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EXACT NULL CONTROLLABILITY OF ABSTRACT DIFFERENTIAL

EQUATIONS BY FINITE–DIMENSIONAL CONTROL AND

STRONGLY MINIMAL FAMILIES OF EXPONENTIALS

B. SHKLYAR

Abstract. The exact controllability to the origin for linear evolution control equation is consid-
ered. The problem is investigated by its transformation to infinite linear moment problem of
generalized exponentials. The existence of solutions of obtained moment problem is investi-
gated for the case when exponentials of a moment problem do not constitute a Riesz basis. The
exact controllability of linear control system of neutral type is considered as an example.
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