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OSCILLATION CRITERIA FOR CERTAIN EVEN ORDER DIFFERENTIAL

EQUATIONS WITH DISTRIBUTED DEVIATING ARGUMENTS

GEFENG YANG AND ZHITING XU

(Communicated by N. Yoshida)

Abstract. By using averaging function and the approach developed by Philos and Kong, Kamenev-
type and interval oscillation criteria are established for the even order differential equation with
distributed deviating arguments,

(r(t)|x(n−1)(t)|p−1x(n−1)(t))′ +
β∫

α

F [t,ξ ,x(g(t,ξ ))]dσ(ξ ) = 0.

The obtained results are extensions of existing ones for second order linear differential equations.

1. Introduction

In this paper, we are concerned with the oscillatory properties of the following
even order differential equation with distributed deviating arguments

(r(t)|x(n−1)(t)|p−1x(n−1)(t))′ +
β∫

α

F [t,ξ ,x(g(t,ξ ))]dσ(ξ ) = 0, n even, (1.1)

where t � t0 � 0 and p > 0 is a constant.
Throughout this paper, we assume that the following conditions hold:

(A1) F ∈ C([t0,∞)× [α,β ]×R,R) and signF(t,ξ ,x) = signx for t � t0 , ξ ∈ [α,β ] .
Moveover, there exist functions q∈C([t0,∞)× [α,β ],R+ = (0,∞)) , and f ∈C1(R,R)
with

x f (x) > 0 and
f ′(x)

| f (x)|(p−1)/p
� k > 0 for x �= 0,

such that
F(t,ξ ,x)x � q(t,ξ ) f (x) for x > 0, t � t0, ξ ∈ [α,β ];

(A2) g ∈ C1([t0,∞)× [α,β ],R) , g(t,ξ ) � t for all t � t0 , ξ ∈ [α,β ] , g(t,ξ ) is non-
decreasing with respect to t and ξ , respectively, and

lim
t→∞,

inf
ξ∈[α ,β ]

g(t,ξ ) = ∞;
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(A3) r ∈ C1([t0,∞),R+) with
∞∫
r−1/p(s)ds = ∞ , liminf

t→∞
r(t) = c > 0. For any ε > 0,

there exists a tε > t0 such that

|r′(t)| � ε
β∫

α

q(t,ξ )dσ(ξ ) for all t � tε ;

(A4) σ ∈ C1([α,β ],R) is nondecreasing, and the integral of Eq.(1.1) is a Riemann-
Stieltjes one.

By a solution of Eq.(1.1)we mean a function x∈Cn−1([Tx,∞),R) for some Tx � t0
which has the property

r(t)|x(n−1)(t)|p−1x(n−1)(t) ∈ C1([Tx,∞),R)

and satisfies Eq.(1.1) on [Tx,∞) . A nontrivial solution of Eq.(1.1) is called oscillatory
if it has arbitrarily large zeros; otherwise it is said to be nonoscillatory. Equation (1.1)
is oscillatory if all of its solutions are oscillatory.

It is clear that Eq.(1.1) includes the following equation

(|x(n−1)(t)|p−1x(n−1)(t))′ +F[t,x(g(t))] = 0. (1.2)

The oscillation of Eq.(1.2) was first studied by Agarwal, Grace, O’Regan [1], and also
considered by several researchers [17,18]. On the other hand, the recently paper by
Wang and Zhang [15] has presented some oscillation criteria for Eq.(1.1). For gen-
eral interest of the oscillation of high order differential equation, see, for example,
[1-5,8,10,12,13,15,17,18,19] and references therein.

As we known, the oscillation results provided in [1,15,17,18] require the integral
of the coefficients of Eq.(1.2) on the entire interval [t0,∞) . But, from the Sturm Sepa-
ration Theorem, oscillation is only an interval property. More precisely, if the exists a
sequence of subset [ai,bi] of [t0,∞) , bi < ai+1 , ai → ∞ as i → ∞ , such that for each
i there exists a nontrivial solution of equation which has at least two zeros in [ai,bi] ,
then every solution of the equation is oscillatory, no matter what the behavior of the
coefficients of the equation is on the remaining parts of [t0,∞) . This idea was used
by Kong [9] to establish interval oscillation criteria for second order linear differential
equations. Recently, Tang and Yang [13] and Tiryaki, Basci and Gülec [14] have pre-
sented several interval oscillation theorems for a class of even order nonlinear damped
differential equations and second order functional differential equations, respectively.

