular fields

For the practical purpose of the SCM, the singular parts can be described with

other singular fields x];” . Generally speaking, these fields should be easy to compute
and satisfy the following conditions.

1. They are independent of k for |k| > 2.

2. They are smooth (i.e., at least &*T! if P elements are used) away from the
relevant edge or vertex j.

3. Near the edge or vertex j, they are equal to —grad, S’,i + w’j‘-, where w’j‘. €
H%(wj) for some s; > 1 large enough.

4. They satisfy the suitable condition of the mode k on ¥,.

5. They satisfy the electric boundary condition on ;.

The last two conditions imply that the regular and singular parts of the field satisfy sep-
arately the relevant boundary conditions on dw, so the latter can be treated as essential
for the regular part. Conditions 2 and 3 ensure, first, that the singularity coefficients
will be the same as in (5.4) and (5.5), and then, that the regular part will not be “pol-
luted” by terms not smooth enough to guarantee a good convergence rate of the finite
elements. Finally, the first condition appears mandatory in order to keep the overall
cost of the method at a reasonable level. There is, however, a price to pay: one has to
assume some extra regularity in 0 for the field.

We now construct such singular fields. Let S, = —(r/a.) grady[pZ sin(ct¢.)]
and S, = —grad, [p}c Py, (cos ¢.)]; their expression in the basis (e, eq,e;) writes:
. sin((o — 1), — ¢0)
Se=——a,pl! 0 : (6.1)
ae

cos((ct —1)9. — 97)
Ve Py, (cos @) sin ¢ + P}, (cos @) cos P
S.=—p¥! 0 . (6.2)
—Ve Py (cos ¢ ) cos @ + P} (cos @) sin .

These fields obviously satisfy Conditions 1 and 2. For the vertex singular field S., Con-
dition 4 for £ = 0 follows from the properties of Legendre functions, and Condition 3
is trivially satisfied since this field is exactly equal to —grad, S;; in @, (where 1. = 1).
As far as S, is concerned, its three components vanish on the axis thanks to the fac-
tor (r/a.), hence Condition 4 is satisfied for all modes. Then, we shall see below that
S. + grad, S is equal in @, to p g(¢.) + higher-order terms, cf. (6.9) below. This
belongs to H'*%(w,) = H égo‘”(a)e), since the function g(¢.) and the higher-order
terms are smooth.

On the other hand, S, and S, do not satisfy Condition 5, except on the side(s)
of ¥, that touch the corner e or c. Therefore, we take the following
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DEFINITION 6.1. Let xg’e :=—(r/a.) 6°, where ¢ is grad, [pS sin(ot ¢, )] mi-
nus a lifting of its tangential trace on ¥, , which is smooth. Similarly, xg’c is defined as
S. minus a lifting of its tangential trace on ¥, which is smooth.

For the coherence of our notations, we set xlg’e = xg’e for all k; but let us emphasize
that these fields are independent of k.

LEMMA 6.2. For any field u € X(Q), its Fourier coefficient u* can be decom-
posed as:

k=0: u°:u2+2/15x§“+2)L5 Xy, (6.3)
re.

K[> 1: ub =uh+ Y A¢xE°, (6.4)
re.

where:

uR EXEe%( ) Xlg’e eX(k)(w), Vk; X%C EX(O)((D);

ke 1+« ke . .
X +grad, S; € H “(we), Xg° is smooth elsewhere;
X0 = —grady S§ in o, X3 is smooth elsewhere.

In order to use the decompositions (6.3) and (6.4) for numerical computations, we
have to check their stability in the various norms used for the fields. This is the purpose
of the next two Lemmas.

LEMMA 6.3. The following bounds hold for all modes k and for 1 <s<1+Q,:

Ix5llx.) ~ ISellx. oo < 1+ Kl (6.5)
||Xs +grad,; S% /o <1; (6.6)
||x —kgrad,cS,cHs 1~ ||Se +gradkSk||\1 1+ |k|*7%. (6.7)

Proof. The estimate for S, in (6.5) follows from simple calculations, see (7.3)
and (7.4) below. As for xlg’e, we remark, as the tangential trace of grad, [pf sin(c, ¢, )]
on ¥ is smooth, there exists a continuous lifting in H*™(w)*. Then, multiplying
by —(r/a.) we obtain a continuous lifting in H¥*!(w)3>NV}(®)?, whose norm is
independent of k. Thus:

k k,
||Xs7e - SeHs.,l + Hxs'e

151, forl<s<2. (6.8)

Note that neither xlg’e nor S, belong to H{(w)?, but their difference does. Then, using
the equivalence of the norms || -[|x ) and [|- ||} ) for regular fields, we get the estimate
for X in (6.5).

