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EXACT NULL CONTROLLABILITY OF ABSTRACT DIFFERENTIAL

EQUATIONS BY FINITE–DIMENSIONAL CONTROL AND
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(Communicated by S. K. Ntouyas)

Abstract. The exact controllability to the origin for linear evolution control equation is consid-
ered. The problem is investigated by its transformation to infinite linear moment problem of
generalized exponentials. The existence of solutions of obtained moment problem is investi-
gated for the case when exponentials of a moment problem do not constitute a Riesz basis. The
exact controllability of linear control system of neutral type is considered as an example.

1. Introduction

The controllability problem is a classical problem in the control theory. Research
in this field has been very intensive, so it is impossible to review all the literature de-
voted to the controllability. For example one can refer to the book [17] and the paper
[15] for an introduction and a survey in the controllability of finite-dimensional systems.
One can also see the papers of [6], [22] and the monograph [18] for an introduction to
the controllability of PDE’s. The different kinds of controllability (both approximate
and exact controllability) for infinite dimensional systems with emphasis to retarded
systems have been investigated in the monograph [13], and papers [14], [15].

Below we will consider the exact null controllability problem for abstract control
differential equations. The large majority of authors investigates abstract control dif-
ferential equations with bounded input operators. We will consider the situations with
unbounded input operator. As a rule unbounded operators appear in boundary control
problems.

2. Problem statement

Let X ,U be complex Hilbert spaces, where the space U is a finite-dimensional
with dimension r � 1, and let A be infinitesimal generator of strongly continuous C0 -
semigroups S(t) in X , see [11] and [16]. Consider the abstract control differential
equation (see [11], [16]),

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, 0 � t < +∞, (2.1)
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where x(t), x0 ∈ X ,u(t) ∈U, B :U → X is a linear possibly unbounded operator, W ⊂
X ⊂V are Hilbert spaces with continuous dense injections, where W = D(A) equipped
with graphic norm, V = W ∗ , the operator B is a bounded operator from U to V (see
more details in [23],[28]).

It is well-known that (see [23], [28], etc.):
• for each t � 0 the operator S(t) has an unique continuous extension S (t) on

the space V and the family of operators S (t) :V →V is the semigroup in the class C0

with respect to the norm of V and the corresponding infinitesimal generator A of the
semigroup S (t) is the closed dense extension of the operator A on the space V with
domain D(A ) = X ;

• the sets of eigenvalues and of generalized eigenvectors of operators A ,A ∗ and
A, A∗ are the same;

• a mild solution x(t,x0,u(·)) of equation (2.1) with initial condition x(0) = x0

is obtained by the following representation formula

x(t,x0,u(·)) = S(t)x0 +
t∫

0

S (t − τ)Bu(τ)dτ, (2.2)

where the integral in (2.2) is understood in the Bochner’s sense [11]. To assure

x(t,x0,u(·)) ∈ X , ∀x0 ∈ X ,u(·) ∈ Lrloc
2 [0,+∞),t � 0,

we assume that
t∫

0

S (t− τ)Bu(τ)dτ ∈ X

for any u(·) ∈ Lloc
2 [0,+∞) , t � 0, see [23] and [28].

DEFINITION 2.1. Equation (2.1) is said to be exact null-controllable on [0, t1]
by controls vanishing after time moment t2 if for each x0 ∈ X there exists a control
u(·) ∈ L2 ([0, t2],U) ,u(t) = 0 a.e. on [t2,+∞) such that

x(t1,x0,u(·)) = 0. (2.3)

The goal of this paper is to establish necessary and sufficient conditions of exact
null-controllability for linear evolution control equations with unbounded input oper-
ator. The main approach is the transformation of exact null-controllability problem
(controllability to the origin) to linear infinite moment problem, which is defined as
follows.

Given sequences {cn, n ∈ N} and {xn ∈ X , n ∈ N} find an element g ∈ X such
that

cn = (xn,g), n ∈ N. (2.4)

The problem formulated above is called the linear moment problem. It has a long
history and many applications in geometry, physics, mechanics.
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It is well-known, that if the sequence {xn, n ∈ N} forms a Riesz basis in the clo-
sure of its linear span, the linear moment problem (2.4) has a solution if and only if
∑∞

n=1 |cn|2 < ∞ and vice-versa [3], [9], [25], [29]. This well-known fact is one of main
tools for the controllability analysis of various partial hyperbolic control equations.

However the sequence {xn, n ∈ N} doesn’t need to be a Riesz basis for the solv-
ability of linear moment problem. This case appears under the investigation of the con-
trollability of parabolic control equations or hereditary functional differential control
systems. In this paper we consider the null-controllability of control evolution equa-
tions for the case when the sequence {xn, n ∈ N} of the moment problem obtained
by the transformation of the source control problem doesn’t form a Riesz basis in its
closed linear span.