In this paper, by using averaging function and the approach developed by Philos
[11] and Kong [9], we establish Kamenev-type criteria as well as interval criteria for
Eq.(1.1), and extend the results in [9,11] to Eq.(1.1), which improve and complement
some existing results in [15]. To show the importance of our main results, two interest-
ing examples are included.



OSCILLATION CRITERIA 159

2. Oscillation results

In this section, we shall establish Kamenev-type and interval oscillation criteria
for Eq.(1.1). For notational simplicity, we define

ϕ(t) =
21−n

(n−2)!
r−1/p(t)g′(t,α)gn−2(t,α) and μ =

1
(p+1)p+1

( p
k

)p
.

We say that a function H = H(t,s) belongs to a function class H , denoted by
H ∈ H , if H ∈ C(D, [0,∞)) , where D = {(t,s) : t0 � s � t < ∞} , which satisfies
H(t,t) = 0, H(t,s) > 0 for t > s � t0 , H has partial derivatives ∂H/∂ t and ∂H/∂ s
on D such that

∂H
∂ t

(t,s) = h1(t,s)H(t,s) and
∂H
∂ s

(t,s) = −h2(t,s)H(t,s),

where h1,h2 ∈ Lloc(D,R) .
For given functions h∈C(D,R) , ρ ∈C1([t0,∞),R+) and η ∈C1([t0,∞),R) . Let

λ1(s, t) = h1(s,t)+
ρ ′(s)
ρ(s)

, λ2(t,s) = h2(t,s)− ρ ′(s)
ρ(s)

,

and

Θ1(s,t) =

β∫

α

q(t,ξ )dσ(ξ )−η ′(s)−λ1(s,t)η(s),

Θ2(t,s) =
β∫

α

q(t,ξ )dσ(ξ )−η ′(s)+λ2(t,s)η(s).

The following two lemmas will be needed in proving of our main results. The
first is the well-known Kiguradze’s Lemma [8]. The second can be obtained easily by
Kiguradze and Koplatadze’s Lemmas, see [10, Chapt. 1].

LEMMA 2.1. ([8]) Let u ∈ Cn([t0,∞),R+) . If u(n)(t) is of constant sign and not
identically zero on any interval of the form [t∗,∞) , then there exist a tu � t0 and an
integer j , 0 � j � n, with n+ j even for u(n)(t) � 0 , or n+ j odd for u(n)(t) � 0 such
that

j > 0 implies that u(k)(t) > 0 for t � tu, k = 0,1, · · · , j−1,

and

j � n−1 implies that (−1) j+ku(k)(t) > 0 for t � tu, k = j, j +1, · · · ,n−1.

LEMMA 2.2. ([10]) If the function u(t) is as in Lemma 2.1 and u(n−1)(t)u(n)(t) �
0 for any t � tu , then

u(t/2) � 21−n

(n−1)!
tn−1|u(n−1)(t)| for all large t.
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Firstly, we give Kamenev-type criteria for Eq.(1.1).

THEOREM 2.1. If there exist functions ρ ∈ C1([t0,∞),R+) , η ∈ C1([t0,∞),R) ,
and H ∈ H such that for any T � t0 ,

limsup
t→∞

1
H(t,T )

t∫

T

H(t,s)ρ(s)
[
Θ2(t,s)− μ

|λ2(t,s)|p+1

ϕ p(s)

]
ds = ∞, (2.1)

then Eq.(1.1) is oscillatory.

Proof. Suppose to contrary that Eq.(1.1) has a nonoscillatory solution x(t) . With-
out loss of generality, we may assume that x(t) > 0 and x(g(t,ξ )) > 0 for t � t1 � t0 �
0, ξ ∈ [α,β ] . Since

(r(t)|x(n−1)(t)|p−1x(n−1)(t))′ � −
β∫

α

q(t,ξ ) f [x(g(t,ξ ))]dσ(ξ ) � 0,

the function r(t)|x(n−1)(t)|p−1x(n−1)(t) is decreasing and x(n−1)(t) is eventually of one
sign. If x(n−1)(t) < 0 eventually, then there exists a constant δ > 0 such that

−r(t)(−x(n−1)(t))p � −δ p < 0.