We now establish the estimates for S, in (6.6) and (6.7); once we have them, the

bounds for xlg’e will follow thanks to (6.8). The calculations are quite tedious, so we
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I3

will only sketch them. The integrals defining the squared norms ||S, +- grad, S} 1 and

|S. +grad, S¢||3 _, are made of three contributions, corresponding to different parts of
the domain .

1. The region where the cutoff function 1, = 0. There, grad; S{ = 0, so the result is
independent of k.

2. The region where 1, varies. In this part of the domain, p, > p> Oand r > r >0,
so the norm of grad, S{ (which is smooth there) in any Sobolev space is exponentially
decreasing in |k|, and one can bound the contribution by a constant.

3. The region where n, =1, viz. w,. There, we have the following expression
for grad, S; — for the sake of legibility, we generally drop the edge subscript e:

asin((ct—1)9 — 9°) — Kl p sin(c6) cos(0 + ¢°)
e [klp pa—1 ikr~! p sin(og)
ot cos((0t— 1) — ¢°) — K| p sin(ez9) sin( + 9°)
To compare the previous expression with (6.1), we keep in mind that r = a+ p cos(¢ +
¢°), and that the function ¢ defined as &(x) = (¢* — 1)/x is smooth. Thus, we arrive
at the following form for w{ := S, + grad, S;:

wi = [k|e KP p% g, () + [k| €(~|k| p) p* g2(9) (6.9)
+ikrte WP p% g3 (9) 4+ p* ga(9),

=W t+wWo+ W3+ wy,

where all the functions g;(¢) are smooth and independent of k.
We begin by estimating the norm ||w{||,2 (@) As we are away from the axis, it

is bounded above and below by [|w{||;2(4,)- Actually, we calculate an L” norm which
will be needed below. The p-th power of the norm of w; is bounded as

Wil = [ 167740 07 g1 (0)17 pdpag

+oo

< Cp.a/ \k|pe_p‘k|ppp°‘+1dp

“Jo
oo po+1 d
—Gpali? [Tert () S W
0 k| k|

The calculation goes the same for w, and w3 (as 7! is bounded from above and from
below in w, ); as for wy, its norm is independent of k. Hence the bounds:

Vo <2/(1-a). (Wil S 15 W2, o~ Wl 200 < L

The bound (6.6) follows, given that the contributions of the other parts of the domain
are also bounded.

Then we proceed with the norm ||w¢||xs(w,)- It is bounded above and below
by || Wil zs(a,) s in turn, a Sobolev injection allows us to bound the latter by

IWellwr () = WellLr o) + Wilw2r ()
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with p=2/(3—s). If s< 140, then p<2/(2—o) <2/(1—a),and the L (®,) norm
is bounded by a constant. To bound the W??(w,) semi-norm, we have to estimate the
L?(w,) norms of

%w 1 %*w 1 ow 1 ?w 1 9dw

07 pIpdd P20 p 392 pap

where w is any cylindrical component of any w;. It is easy to see that, for the compo-
nents of w;, these functions are linear combinations of terms of the form

k[Pe ¥P p%hi(9),  [k[>e KPP p*Thy(g), |kle HIP p*~2hs(g),

where the 4;(¢) are smooth and independent of k. Computing as above, we find that
all these terms have their norm bounded by |k[>~%~%/? = |k|*"*. A similar calculation
can be done for wo and ws (as ! is smooth in ®,, there holds w32

Ll)g) ~

ke P p% g3(¢) llw2.p(w,) ); While the norm of wy is once more constant. Finally:
Wil (o) S IWikllw2r () < T+

This bound, together with the estimates on the contributions of the other parts of the
domain, leads to (6.7). [

Of course, a similar result holds for the sharp vertices at the mode 0.