The assumptions on A are listed below.

1. The operators A has purely point spectrum σ with no finite limit points. All the
eigenvalues of A have finite multiplicities, bounded from above.

2. There exists T � 0 such that all mild solutions of the equation ẋ(t) = Ax(t) are
expanded in a series of generalized eigenvectors of the operator A converging
uniformly for any t ∈ [T1,T2],T < T1 < T2.

3. Main results

Without lost of generality one can consider U = Rr. In this case the operator
B : U → X is defined by

Bu =
r

∑
i=1

biui, ∀u = (u1, ...,ur) ∈ R
r,

where bi ∈ V, i = 1,2, ...,r. The operator B is a bounded operator if and only if bi ∈
X , i = 1,2, ...,r.

Let the eigenvalues λ j ∈ σ , j ∈ N , be enumerated in the order of non-decreasing
absolute values, let α j and q j be the algebraic and geometric multiplicities1 of λ j ∈ σ
correspondingly, and let⎧⎨

⎩
ϕm

jk, j ∈ N, k = 1,2, ....,βm
j , βm

j � α j,

Aϕm
jβm

j
= λ jϕm

jβm
j
, m = 1,2, ...,q j,

be the generalized eigenvectors of the operator A , and let⎧⎨
⎩
ψm

jk, j ∈ N, k = 1,2, ....,βm
j ,

A∗ψm
jβm

j
= λ jψm

jβ j
,

1The geometric multiplicity qj is the number of Jordan blocks corresponding to λ j ∈ σ , and βm
j , is the

dimension of m -th Jordan block, m = 1,2, ...,qj .
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be the generalized eigenvectors of the adjoint operator A∗ , chosen such that

(ϕq
pβp−l+1,ψ

m
jk) = δp jδlkδmq, (3.1)

p, j ∈ N,q = 1,2, ...,γp, l = 1, . . . ,β q
p , ,m = 1,2, ...,q j,k = 1, . . . ,βm

j .

We use the following notations:

xm
jk(t) =

(
x
(
t,x0,u(·)),ψm

jk

)
, x0 jk =

(
x0,ψm

jk

)
, (3.2)

bm
jk = B∗ψm

jk =
((

b1,ψm
jk

)
, ...,

(
br,ψm

jk

))
,

j ∈ N, m = 1,2, ...,q j, k = 1,2, . . .βm
j ,

gm
jk(t) = exp(λ jt)

βm
j −k

∑
l=0

bm
jk+l

t l

l!
, (3.3)

j ∈ N, k = 1, . . . ,βm
j , m = 1,2, ...,q j, t ∈ [0, t1−T ].

All scalar products in (3.2) are correctly defined, because ψm
jk ∈W, j ∈ N, m =

1,2, ...,q j , k = 1, . . . ,βm
j , b1, ...,br ∈V = W ∗.

THEOREM 3.1. For equation (2.1) to be exact null-controllable on [0,t1], t1 > T,
by controls vanishing after time moment t1 −T , it is necessary and sufficient that the
following infinite moment problem

xm
0 jk = −

∫ t1−T

0
gm

jk (−t)u(τ)dτ, j ∈ N, k = 1, . . . , βm
j , m = 1,2, ...,q j. (3.4)

with respect to u(·) ∈ Lr
2[0,t1−T ] be solvable for any x0 ∈ X .

Proof. Necessity. If equation (2.1) is exact null-controllable on [0,t1] , t1 > T,
then by Definition 2.1 for each x0 ∈ X there exists u(t) ∈ Lr

2[0,t2] such that

S(t1)x0 +
t1−T∫
0

S (t1 − τ)Bu(τ)dτ = 0. (3.5)

Multiplying both parts of (3.5) to ψm
jk , j ∈ N, k = 1,2, ....,βm

j , m = 1,2, ...,q j , we
obtain (3.4).

Sufficiency. Let xm
jk(t) =

(
x(t),ψm

jk

)
, j ∈ N , k = 1,2, ....,βm

j , m = 1,2, ...,q j ,
where x(t) is a weak solution of equation (2.1). It is easily to show that the sequence{

xm
jk(t), j ∈ N, m = 1,2, ...,q j, k = 1,2, . . . ,βm

j

}
is the solution of the infinite system⎧⎨

⎩
ẋm

jk(t) = λ jxm
jk(t)+ xm

jk+1(t)+bm
jku(t), k = 1,2, . . . ,βm

j −1,

ẋm
jβ j

(t) = λ jxm
jβ j

(t)+bm
jβ j

u(t), k = βm
j ,

(3.6)
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for j ∈ N , m = 1,2, ...,q j , with initial conditions

xm
jk(0) = (x0,ψ jk), j ∈ N, k = 1,2, . . . ,βm

j , m = 1,2, ...,q j.