Integrating the above inequality from t1 to t , we get

x(n−2)(t) � x(n−2)(t1)− δ
t∫

t1

ds

r1/p(s)
.

By (A3) we find that x(n−2)(t) < 0 eventually. But then Lemma 2.1 (note that n is even)
implies that x(t) < 0 eventually, which is a contradiction. So x(n−1)(t) > 0 eventually,
then again from Lemma 2.1 we have x′(t) > 0 eventually. Thus there exists a t2 � t1
such that

x′(t) > 0 and x(n−1)(t) > 0 for t � t2. (2.2)

Observing that the function r(t)(xn−1)(t))p is decreasing for t � t2 , by (A3), there
exists a t3 � t2 such that

(x(n−1)(t))p � r(t3)
r(t)

(x(n−1)(t3))p � r(t3)
c

(x(n−1)(t3))p for t � t3. (2.3)

Note that (A1), (A2) and (2.2), so

f (x(g(t,ξ )) � f (x(g(t,α)) > 0 for t � t3, ξ ∈ [α,β ]. (2.4)

It follows from (1.1) and (2.4) that
(
r(t)(x(n−1)(t))p)′ = r′(t)(x(n−1)(t))p + pr(t)(x(n−1)(t))p−1x(n)(t)
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� −
β∫

α

q(t,ξ ) f (x(g(t,ξ )))dσ(ξ )

� − f (x(g(t,α)))

β∫

α

q(t,ξ )dσ(ξ ). (2.5)

Now, in view of (A3), let

ε =
c

2r(t3)
f (x(g(t3,α)))
(x(n−1)(t3))p

,

there exists a t4 � t3 such that, note that (A3), (2.3) and (2.5), for t � t4 ,

pr(t)(x(n−1)(t))p−1x(n)(t) � |r′(t)|(x(n−1)(t))p− f (x(g(t,α)))

β∫

α

q(t,ξ )dσ(ξ )

�
(
ε

β∫

α

q(t,ξ )dσ(ξ )
)( r(t3)

c
(x(n−1)(t3))p

)
− f (x(g(t,α)))

β∫

α

q(t,ξ )dσ(ξ )

= −1
2

f (x(g(t,α))

β∫

α

q(t,ξ )dσ(ξ ) � 0.

Thus, we find x(n)(t) � 0 for t � t4 . It is easy to check that we can apply Lemma 2.2
for x′ = u , and conclude that there exists a t5 � t4 such that

x′
(1

2
g(t,α)

)
� 22−n

(n−2)!
gn−2(t,α)x(n−1)(t) for t � t5, (2.6)

since
x(n−1)(g(t,s)) � x(n−1)(t) for t � t5 .

Put

W (t) = ρ(t)
[r(t)|x(n−1)(t))|p−1x(n−1)(t)

f (x(g(t,α)/2))
+η(t)

]
.

Noting that (1.1) and (2.6), we have

W ′(t)�−ρ(t)
[ β∫

α

q(t,ξ )dσ(ξ )−η ′(t)
]
+
ρ ′(t)
ρ(t)

W (t)−kρ(t)ϕ(t)
∣∣∣W (t)
ρ(t)

−η(t)
∣∣∣(p+1)/p

.

(2.7)
Replacing t by s , multiplying by H(t,s) , integrating from T to t , we obtain

t∫

T

H(t,s)ρ(s)Θ2(t,s)ds �H(t,T )W (T )+
t∫

T

H(t,s)ρ(s)|λ2(t,s)|
∣∣∣W (s)
ρ(s)

−η(s)
∣∣∣ds
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− k

t∫

T

H(t,s)ρ(s)ϕ(s)
∣∣∣W (s)
ρ(s)

−η(s)
∣∣∣(p+1)/p

ds. (2.8)

The Young inequality [6, Theorem 61] gives

|λ2(t,s)|
∣∣∣W (s)
ρ(s)

−η(s)
∣∣∣ � kϕ(s)

∣∣∣W (s)
ρ(s)

−η(s)
∣∣∣(p+1)/p

+ μ
|λ2(t,s)|p+1

ϕ p(s)
.

Substituting the above inequality into (2.8), we get

t∫

T

H(t,s)ρ(s)
[
Θ2(t,s)− μ

|λ2(t,s)|p+1

ϕ p(s)

]
ds � W (T )H(t,T ). (2.9)

Dividing by H(t,T ) , and taking the upper limits as t → ∞ . The right hand side is
always bounded, which contradicts condition (2.1). This completes the proof. �

As an immediate consequence of Theorem 2.1, we get the following corollary.