LEMMA 6.4. Assume that 1 <s < vO! + ; The singular parts associated to the
sharp vertices satisfy:

0,c
X5 [1x.0) & ISellx.c0) S 13 [Ixg° + grady S§lls1 ~ IS, + grady i1 S 1. (6.10)

As a consequence of the previous two Lemmas and the definition of the norm || - || X.5.(k)
we have:

LEMMA 6.5. Assume that 1 < s < s,. The regular and singular parts in (6.3)
and (6.4) satisfy, for all u € X(Q) or X*(Q) :

.
laegllx o) < 11 lx 0y 129 %57 l1x.0) < 1110y (6.11)

lugllst < [u°|lx 5,0y (6.12)

Sfor the mode k =0, while for |k| > 1 there holds:

ukllx ) < (14 1K) | |1 0 (6.13)
12¢ ’;eux < (1 [K]%) [ o) 6.14)
5.1 N(1+\kl“"1) Mlxsw s ukllo—t < l1u*llx.50 (6.15)

Above, we have set o* := max{0, < 1}. As a consequence, the series ¥ u % and

S AL X k¢ ek0 for any reentrant edge e, converge in X(Q) forall uc H'X(Q).
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For the numerical implementation, one can also orthonormalise the basis (xlg’j )j
and compute basis vectors (Xg L) which are orthogonal to one another and to the reg-
ular space X (e)( ) with respect to the bilinear form ai(-,-) for |k| < 2. This is the

approach taken, at the discrete level, in §7. The adaptation to the magnetic boundary
condition is once more immediate, with S, = —(r/a.) grad, [0Z cos(c@.)].

6.2. The Clément operator

We briefly explain its construction, which follows §§4.3 and 4.4 of [8]. For each
node a; in the principal lattice of the triangulation, one selects a triangle 7; which con-
tains a;. Then, one introduces 7;, the L% -orthogonal projection operator onto Py (T;):
forany w € LI(T;), mw € Py (T;) and

Vp € Py (T; //w mw)prdo =0.

Let us begin with the case of regular fields. In order to enforce the various boundary
conditions for the different modes, one classifies the nodes into four categories:

1. the interior nodes, which do not stand on dw;

2. the nodes standing on the axis 7, , excluding the extremities;

3. those on the sides of the physical boundary ¥;,, excluding the corners;

4. the corners, at the intersection of ¥, and 7;, or of two sides of ;.

One denotes .#; = {i : the node a; is of category £}, for £ =1, ..., 4. Notice that:
(1) the outgoing normal and tangent vectors v; and ; are unambiguously defined at

each node of category 2 or 3, since the sides are straight; (ii) the regular fields vanish at
the nodes of category 4.

DEFINITION 6.6. Let ¢; be the basis function associated with a;. The regularisa-

tion operator 17, : L3 (w) — Xzeﬁ';h for the mode k and the boundary condition o (o =

v is the electric b c., 0 =7 is the magnetic b.c.) is the sum IT}, := I, +H%;k+H2;G,
where:

Mu(x):= Y, {mu.(a;) e+ mug(a;) eg + mu-(a;) e.} ¢;(x); (6.16)
i€
Hhou Z TELMZ al)eZ(pl( ) (6.17)
i€t
Hh su(x 2 T (a;) ex ¢i(x); Hl%;ku(x) =0 for k] >2; (6.18)
i€t
HZ“’u(x) =Y muy(a) vigi(x); (6.19)
i€t
I u(x) == Y, {muc(a;) T+ muo(ai) e} ¢i(x). (6.20)

€3
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This operator automatically satisfies the electric or magnetic boundary condition on the
physical boundary 73, as well as the boundary condition for regular fields of the mode &
on the axis ¥, . Let us investigate its approximation properties.

PROPOSITION 6.7. Let u € H(w)*NVi(w)? such that uxn =0, resp. u-n
on Yp. The following estimate holds for s € [1,k+1]:

W (= g+ ([l — T < 207" {llaellsx + [laello—1}- (6.21)

Hence, for |k| =2, s€[1,2] and u € ka)(a)) NXp(w):

i — I} o <22 (U ) {2+ el -1} (6.22)

Proof. For integral values of s, the estimate (6.21) is obtained by following the
proof of [8] step by step. To extend it to other values, we rely on interpolation arguments
in suitable scales of weighted spaces. We give the detail in the case s € (1,2), which is
the one needed in the framework of this article.

It is known (see §2.4) that the following spaces are equal, algebraically and topo-
logically, for 1 <s < 2:

Vi(w) =H (o) =Hi(0) NVi(w) = {we Hj(w):w=0o0n7y,}. (6.23)

For s = 1, the first two equalities hold; for s = 2, the last three spaces are equal,
while V3(w) is algebraically and topologically embedded in them. Thus, for s € (1,2),
H$(w)NV1i(w) appears as the interpolate of order s — 1 between V1(w) and H?(w)N
Vi(w): this amounts to do interpolation in the scale (H*(Q)), in the special case of
scalar functions having only one non-zero Fourier mode, corresponding to k = 1.