Let u0(t), t ∈ [0, t1−T ],u0(.) ∈ Lr
2[0,t1−T ] be a solution of moment problem (3.4). If

u(t) = u0(t) a.e. on [0,t2] then by (3.4) and (3.6) we have

xm
jk(t1 −T) = 0, j ∈ N, m = 1,2, ...,q j, k = 1,2, . . . ,βm

j .

Putting u(t) ≡ 0, t � t1−T , we obtain by (3.6) that

xm
jk(t) ≡ 0, j ∈ N, m = 1,2, ...,q j, k = 1,2, . . . , βm

j , ∀t � t1,

and x(t) is the solution of the equation

ẋ(t) = Ax(t)

for each t � t1 . By Assumption 2 of the operator A (see the top of the 173), we obtain
that

x(t) ≡ 0,∀t > t1.

This proves the theorem.

3.1. Solution of moment problem (3.4)

It is well-known, see for instance [9], [25], and [29], that if the sequence
{
xn

}
n∈N

is a Riesz basis in X , then the linear moment problem

c j =
(
x j,g

)
, j ∈ N,

has a solution g ∈ X if and only if

∞

∑
j=1

∣∣c j
∣∣2 < ∞.

Thus if the sequence of functions

{
gm

jk(−t) = exp(−λ jt)
βm

j −k

∑
l=0

bm
jk+l

(−t)l

l!

}
, (3.7)

j ∈ N, m = 1,2, ...,q j, k = 1, . . . , βm
j , t ∈ 0,t1−T ]

forms a Riesz basis in L2[0,t1−T ] , then the moment problem

(x0,ψm
jk) = −

∫ t1−T

0
gm

jk(−t)u(τ)dτ, j ∈ N, m = 1,2, ...,q j, k = 1, . . . , βm
j (3.8)

is solvable for every x0 ∈ X if and only if

∞

∑
j=1

γ j

∑
m=1

βm
j

∑
k=1

∣∣∣(x0,ψm
jk)

∣∣∣2 < ∞, ∀x0 ∈ X . (3.9)
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The above statements are one of main tools for the investigation of the zero controlla-
bility of hyperbolic partial control equations.

However moment problem (3.8) may also be solvable when the sequence (3.7)
doesn’t form a Riesz basis in L2[0,t1 − T ]. Below we will try to find more extended
controllability conditions which are applicable for the case when the sequence (3.7)
doesn’t form a Riesz basis in L2[0,t1−T ].

DEFINITION 3.2. The sequence {x j ∈ X , j ∈ N,} is said to be minimal, if there
no element of the sequence belonging to the closure of the linear span of others. By
other words,

x j /∈ span{xk ∈ X , k = 1,2, ...,k �= j}.
Let {x j ∈ X , j ∈ N,} be a sequence of elements of X , and let

Gn = {(x i,x j), i, j = 1,2, ...,n}
be the Gram matrix of n first elements {x1, ...,xn} of above sequence. Denote by
γmin
n the minimal eigenvalue of the n× n -matrix Gn . Each minimal sequence {x j ∈

X , j ∈ N} is linear independent, hence any first n elements {x1, ...,xn}, n ∈ N , of
this sequence are linear independent, so γmin

n > 0, ∀n ∈ N. It is easily to show that the
sequence {γmin

n , n ∈ N} decreases , so there exists lim
n→∞

γmin
n � 0.

DEFINITION 3.3. The sequence {x j ∈ X , j ∈ N} is said to be strongly minimal,
if

γmin = lim
n→∞

γmin
n > 0.

It is well-known that for Hermitian n×n -matrix

Gn =
{
(x j,xk) , j,k = 1,2, ...,n

}
the inequalities

γmin
n

n

∑
k=1

|ck|2 �
n

∑
j=1

n

∑
k=1

c j(x j,xk)ck =
∥∥∥ m

∑
k=1

ckxk

∥∥∥2
, n ∈ N, (3.10)

hold.

In the sequel the investigation of the controllability problem defined above is based
on the following result of Boas [5] (see also [3] and [30]).

THEOREM Let x j ∈ X , j ∈ N. The linear moment problem

c j = (x j,g), j ∈ N,

has a solution g ∈ X for each square summable sequence {c j, j ∈ N} if and only if
there exists a positive constant γ such that all the inequalities

γ
n

∑
k=1

|ck|2 �
∥∥ n

∑
j=1

c jx j
∥∥2

, n ∈ N, (3.11)
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are valid.

From (3.10) and the inequality γmin
n � γmin > 0 it follows that

γmin
n

∑
k=1

∣∣ck

∣∣2 �
∥∥∥ n

∑
k=1

ckxk

∥∥∥2
. (3.12)

Hence the above theorem can be reformulated as follows.