COROLLARY 2.1. Let condition (2.1) in Theorem 2.1 be replaced by

limsup
t→∞

1
H(t,T )

t∫

T

H(t,s)ρ(s)Θ2(t,s)ds = ∞ (2.10)

and

limsup
t→∞

1
H(t,T )

t∫

T

H(t,s)ρ(s)
|λ2(t,s)|p+1

ϕ p(s)
ds < ∞, (2.11)

then conclusion of Theorem 2.1 holds.

COROLLARY 2.2. Let ρ and η be as in Theorem 2.1 and lim
t→∞

G(t) = ∞ . If for

some λ > p,

limsup
t→∞

1

Gλ (t)

t∫

t0

[G(t)−G(s)]λρ(s)Θ2(t,s)ds = ∞, (2.12)

and
∞∫ |ρ ′(s)|p+1

(ρ(s)ϕ(s))p ds < ∞, (2.13)

where G(t) =
t∫

t0
ϕ(s)ρ−1/p(s)ds, then Eq.(1.1) is oscillatory.
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Proof. Let H(t,s) = [G(t)−G(s)]λ , then

h2(t,s) =
λϕ(s)

ρ1/p(s)[G(t)−G(s)]
.

By the elementary inequality,

(X +Y)p+1 � 2p(X p+1 +Y p+1), X , Y � 0,

we obtain

t∫

T

H(t,s)ρ(s)
|λ2(t,s)|p+1

ϕ p(s)
ds

� 2p
[ t∫

T

H(t,s)ρ(s)
|h2(t,s)|p+1

ϕ p(s)
ds+

t∫

T

H(t,s)
|ρ ′(s)|p+1

(ρ(s)ϕ(s))p ds
]
. (2.14)

Noting that

t∫

T

H(t,s)ρ(s)
|h2(t,s)|p+1

ϕ p(s)
ds =

λ p+1

λ − p

[
G(t)−G(T)

]λ−p
,

and by (2.13) and [16, Lemma (14)],

limsup
t→∞

1
H(t,T )

t∫

T

H(t,s)
|ρ ′(s)|p+1

(ρ(s)ϕ(s))p ds = 0.

Hence, by (2.14), note that lim
t→∞

G(t) = ∞ , we have

lim
t→∞

1
H(t,T )

t∫

T

H(t,s)ρ(s)
|λ2(t,s)|p+1

ϕ p(s)
ds = 0.

It following from Corollary 2.1 that Eq.(1.1) is oscillatory. �

REMARK 2.1. Corollary 2.2 improves [15, Theorem 2.2]. �

Next, we give interval oscillation criteria for Eq.(1.1).

THEOREM 2.2. Let ρ ,η and H be as in Theorem 2.1. If for each T � t0 , there
exist constants a,b, and c such that T � a < c < b,

1
H(b,c)

b∫

c

H(b,s)ρ(s)
[
Θ2(b,s)− μ

|λ2(b,s)|p+1

ϕ p(s)

]
ds
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+
1

H(c,a)

c∫

a

H(s,a)ρ(s)
[
Θ1(s,a)− μ

|λ1(s,a)|p+1

ϕ p(s)

]
ds > 0, (2.15)

then Eq.(1.1) is oscillatory.

Proof. Proceeding as the proof of Theorem 2.1. For each T � t5 , there exists
an interval [a,b] such that (2.7) hold for t ∈ [a,b] . Replacing t to s , multiplying by
H(t,s) , and integrating from c to t (t � b) , we have

1
H(t,c)

t∫

c

H(t,s)ρ(s)
[
Θ2(t,s)− μ

|λ2(t,s)|p+1

ϕ p(s)

]
ds � W (c).