Assume now that u € Hi(®)’ NV{(w)*, with u x nj, = 0. The magnetic bound-
ary condition can be handled in the same manner. The bound (6.21) holds for s =1 and
s = 2; the above interpolation property implies that it is also true for all s € [1,2]. As
the definition (2.21) implies: [|-[|7 4 < (1+ [kI?)[||]|], , - the estimate (6.22) follows.
In order to extend it to the case of u € H;, (0) NX () (), ie., u € H} (0)}NVi(w)?
with u x n, = 0, we need a density argument which we now give.

First, we know [2, Proposition 4.7 & Remark 4.3] that X (Q) N €= (Q)? is dense
within X™&(Q); with suitable adaptations, the same proof shows the density in X (Q)N
H?(Q). Then, an interpolation argument in the scale H*(Q) yields the density in X (Q)N
H*(Q). As a consequence, X (Q) ﬁHz(Q) is dense in X(Q) NH*(Q). For the modes
|k| > 2, this means that X 4 (@ )ﬁH( (0) ={u e Vi(0) 1uxn, =0} is dense
within X 1) () N HY (w). A fortiori, this is true for the bigger space {u € H}(w)*N

V%(w)3:u><n|yb:0}. O

The operators corresponding to the modes |k| < 1 can be estimated likewise (tak-
ing care of the conditions satisfied by the various components on the axis), giving an
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error in A*~! l|u[|1,x)- Thus, when the singular space is null, we get the approximation
result (4.8) with:

X{(0) == Hjy (0)NX (@), &(s,h,k) =R~ (1+k]). (6.24)

Now we proceed with the general case. Near a geometrical singularity j =e or c,

the numerical space X’(’k) is spanned by the finite elements plus the singular field S;;

away from it, the singular field is generally (according to the details of the numerical
method) represented by an interpolate, or a lifting of its trace. This is of no importance,
since S; is € there, so the approximation will be as good as the finite elements allow.
For instance, the Lagrange interpolation operator .#, satisfies the following bound for
we Hj(0)*NVi(w)? and s € 2,k +1]:

W w—Zwllo g+ [lw—Zwl[| S Iwllsa

see Proposition 6.1 in [39] and Proposition 4.1 in [8]. Globally, X’Zk) can be thus de-
scribed as:

X?k) - X%;h @ P span xlg’j " where:
g.8.

k h k.jih kjih  _kj
e Xp(w), 7" =8Sjonw;, [x¢"" —x¢/|Ix 0 S (1+]k]).

Consequently, we can define a modified operator IT}, e On X i )( ) as follows:

N0, w=ug+ Y Axe! — OJup+ Y Axe" (6.25)
g.s. g.s.

Combining Lemma 6.5 with the estimate (6.22) for regular fields, one immediately
obtains:

PROPOSITION 6.8. The operator H;‘l’;k satisfies the following bound, for any k
and u € X‘Ek)(w):

2 -
(o = TIZ [y o S 272 (L K1) el - (6.26)
Hence the general form of the approximation result (4.8):

ty(©) as in Definition 5.2, &(s, 7, k) = h*~" (14 [k["). (6.27)

6.3. Error estimates for the FUNFEM and FSCM

We recall that the approximate numerical solution is reconstructed by the formula:

N]:n N]:n 1 N n - ;
(BB (0.0 = —— 3 {E[" A" 2",

where (E“) , resp. <E W ,Pk ") is the solution to the fully discrete mode-wise aug-
mented (resp. mixed augmented) formulation.
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THEOREM 6.9. Assume that E € H*(—§,T;X*91°(Q)) NH*(-§,T; H*°(Q))
and J € H*(—8,T;H*°(Q)), where 6 > %, s € (1,s.) and q is defined according to
the numerical method, in the following way:

UNFEM | SCM

Non-mixed 1 s
Mixed 2 1+s
Then we have the error estimates on the reconstructed solutions:
[0 EN" —E" |2+ BN — B[} <My (BP 244N, (6.28)
IEM" —E"|) <My (B 24 24 N70). (6.29)

The constants M; depend on the norms of E and J in the aforementioned spaces.

REMARK 6.10. Provided that the data J(¢) and p(¢) are smooth enough, we re-
call (see §5.2) that E(r) belongs automatically to X*(Q), for 1 <s < s,.