THEOREM 3.4. The linear moment problem

c j = (x j,g), j ∈ N, (3.13)

has a solution g ∈ X for any sequence {cn, n ∈ N},
∞
∑
j=1

|ck|2 < ∞ if and only if the

sequence
{
xn

}
n∈N

is strongly minimal.

4. Solution of the exact null-controllability problem

THEOREM 4.1. For equation (2.1) to be exact null-controllable on [0,t1], t1 > T,
by controls vanishing after time moment t1−T , it is necessary, that the sequence (3.7)
is minimal, and sufficient, that:

• the sequence (3.7) is strongly minimal,

•
∞

∑
j=1

γ j

∑
m=1

βm
j

∑
j=1

∣∣∣(x0,ψm
jk

)∣∣∣2 < +∞,∀x0 ∈ X . (4.1)

Proof. Necessity. If the problem (3.4) has a solution for any x0 ∈ X , then it has
a solution for any generalized eigenvector ϕ jk , j ∈ N, k = 1,2, ...βm

j , m = 1,2, ...,q j,
of the operator A, so for each j ∈ N, m = 1,2, ...,γ j, k = 1,2, ...βm

j , there exists a
function u jk(·) ∈ L2[0,t1−T ], j ∈ N, k = 1,2, ...β j, such that

(ϕq
pβp−l+1,ψ

m
jk) = −

∫ t1−T

0 j
gm

jk(−t)upβp−l+1(τ)dτ, (4.2)

p, j ∈ N, r = 1,2, ..,qp, m = 1,2, ...,q j,

l = 1, . . . ,β q
p , k = 1, . . . , βm

j .

The sequence {ϕk}k∈N of eigenvectors of the operator A is biorthogonal to the se-
quence {ψk}k∈N of eigenvectors of the operator A∗. Hence it follows from (4.2) and
(3.1) that

δp jδlkδqm = −
∫ t1−T

0
gm

jk(−t)uq
pβp−l+1(τ)dτ,



178 B. SHKLYAR

for p, j ∈ N , q = 1,2, ..,qp , m = 1,2, ...,q j , l = 1, . . . ,β q
p , k = 1, . . . ,βm

j , i.e. the
sequence{−uq

pβp−l+1(τ), t ∈ [0,t1−T ], p = 1,2, . . . , r = 1,2, ..,qp, l = 1, . . . ,β q
p

}
is biorthogonal to the sequence

{∫ t1−T

0
gm

jk(−t), t ∈ [0,t1 −T ], j ∈ N, m = 1,2, ...,q j, k = 1, . . . ,βm
j

}
.

It proves the necessity.

Sufficiency. The sufficiency follows immediately from (4.1) and Theorem 3.4.
It proves the theorem.

4.1. The case when the generalized eigenvectors of the operator A constitute a
Riesz basis

One of the important problems of the operator theory is the case when the gener-
alized eigenvectors of the operator A being considered form a Riesz basis in X . The
problem of expansion into a Riesz basis of generalized eigenvectors of the operator A is
widely investigated in the literature (see, for example, [1], [8], [9], [20] and references
therein). Obviously the sequence of these vectors is strongly minimal. In this case one
can set T = 0, so the Theorems 4.1 can be proven with T = 0.

THEOREM 4.2. Let the sequence of operator A forms a Riesz basis in X . Equa-
tion (2.1) is exact null-controllable on [0,t1] , t1 > T , by controls vanishing after time
moment t1−T , if and only if the sequence (3.7) is strongly minimal.

Proof. Let
{
cm

jk, j ∈N, m = 1,2, ...,q j, k = 1,2, ...,βm
j

}
be any complex sequence

satisfying the condition
∞

∑
j=1

γ j

∑
mγ=1

βm
j

∑
k=1

∣∣cm
jk

∣∣2 < ∞. (4.3)

The sequence
{
ϕm

jk, j ∈ N, m = 1,2, ...,q j, k = 1,2, ...,βm
j

}
of eigenvectors of

the operator A forms a Riesz basis. Therefore, (see [3]), there exists a vector x0 ∈ X
such that

cm
jk =

(
x0,ψm

jk

)
, j ∈ N, m = 1,2, ...,q j, k = 1,2, ...,βm

j , (4.4)

where
{
ψm

jk, j ∈ N, k = 1,2, ...,βm
j

}
are generalized eigenvectors of the operator A∗ ,

so in virtue of Theorem 3.1 the exact null controllability of equation (2.1) is equivalent
to the existence of a solution for the linear moment problem

cm
jk =

∫ t1−T

0
gm

jk(−t)u(τ)dτ, j ∈ N, (4.5)

for any complex sequence
{
cm

jk, j ∈ N, m = 1,2, ...,q j, k = 1,2, ...,βm
j

}
satisfying the

condition (4.3).
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By above mentioned results of [5] the linear moment problem (4.5) has a solution
for any complex sequence

{
cm

jk, j ∈ N, m = 1,2, ...,q j, k = 1,2, ...,βm
j

}
satisfying the

condition (4.3), if and only if the sequence{
gm

jk(−t), t ∈ [0,t1−T ]
}

j ∈ N, m = 1,2, ...,q j, k = 1,2, ...,βm
j

is strongly minimal. It proves the theorem.