Let t → b− in above inequality, then

1
H(b,c)

b∫

c

H(b,s)ρ(s)
[
Θ2(b,s)− μ

|λ2(b,s)|p+1

ϕ p(s)

]
ds � W (c). (2.16)

On the other hand, replacing t by s in (2.7), multiplying H(s,t) integrating from
t (t � a) to c . Similar to the proof of (2.16), we obtain

1
H(c,a)

c∫

a

H(s,a)ρ(s)
[
Θ1(s,a)− μ

|λ1(s,a)|p+1

ϕ p(s)

]
ds � −W (c). (2.17)

Now, (2.16) and (2.17) imply that desired contradiction, which completes the proof.
�

COROLLARY 2.3. Let ρ ,η ,H be as in Theorem 2.1. If for each l � t0 ,

limsup
t→∞

t∫

l

H(s, l)ρ(s)
[
Θ1(s, l)− μ

|λ1(s, l)|p+1

ϕ p(s)

]
ds > 0 (2.18)

and

limsup
t→∞

t∫

l

H(t,s)ρ(s)
[
Θ2(t,s)− μ

|λ2(t,s)|p+1

ϕ p(s)

]
ds > 0, (2.19)

then Eq.(1.1) is oscillatory.

Proof. For each T � t0 . Let l = a = T in (2.18). Clearly, we see from (2.18) that
there exists a c > a such that

c∫

a

H(s,a)ρ(s)
[
Θ1(s,a)− μ

|λ1(s,a)|p+1

ϕ p(s)

]
ds > 0. (2.20)
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Similarly, setting l = c = T in (2.19), it follows that there exists a b > c such that

b∫

c

H(b,s)ρ(s)
[
Θ2(b,s)− μ

|λ2(b,s)|p+1

ϕ p(s)

]
ds > 0. (2.21)

So, (2.20) and (2.21) imply that (2.15) in Theorem 2.2 is true, which completes the
proof. �

COROLLARY 2.4. If there exists a function ρ ∈C1([t0,∞),R+) such that for each
l � t0 , and some λ > p,

limsup
t→∞

1

Gλ−p(t)

t∫

l

[G(s)−G(l)]λρ(s)
( β∫

α

q(s,ξ )dσ(ξ )
)
ds >

μλ p+1

λ − p
(2.22)

and

limsup
t→∞

1

Gλ−p(t)

t∫

l

[G(t)−G(s)]λρ(s)
( β∫

α

q(s,ξ )dσ(ξ )
)
ds >

μλ p+1

λ − p
, (2.23)

where G(t) is defined in Corollary 2.2 and lim
t→∞

G(t) = ∞ , then Eq.(1.1) is oscillatory.

Proof. Let H(t,s) = [G(t)−G(s)]λ and η(s) = 0, we get

h1(t,s) =
λϕ(t)

ρ1/p(t)[G(t)−G(s)]
and h2(t,s) =

λϕ(s)
ρ1/p(s)[G(t)−G(s)]

.

Note that
t∫

l

H(s, l)ρ(s)
|λ1(s, l)|p+1

ϕ p(s)
ds =

λ p+1

λ − p
[G(t)−G(l)]λ−p

and
t∫

l

H(t,s)ρ(s)
|λ2(s, l)|p+1

ϕ p(s)
ds =

λ p+1

λ − p
[G(t)−G(l)]λ−p.

In view of lim
t→∞

G(t) = ∞ , we have

lim
t→∞

1

Gλ−p(t)

t∫

l

H(s, l)ρ(s)
|λ1(s, l)|p+1

ϕ p(s)
ds =

λ p+1

λ − p
(2.24)

and

lim
t→∞

1

Gλ−p(t)

t∫

l

H(s, l)ρ(s)
|λ2(s, l)|p+1

ϕ p(s)
ds =

λ p+1

λ − p
. (2.25)
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From (2.22) and (2.24), we get

limsup
t→∞

1
H(t, l)

t∫

l

H(s, l)ρ(s)
[
Θ1(s, l)− μ

|λ1(s, l)|p+1

ϕ p(s)

]
ds

= lim
t→∞

1

Gλ−p(t)

t∫

l

[G(s)−G(l)]λ ρ(s)
( β∫

α

q(s,ξ )dσ(ξ )
)
ds− μ λ p+1

λ − p
> 0,

i.e., (2.18) holds. Similarly, (2.23) implies that (2.22) holds. By Corollary 2.3, Eq.(1.1)
is oscillatory. �

REMARK 2.2. From the above oscillation criteria, one can obtain different suffi-
cient conditions for oscillation of Eq.(1.1) by different choices of H(t,s) . Following
the well known Kamenev-type condition [7], let

H(t,s) = (t − s)λ , λ > p.