Proof. Adding the estimates (4.9) or (4.19) from k = —N to N, with the values
of &(s,h,k) given by (6.24) or (6.27), we obtain:

£ — M5+ [ B — BN
N
SMN(ED) =17 3 (14 P B,
k=—N

+ 2 (1B Gz + 194 i |
Using Proposition 3.5, we bound:
My(E,J) S 172 [HE e sy +N 7 IE ”iﬂ(wﬁ“@»}
2 -
2 [ ) N W e
2 -
T [HE[N]Hm(ﬁ(g)ﬁN 26”EH§3(H°~“(9))}'
Then we use the triangle inequality:
"™ — B[y < || — BN+ BN BN BN B

and similarly for the L?> norm of the time derivative. The last two errors are bounded
by Propositions 3.3 and 3.6; hence (6.28). The bound (6.29) is obtained in the same
manner. [

REMARK 6.11. Combining the arguments of Propositions 3.4 and 5.5, we see
that the hypotheses:

v € H(=§,T; H"%°(Q)),
E c H*(-8,T;H*"°(Q)),
p € HX(—8,T;H+9(Q)),
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together imply E € H>(—8,T;X*91°(Q)). The second condition clearly implies E €
H*(—8,T;H*°(Q)). In the augmented formulation, the three conditions are satisfied
ife.g.

J € HY(=§,T; H*°(Q)),

p € H¥0,T;H+%(Q)) NH(0,T;H5(Q)).

In the mixed augmented formulation, it is enough to have

J € HY(=§,T;H*°(Q)),
p € HX(0,T;H"4+%(Q)) NH*(0,T;H9+(Q)).

REMARK 6.12. If the Fourier coefficients pk , J¥ are exactly known, it is suffi-
cientto assume E € H*(—§,T;X*4(Q))N¢°(0,T:X"°(Q))n€(0,T; H*° (Q)) (for
6 >0)and J € H*(-§,T;L*(Q)).

REMARK 6.13. The analyses of §4.3 and Theorem 6.9 can be extended to ex-
plicit time schemes. For instance, one can replace the augmented (4.3) and mixed
augmented (4.6) formulations with the explicit centred versions:

(D2EX"T | Fy) + ar(EX" F),) (6.30)
= — (oI5| Fp) + (05" | divFy),
resp. (OZEY"V| Fp) + aw(EN" Fp) + b(Fp, P (6.31)

— (Do Fy) + (05" | divFy),

which are formally of higher order in time, and computationally very efficient when
mass lumping is used. If J is known at the instants "*1/2 the derivative dyJ¥" ! can

be replaced by 8TJk /2 , without changing the order of the scheme.

As in [21], one shows that the L2-error on the field is indeed of order 2 in 7:
provided the fields are regular enough, the estimates (4.10) and (4.20) become respec-
tively:

|ES" —ES"|[5 | < e(s,h, k)% || EX||, (@) (6.32)
+ 7 (B sz * M o)
HE];l’n_EanOI ~ (l+k2) S7h7k HEl’iHHZ(X (w)) (633)

+ 2 (B sz * M )

On the other hand, the bounds (4.9) or (4.19) hold without change. Furthermore, all
these estimates are valid under the CFL condition A7? < 4, where the Rayleigh quo-
tient

thH2
A:= sup X

Vi EXh
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should behave as A < h™2+ |k|?.

Under the assumptions E € H?(—§,T;X*9"°(Q)) NH*(—8,T; H*°(Q)) and
J e H3(—57T;H07"(Q)), where s, ¢ and o are as in Theorem 6.9, we obtain the
bound (6.28) on the reconstructed solution, and the L? estimate:

| — E"3 < M3 (h%2 4 7+ N72), (6.34)

But they are valid under a CFL condition strongly dependent on the number of Fourier
modes used. Thus, explicit schemes may be difficult to use in practice unless the fields
are very regularin 0 (i.e. o is large enough), which allows one to use very few modes.

7. Numerical algorithms

A practical implementation of the SCM in the case where the data are axisymmet-
ric was exposed in [4]. In the case of general data, the method can be applied to the
equations of the mode 0. Let us recall the principle of the SCM [5]: the basis of the
singular space X(l )g s computed, once and for all, as a first part of the algorithm,
before solving the Maxwell evolution problem in the suitable space:

h reg;h sing; h
X0 =%0 X0

These various versions of the SCM also take advantage of the following specific points:

e At the mode 0, the Maxwell equations decouple into problems involving the merid-
ian (r,z) and azimuthal (0) components, which are orthogonal, both in L(w) and
X (0)(@). Moreover, the azimuthal components are regular and are not affected by the
divergence constraint.

e The singular space is spanned by suitably chosen fields: e.g. the gradients of sin-
gular functions of the Laplacian, or fields orthogonal to the regular space; this yields
simple expressions of the various terms coupling the regular and singular parts in the
variational formulations.