REMARK 4.3. It is clear that if sequence (3.3) is minimal, then it is linear in-
dependent. Hence its any subsequence is also linear independent, therefore the linear
independence of the sequence{

f m
jβm

j
(−t) = bm

jβm
j
exp(−λ jt)

}
, (4.6)

j ∈ N, m = 1,2, ...,q j, t ∈ [0,t1−T ]

is necessary for sequence (3.3) to be linear independent. We have

bm
jβm

j
=

{
bm

jβm
j 1,b

m
jβm

j 2, ...,b
m
jβm

j r

} ∈ R
r, j ∈ N, m = 1, ...,q j. (4.7)

If there exists a number j such that r < q j, than the number q j of r -dimensional func-
tions (4.6) will be linear dependent, so moment problem (3.4) will not be solvable for
any x0 ∈ X . Therefore if there exists a moment t1 > T such that equation (2.1) is exact
null-controllable on [0,t1] by controls vanishing after t1 −T, then q j � r, j ∈ N, . By
other words, equation (2.1) cannot be exact null-controllable on [0,t1] by controls van-
ishing after t1−T, if r (the number of inputs) is less then max

j∈N

q j (maximal geometrical

multiplicity of eigenvalues of the operator A). If r � max
j∈N

q j, then in accordance with

Theorem 4.2 equation (2.1) is exact null-controllable on [0,t1] by controls vanishing
after t1−T, if and only if the sequence (3.5) is strongly minimal. �

The theory of families of generalized exponents have been developed in [2] (see
also [24], [25], [29], and references therein).

In virtue of Theorem 4.2 we have a special interest in the strong minimality prop-
erty of such families.

4.2. Choice of an operator B for evolution control equations with single control

Let all the geometrical multiplicities q j, j ∈ N be equal to 1. In accordance with
Remark 4.3 the exact null-controllable equation (2.1) on [0,t1] by scalar controls (r =
1) vanishing after t1−T, can be considered, and the operator B : U → X is defined by

Bu = bu, ∀u ∈ R,

where b ∈ V. The operator b is a bounded operator if and only if b ∈ X . In this case
βm

j = α j � α , j ∈ N so the generalized eigenvectors of the operators A and A∗ can
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be written without index m, bm
jk = b jk = (b,ψ jk), k = 1,2, ...,α j, j ∈ N, where ψ jk ,

j ∈ N, k = 1,2, ...,α j are generalized eigenvectors of the adjoint operator A∗.
The problem under consideration is:
for a given operator A , let choose a vector b ∈ V (i.e. an operator B ) such that

control evolution equation (2.1) be exact null controllable in accordance with Definition
2.1 (see Page 172).

Denote

g =

⎧⎨
⎩

g jk(−t) = ∑
α j−k
l=0 b jk+l exp(−λ jt)

(−t)l
l! ,

t ∈ [0,t1 −T ], j ∈ N, k = 1,2, ...,α j,
(4.8)

f =

⎧⎨
⎩

f jk (−t) = (−t)k−1

(k−1)! e−λ jt ,

t ∈ [0,t1−T ], j ∈ N, k = 1,2, ...,α j.
(4.9)

In accordance with Theorem 4.2 equation (2.1) is exact null-controllable on [0,t1]
by scalar controls vanishing after t1 − T, if and only if the sequence (4.8) is strongly
minimal.

As it was shown above if sequence (4.8) is strongly minimal, then it is surely
linear independent. The necessary and sufficient condition sequence (4.8) to be linear
independent is the condition

b jα j �= 0, j ∈ N .

Hence this condition is necessary for the strong minimality of sequence (4.8).
If b ∈ X and the vectors ψ jk, j ∈ N, k = 1,2, ...,α j form a Riesz basis in their

closed linear span, then

∞

∑
j=1

∣∣b jα j

∣∣2 �
∞

∑
j=1

α j

∑
k=1

∣∣b jk
∣∣2 =

∞

∑
j=1

α j

∑
k=1

∣∣(b,ψ jk)
∣∣2 < +∞,

so lim
j→∞

|b jα j |= inf
j∈N

|b jα j |= 0. But if b /∈X , than the case inf
j∈N

|b jα j |> 0 can be realized.