As the direct consequences of Theorems 2.1-2.2, we can establish oscillation criteria
for Eq.(1.1). Here we omit the details. �

To illustrate the main results obtained in this paper, we consider the following
interesting examples.

EXAMPLE 2.1. Consider the delay differential equation

(r(t)|x(n−1)(t)|2x(n−1)(t))′ +
1∫

1/2

q(t,ξ )x3(tξ )dξ = 0, n even, (2.26)

where t � 1, c > 0,

r(t) = t−4 + c , g(t,ξ ) = tξ , f (x) = x3 , and q ∈C([1,∞)× [ 1
2 ,1],R+)

with
1∫

1/2

q(t,ξ )dξ � c1t
λ−1, c1 > 0, λ � 4.

For Corollary 2.2, let

ρ(t) = t−λ , η(t) = 0, H(t,s) = (t− s)λ .

Then

λ2(t,s) =
λ t

(t − s)s
, ϕ(t) =

22(1−n)

(n−2)!
(t−4 + c)−1/3tn−2 � c2t

n−2,

where

c2 :=
22(1−n)

(n−2)!
(
1
2

+ c)−1/3.
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It follows from [6, Theorem 41] that

(t − s)λ � tλ −λ stλ−1 for t � s � 1,

we can obtain, for all T � 1,

limsup
t→∞

1
H(t,T )

t∫

T

H(t,s)ρ(s)Θ2(t,s)ds

� lim
t→∞

c1

(t−T )λ

t∫

T

(t − s)λ
1
s
ds � lim

t→∞

c1

(t−1)λ

t∫

T

tλ −λ stλ−1

s
ds = ∞,

and

limsup
t→∞

1
H(t,T )

t∫

T

H(t,s)ρ(s)
|λ2(t,s)|p+1

ϕ p(s)
ds

� λ 4

c3
2

limsup
t→∞

t4

(t−T )λ

t∫

T

(t− s)λ−4s−λ−3n+2ds

� λ 4

c3
2

limsup
t→∞

t∫

T

s−λ−3n+2ds < ∞.

Thus, all conditions of Corollary 2.2 are satisfied, Eq.(2.26) is oscillatory. �

EXAMPLE 2.2. Consider the even order differential equation

(r(t)|x(n−1)(t)|p−1x(n−1)(t))′ +
1∫

1/2

q(t,ξ )|x(tξ )|p−1x(tξ )dξ = 0, n even, (2.27)

where t � t0 > 1, r(t) satisfies (A3), g(t,ξ ) = tξ , q ∈C([t0,∞)× [ 1
2 ,1],R+) with

1∫

1/2

q(t,ξ )dξ � γ ϕ(t)
Gp+1(t)

, γ > 0,

and ϕ(t)G−(p+1)(t) is decreasing for t � t0 , where G(t) is defined as in Corollary 2.2,
and lim

t→∞
G(t) = ∞ .

Let p0 := max{1, p} , then we can verify that Eq.(2.27) is oscillatory for γ �
pp+1

0 μ . Indeed, let ρ(t) = 1 and η(t) = 0. Note that λ > p � 1 and from [6, Theorem
41], we have

[G(s)−G(l)]λ � Gλ (s)−λG(l)Gλ−1(s) for s � l � t0. (2.28)
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It follows from G′(t) = ϕ(t) that for each l � t0 ,

limsup
t→∞

1

Gλ−p(t)

t∫

l

[G(s)−G(l)]λρ(s)
( 1∫

1/2

q(s,ξ )dξ
)
ds

� limsup
t→∞

1

Gλ−p(t)

t∫

l

[G(s)−G(l)]λ
γ

Gp+1(s)
dG(s) =

γ
λ − p

. (2.29)

For any γ > pp+1
0 μ , there exists λ > p0 such that

γ
λ − p

>
μλ p+1

λ − p
.

This means (2.22) holds.
On the other hand, note that ϕ(t)G−(p+1)(t) is decreasing, by [9, Lemma 3.1], we

have
t∫

l

[G(t)−G(s)]λ
ϕ(s)

Gp+1(s)
ds �

t∫

l

[G(s)−G(l)]λ
ϕ(s)

Gp+1(s)
ds. (2.30)

By (2.29) and (2.30), condition (2.23) holds for the same λ . Applying Corollary 2.4,
we find that Eq.(2.27) is oscillatory if γ > pp+1

0 μ . �
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