We now present an extension of this approach to the modes & # 0. The principle
consists in choosing an orthogonal complement

B L sine
Ky = X5 S X
for the modes |k| < 2, while the modes +2 serve as the “fundamental modes” for
the higher modes |k| > 2, thanks to the stabilisation of spaces for these modes (see
Proposition 2.9). This is the method already used in [20] for the Poisson problem.
Thus, at the continuous level, the practical decomposition of the solution to Maxwell’s
equations is chosen as at the end of §6.1:

EF" = E]r‘eg—l—ZKk"ng_ 7 where: E]r‘e’é XE%’((D), (7.1)
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L(k) =k for |k| <1, £(k)=2sign(k) for k| >2
je{ecltfork=0, je{e}forlkl>1

moreover, the basis (x ]g L) j is orthonormal, and orthogonal to the regular space

X5 (@) = X ) (@)

with respect to the form ay)(-,-)-

7.1. Computation of a basis of the singular space X?gg;h, for k| <2

At the discrete level, we define the counterparts of the various terms in (7.1):

n n n [ J:h n h
EF E’;egh+ ki x(F where: E, e X5, (7.2)

and the numerical singular fields xlgih (|k] < 2) are computed as follows. In the first
step, one defines the fields

k,j:h .

k,jsh
Xs

=8;+x"" suchthat x¢’" € Xy)(w) and xoI M 1, Xt

(k)
i.e. the non-principal part X%/ of the field belongs to the finite element space and
satisfies the appropriate variational formulation and boundary conditions, namely:
3k dsh — —au(S;
ap (X7 wy) = —ar(S;, wy)

— —(curlS; | curlywy,) — (divi S; | divewy,), Vwy, € Xﬁj;h;

<k, jih

X"xn=-Sjxnony,, forlkl<2

%M. e.=0 and X*/".eg=0 ony,,

i e =0 and xﬂ’fh e.=0 ony,, X>"=0 ony,.

Above, we have curlyS, =0 and divoS, = —A[p " P, (cos ¢.)] = 0, while for the
edge singularity:

div; S, = —%pﬁ‘e’l sin((0, — 1) — (])S); (7.3)
w1 [—ikcos((cte — 1) — ¢2)
curl S, = &P’ cos((ate — 1) —00) | . (7.4)
de ik sin((0t — 1) ¢ — 92)

These fields belong to L%(w); the corresponding integrals should be computed by an
appropriate quadrature formula in the neighbourhood of the corner e; elsewhere, the
usual mass matrix can be used, cf. [4, §4.4]. ‘

At the end of this step, the singular complement X?m)g;h is defined as the space

generated by the (XS ),, for |k| <2 and j in the relevant set of singularities. The
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stabilisation of spaces then allows to set XE;{’;g;h = Xigg;h for |k| > 2; notice furthermore
that XETi)h = X?;g;h as we shall see below. Thus, the total space X’Zk) is spanned by

the usual nodal finite elements plus (S.)., for all k, and also plus (S.)., for k =0: we
are in the framework of §6, which validates the error estimates.

The second step consists in orthormalising the basis of XE}Sg;h, i.e. one determines
the fields

k.jsh _ k.jsh k.ish kish _k,jihy _
Xg! —Zci Xg st ap(xgxg") =8,
13

for |k] <2 and i, j in the relevant set of singularities. This involves the computation
of the scalar products

ak(Xé’j;h,Xg’i;h) = ak(i\k’j;h,i\k’i;h) + ak(Sj,ik”';h) + ak(i\k’j;h, S)+ ak(Sj, Si);

the first term is computed by the stiffness matrix, while the other three need the same
treatment near the corners as above. Then the orthonormalisation itself is performed by
the usual Schmidt or Arnoldi procedure.

7.2. Solution of the evolution problem

The solution of the mixed augmented evolution problem at the mode O follows
the principle of [4, §4.3], except that we are now using orthogonal complements. As
said above, the azimuthal component of EY is regular; it is solution to a wave-like
equation which can be easily solved by nodal finite elements [4, §2.3]. We now expose
the solution of the meridian problem. Notice that the orthogonalisation procedure only

. - 0,jsh L
modifies the meridian components, so the x| are meridian.