Denote

Bj =

⎛
⎜⎜⎝

b j1 b j2 ... b jα j

b j2 b j3 ... 0
... ... ... ...

b jα j 0 ... 0

⎞
⎟⎟⎠ , c j =

⎛
⎜⎜⎝

c j1

c j2

...
c jα j

⎞
⎟⎟⎠ , d j = Bjc j, j ∈ N.

From the definition of singular values of matrices [19] it follows that the product
of all singular values of the matrix Bj is equal to

∣∣b jα j

∣∣α j , j ∈ N . Using this property
of singular values one can easily prove that if b jα j �= 0, j ∈ N, then for any j ∈ N the
minimal singular value σmin(Bj) of the symmetric matrix Bj is positive, so

inf
j∈N

{
σmin(Bj)

}
� 0 and σmin

(
Bj

)
� |b jα j |2, j ∈ N.

Hence if b ∈ X , than
inf
j∈N

{
σmin(Bj)

}
� inf

j∈N

|b jα j |2 = 0.
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However if b /∈ X , than the case inf
j∈N

{
σmin (Bj)

}
> 0 can be considered. In this case

the strong minimality of sequence (4.8) can be delivered from the strong minimality of
sequence (4.9) of generalized exponents.

The next theorem can be useful for the case when the operator A, describing the
inner structure of evolution control system is given, but the input device described by
the operator B, can be chosen.

THEOREM 4.4. If
inf
j∈N

{
σmin(Bj)

}
= β > 0, (4.10)

and the sequence (4.9) of generalized exponents is strongly minimal, then the sequence
(4.8) is also strongly minimal.

Proof. From (4.8) it follows that

∥∥∥ n

∑
j=1

α j

∑
k=1

c jkg jk(−t)
∥∥∥ =

∥∥∥ n

∑
j=1

α j

∑
k=1

c jk

α j−k

∑
l=0

b jk+l f jl+1(−t)
∥∥∥2

=
∥∥∥ n

∑
j=1

α j−1

∑
l=0

(α j−l

∑
k=1

c jkb jk+l

)
f jl+1(−t)

∥∥∥, n ∈ N. (4.11)

Since sequence (4.9) is strongly minimal, from (4.11) it follows that there exists a
positive number γ such that

γ
n

∑
j=0

α j−1

∑
l=0

∣∣∣α j−l

∑
k=1

c jkb jk+l

∣∣∣2 �
∥∥∥ n

∑
j=1

α j

∑
k=1

c jkg jk(−t)
∥∥∥2

, n ∈ N, (4.12)

where

α j−1

∑
l=0

∣∣∣α j−l

∑
k=1

c jkb jk+l

∣∣∣2 =

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

b j1 b j2 ... b jα j

b j2 b j3 ... 0
... ... ... ...

b jα j 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c j1

c j2

...
c jα j

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥

2

. (4.13)

By above notations of Bj and c j, j ∈ N formula (4.13) can be rewritten as

α j−1

∑
l=0

α j−l

∑
k=1

∣∣c jkb jk+l

∣∣2 =
∥∥Bjc j

∥∥2
, j ∈ N. (4.14)

If we will prove that there exists a positive number δ > 0, such that

δ
α j

∑
k=1

∣∣c jk

∣∣2 �
α j−1

∑
l=0

∣∣∣α j−l

∑
k=1

c jkb jk+l

∣∣∣2 (4.15)

we obtain by (4.12)-(4.14) that

γδ
n

∑
j=0

α j

∑
k=1

|c jk|2 �
∥∥∥ n

∑
j=0

α j

∑
k=1

c jkg jk(−t)
∥∥∥2

,γδ > 0, n ∈ N, (4.16)
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and the proof will be finished. �

It is well-known (see [19]) that∥∥Bjc j
∥∥2 =

(
cT

j B
T
j B jc j

)
� σ2

min (Bj)‖c j‖2.

Hence it follows from (4.10) that

‖Bjc j‖2 � β 2‖c j‖2, j ∈ N.

Formula (4.14) shows that the last inequality is exactly inequality (4.15) with δ =
β 2, so (4.16) holds. It proves the theorem. �

Theorem 4.4 establishes the sufficient conditions for exact null controllability pro-
vided that the family of generalized exponentials generated by eigenvalues of the oper-
ator A is strongly minimal.

The theory of families of generalized exponents have been developed in [2] (see
also [24], [25], [29], and references therein). In virtue of Theorem 4.2, we have a
special interest in the strong minimality property of such families.

4.2.1. Example of strongly minimal sequence

Using conditions of minimality for families of exponentials and Theorem 1.5 of
[7], one can show that the sequence{

en2π2t , n ∈ N, t ∈ [0,t1]
}

(4.17)

is strongly minimal for any t1 > 0. It allows us to establish the exact null controllability
for partial heat equations governed by boundary controls.

CLAIM The sequence (4.17) does not satisfy the conditions of [2] to constitute a
Riesz basis.

Proof. Let t1 = 2t2. The series ∑∞
n=1

1
n2π2 converges and (n+1)2−n2 � 1, so the

sequence {
en2π2t , n ∈ N, t ∈ [0,t2]

}
is minimal (see [7]). In virtue of Theorem 1.5 of [7] for each ε > 0, there exists a
positive constant Kε such that the biorthogonal sequence

{
wn(t), n ∈ N, t ∈ [0,t2]

}
satisfies the condition ∥∥wn(·)

∥∥ < Kεe
εn2π2

, n ∈ N. (4.18)

The positive constant ε can be chosen such that t2 − ε > 0.
By the Minkowsky inequality and (4.18) one can show that:

p

∑
n=1

p

∑
m=1

cne
−n2π2t2

(∫ t2

0
wn(t)wm(t)dt

)
e−m2π2t2cm

=
∫ t2

0

( p

∑
n=1

cne
−n2π2t2wn(t)dt

)2
dt



EXACT NULL CONTROLLABILITY AND FAMILIES OF EXPONENTIALS 183

�
∫ t2

0

p

∑
n=1

|cn|2
p

∑
n=1

∣∣e−n2π2t2wn(t)
∣∣2dt

=
p

∑
n=1

|cn|2
p

∑
n=1

e−2n2π2t2
∫ t2

0
|wn(t)|2dt

�
p

∑
n=1

|cn|2
p

∑
n=1

e−2n2π2t2‖wn(·)‖2

� K2
ε

p

∑
n=1

|cn|2
p

∑
n=1

e−2n2π2(t2−ε).

The series
p
∑

n=1
e−2n2π2(t2−ε) converges for any t2 , ε , t2 > ε , so

p

∑
n=1

e−2n2π2(t2−ε) � M,

where M is a positive constant. Hence
p

∑
n=1

p

∑
m=1

cne
−n2π2t2

(∫ t2

0
wn(t)wm(t)dt

)
e−m2π2t2cm � K2

εM
p

∑
n=1

|cn|2 (4.19)

for every finite sequence
{
c1,c2, ...,cp

}
. Obviously the sequence {hn(t)}n∈N , where

hn(t) =

{
e−n2π2t2wn(t − t2), t ∈ [t2,2t2],
0, t ∈ [0,t2),

is the biorthogonal to the sequence{
en2π2t , n ∈ N, t ∈ [0,t1]

}
,

and ∫ t1

0
hn(t)hm(t)dt = e−n2π2t2

(∫ 2t2

t2
wn(t − t2)wm(t− t2)dt

)
e−m2π2t2

= e−n2π2t2
(∫ t2

0
wn(t)wm(t)dt

)
e−m2π2t2 ,

so it follows from (4.19) that
p

∑
n=1

p

∑
m=1

cn

(∫ t1

0
hn(t)hm(t)dt

)
cm � K2

εM
p

∑
n=1

|cn|2.

Hence (see [12]),
p

∑
n=1

p

∑
m=1

cn

(∫ 2t1

0
en2π2τem2π2τ

)
cmdτ � γ

p

∑
n=1

|cn|2, p = 1,2, ..., (4.20)

for every finite sequence {c1,c2, ...,cp}, where γ = 1/K2
εM > 0. It proves that the

sequence {
en2π2t ,t ∈ [0,t1], n ∈ N

}
is strongly minimal for any t1 > 0.
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5. Approximation Theorems. Example

As was said at the end of the previous section the condition lim
n→∞

λmin
n > 0 in gen-

eral can be checked by numerical methods. The problem appears to be rather difficult
in general. However there are sequences for which the validity of above inequality can
be easily established; for example, every orthonormal sequence is strongly minimal.

Below we will show that if the sequence {y j ∈ X , j ∈ N} can be approximated in
the some sense by strongly minimal sequence {x j ∈ X , j ∈ N} , then it is also strongly
minimal.

THEOREM 5.1. If the sequence {x j ∈ X , j ∈ N} is strongly minimal, and the
sequence {y j ∈ X , j ∈ N} is such that

∥∥∥ n

∑
j=1

c j(y j − x j)
∥∥∥ � q

∥∥∥ n

∑
j=1

c jx j

∥∥∥, n ∈ N, (5.1)

where {c j, j ∈ N} is any sequence of complex numbers, q is a constant, 0 < q < 1,
then the sequence {y j ∈ X , j ∈ N} also is strongly minimal.