We use the following notations: u = u, e, + u.e, is the meridian component of u;

the scalar curl (or rotational) and divergence operators of meridian fields are:
rotu := dyu; — duyp,  diva:=r'9,(ru,) + dus,
and the bilinear forms a( and b reduce to
ao(u,v) = (rotu | rotv) 4 (divu | divv), bo(u,p) = (divu | p).

Now, we are able to put the splitting (7.2) (restricted to the meridian components) into
the suitable variational formulation. As an example, we show the totally implicit, mixed
augmented formulation (4.6)- (4.7), with the time index n+ 1 shifted to n. The adapta-
tion to the non-mixed case is obvious. Taking successively as test functions Fj, € XE%%;h

and ngh in (4.6), and then g;, € Qy, in (4.7), we arrive at the coupled mixed problem:

Find (E?e;g;h7 P}?;") e XE‘B&;;h x Qy, and ?2;" — (K?;:)/ € RNetNe (4 sych that, for all
(Fh,i,qh) S ng%;h X {e,c} X Op:

02 (B0, |B) + R 02l (<97 [ F3) +ao (B2, T ) (7.5)

4N, and N, are the numbers of reentrant edges and sharp vertices.
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+ 0o (B P ) = = (90 | Fy) + (027 | div ),

92 (E?egh O’h)+283 Ko ( 0”|x°”’)+x§,‘f (7.6)
+bo (Xgih»P‘)‘”) = — (@d | x§1") + (00 divxg ("),
0,j:h .
[’0< reg; h’%> +Z (Xsi ﬂh) = (0" [ an) - (7.7)

The summation runs on all singularities j € {e,c}. The numerical solution of this
problem then follows the principle of [4, §4.3].

The method for the modes k = £1 is similar, as the singular fields are adapted to
these modes. The differences are: the meridian and azimuthal components cannot be
decoupled, as they are not orthogonal for the form a(+,-), and the boundary condition
on the axis Y, mixes them. Instead, one has to use the basis (e;,e_,e;), as remarked
above (cf. Remark 2.7). Moreover, there are no singularities at the sharp vertices. Thus,
we arrive at the following formulation:

Find (E]:e'; h,Pk;") € Xzi‘%;h x Qp, and ?Z;" = (Kf;;) € RY such that, for all (Fy,i,qn) €
e

XS x {e} x Qn:

keih
22 (E ( e | Fh) + Y a2k (ij | Fh) +ay <Eregh,Fh> (7.8)
+ by (Fh’P;]f;n> = ((%J]f" |Fh> + (P*;" | dinFh> ;
2 kin klh 2 kn ke;h k,ish
(9 (Eregh ) 287 eh < SL ‘ >+K (7.9)
+ by <X§ih7Pk;"> = <3er" \ Xk 5 h) + <pf;" | divy xlgih> ,
b (B nan) + X ke (7 an) = (05" [ an) (7.10)

This time, the summation runs on the reentrant edges e only.

We now examine the cases of the modes |k| > 2. First, we show that the meridian
and azimuthal components are orthogonal w.r.t. the form a;(-,-). Let u, v be vector
fields in the space

H i (curly, divi; o) = {we L% (o) : curlyw € L} (o) and divyw € L%(w)} .

A simple integration by parts shows

v

—) (7.11)

r

ar(u,v) = ap(u,v) e <g

+ (curlug | curlvg) + K (uTG ‘ Vf) ikB(u,v)
= ag(w,v) + ag(ug,ve) + ik B(u,v),

where the vector curl of a scalar field is defined as curlw := —d.we, +r~19,(rw)e,.
Thanks to the absence of singularities at the sharp vertices, the fields in X ;)(w) are
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of H %k) regularity near the axis, and thus automatically belong to LEI (w). (The same
holds for the magnetic boundary condition). The boundary term B(u,v) is equal to

B(u,v) = J/b{(u-n)ve —ug (v-n)}dy,

so it vanishes when u x n = v x n = 0 (and likewise when u-n=v-n=0). As far as
the form by, is concerned, there holds:

be(u,p) = bo(u,p) +ik (2 | p).

Unlike the mode 0, the divergence constraint mixes the meridian and azimuthal com-
ponents. Fully decoupling these components is therefore possible in the non-mixed
formulation (4.3) only.

The formula (7.11) has several consequences. First, a = a_j, so the orthogo-
nalisation procedure of §7.1 gives x; " = x3*. Moreover, given that the azimuthal
component of S, is zero, and the azimuthal component of any field in X ;) () is regu-
lar (recall the proof of Proposition 2.9), the orthogonalisation procedure only modifies

the meridian components of S, , and so the xéf;h are meridian. Finally, there holds:

ar(u,v) = a(u,v) + (2 — 4) (; ‘ ;) =awv)+(R—Hu|v_.  (7.12)
If we take successively as test functions F), € XEC% " and xgih in (4.6), and take into

account the orthogonality of the basis <x§j h) for the form a,, we arrive at the cou-
e

pled mixed problem:

Find (Efe’; h,Pk;") € XE%';h x Qy, and ?z;" = (Kf;:) € RN such that, for all (Fy,i,q;) €

XS x {e} x Qn:

9?2 (Efe’gh\Fh) + 202k (G [ Fa) + o (B F) (7.13)
93k [ 1R o (Fa P
— (&J’f" | Fh) + (pf‘” | div Fh> ,
M) + Xzl (G ) 4y (7.14)
2 {Xz e h gih] b <X§ih’P}Ilc;n>
= = (a8 x5 + (o | divig™)
by ( reg; h"”) +2Keh bo <Xs¢ »‘Ih> <Pf;n | Clh) : (7.15)

The summation runs on the reentrant edges e

2 kin
(9 <Eregh
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From a numerical point of view, notice that the various terms in (7.5-7.7), (7.8-
7.10), and (7.13-7.15) involving the xlg’fh correspond to integrals with singular inte-
grands near the geometrical singularities; similarly, the integrals defining the forms
ag(-,+) and [- | -]—1 need special care near the axis y,. See [4, §4.4] for an efficient
implementation.

7.3. Miscellaneous

Let us now explain briefly the decoupling of meridian and azimuthal components
in the non-mixed formulation.

The meridian component E’r‘é’;;h is solution to a problem similar to (7.13)-(7.14),
without the by and by terms, and with div instead of divy.

As for the azimuthal component, we recall that it is regular. Indeed, at the contin-
wous level, EX .= E’e‘ belongs to

and is solution to (cf. (2.31)):

ik ko ik (P 1 £l
EXFY4+a(ENSF)=—(JY|F)+ik| — |F ), VFeVi(o)nH{(w). (7.16)
r
This is a wave-like equation whose strong form writes:
OFEF — A EF+ (1)) EX = —0,0% + (ik/r) p*;

its numerical solution by nodal finite elements is no difficulty. The azimuthal compo-
nents of fields in X’(’k) belong to

Voh = {Wh € %0(5) SVpr € P(T), VT € 9}, and Vh|dw ZO} .

Taking an azimuthal test function in (4.3), we arrive at the following formulation:

97 (E;]f;" \ Fh) +aE Fy) = — (arff;" |Fh> + ik (p*

) VFhEVOh.

Finally, we show that the overall cost of the method can be slightly reduced, as

in [19, 20], by setting Kf;;h" :=0 for |k| large enough, i.e., setting Ez" = E’r‘e’;h, where
Efeg ., 18 the solution to the mixed augmented problem:
. h h
Find (E];eg h,Pk’") € XE%’ X Qy, such that, for all (Fp,qy) € XE%' X Qp:
82<Efe’;h | Fh> +ak<Emgh,Fh> —i—bk(Fh,Pk") (7.17)

=— (9115" | Fh) + (Pf;" \ dinFh>»
b (Bt an) = (05" Lan), (7.18)
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or of the similar explicit centred or non-mixed versions.
To see that this can be done without deteriorating the convergence rate, we remark
that | < |/l , where /lk is the singularity coefficient of E), Y defined as in (5.5).
Then, usmg 5. 7) and (7. 12) we bound:
2 h
P

k;
IE," —Exy X

- n 2.e;h
szwm 2\\E2’ ||§,<k) IR GE I

2
X (k)

where o* = max,{0, < 1} (the maximum runs over reentrant edges). The squared
error of the SCM is controlled by #?~2|k|>?, where ¢ = s in the non-mixed case and
g = 1+ s in the mixed case, if one recalls the required regularity of the electric field in
Theorem 6.9. Thus, one can neglect the singular part provided that

k| <HUK|, de. k| =CohT o , for some constant C,.

As o* < 1, we see that the exponent of /4, viz. —q 1* , is always less than 1 in absolute

value.
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