Proof. Let {ck,k = 1,2, ...} be an arbitrary sequence of complex number. Denote:

x0 =
n

∑
k=1

ckxk and x1 =
n

∑
k=1

ck(xk − yk). (5.2)

From (5.2) it follows, that

x0 = x1 +
n

∑
k=1

ckyk, n ∈ N. (5.3)

By (5.1) we obtain
‖x1‖ � q‖x0‖. (5.4)

Hence using (5.4) in (5.3) we obtain

‖x0‖ � 1
1−q

∥∥∥ n

∑
k=1

ckyk

∥∥∥, n ∈ N. (5.5)

Since the sequence {x j ∈ X , j ∈ N} is strongly minimal and x0 = ∑n
k=1 ckxk , we

have
n

∑
k=1

|ck|2 � 1
α2 ‖x0‖2, n ∈ N, (5.6)

for some α ∈ R,α �= 0.
By (5.6) and (5.5) we obtain

α2
n

∑
k=1

|ck|2 � 1
1−q

∥∥∥ n

∑
k=1

ckyk

∥∥∥, n ∈ N,
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so

α2(1−q)2
( n

∑
k=1

|ck|2
)

�
∥∥∥ n

∑
k=1

ckyk

∥∥∥, n ∈ N. (5.7)

Using in (5.7) the formula

m

∑
j=1

m

∑
k=1

c j(y j,yk)ck =
∥∥∥ m

∑
j=1

c jy j

∥∥∥2
,

we obtain

γ
( n

∑
k=1

|ck|2
)

�
n

∑
k=1

n

∑
l=1

ck(yk,yl)cl , (5.8)

where γ = α2(1−q)2 > 0. Formula (5.8) is equivalent to the strong minimality of the
sequence {yk, k ∈ N} . This proves the theorem. �

5.1. Controllability by single control

Let all the geometrical multiplicities q j, j ∈ N be equal to 1. In accordance with
Remark 4.3 the exact null-controllable equation (2.1) on [0,t1] by scalar controls (r =
1) vanishing after t1−T , can be considered, and the operator B : U → X is defined by

Bu = bu, ∀u ∈ R,

where b ∈ V. The operator b is a bounded operator if and only if b ∈ X . In this case
βm

j = α j � α, j ∈ N , so the generalized eigenvectors of the operators A and A∗ can
be written without index m, bm

jk = b jk = (b,ψ jk), k = 1,2, ...,α j, j ∈ N, where ψ jk ,
j ∈ N, k = 1,2, ...,α j are generalized eigenvectors of the adjoint operator A∗.

Denote

g =

{
g jk(−t) = ∑

α j−k
l=0 b jk+l exp(−λ jt)

(−t)l
l! ,

t ∈ [0,t1−T ], j ∈ N, k = 1,2, ...,α j,

}
(5.9)

In accordance with Theorem 4.2 equation (2.1) is exact null-controllable on [0,t1]
by scalar controls vanishing after t1 − T, if and only if the sequence (5.9) is strongly
minimal.

5.2. Example

Consider the functional differential time-invariant control system of neutral type
[4] with scalar control

m

∑
j=0

(
A0 jẋ(t−h j)+A1 jx(t−h j)

)
= bu(t), (5.10)

where A0 j, A1 j, i = 1, ...,m are n× n -matrices, detA00 �= 0, b ∈ Rn,0 = h0 < h1 <
hm = h.
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Let X =W1
2

(
[−h,0],Cn

)
denote the Sobolev space of functions v(·)∈Cn equipped

by the norm

‖v‖w2 =
(∫ 0

−h

(
‖v̇(θ )‖2 +‖v(θ )‖2

)
dθ

) 1
2

. (5.11)

The initial conditions for system (5.10) is defined by

x(θ ) = ϕ(θ ), −h � θ � 0, ϕ(·) ∈W 1
2

(
[−h,0],Cn), x(+0) = ϕ(0). (5.12)

Let xt ∈ X denote the function x(t + θ ) , −h � θ � 0, t � 0, where x0 = ϕ(θ ) ,
−h � θ � 0. Consider the C0 -semigroup S(t) : X → X of bounded operators defined
by (see [10])

S(t)ϕ = xt , t � 0,

where x(t) is the strong solution of system

m

∑
j=0

(
A0 jẋ(t −h j)+A1 jx(t−h j)

)
= 0 (5.13)

with initial condition (5.12). The operator B is defined by the pair

Bu = (b,0)u, ∀u ∈ R,

where 0 is the function equals to zero a.e . on [−h,0].The vector B = (b,0) /∈X , so the
operator B is not bounded. One can see that system (5.10) is a partial case of equation
(2.1) with single control. The operator A, generating the semigroup S(t), satisfies all
the assumptions of page 173; the second assumption is fulfilled with T = nh [4], The
eigenvalues of the operator A are exactly zeroes of the quasipolynomial

W (λ ) = det
m

∑
j=0

(
A0 jλ +A1 j

)
e−λh j = 0. (5.14)

One can prove that exponential solutions corresponding to the eigenvalue λ j de-
scribed in [27] (see also [4] and [10]) are exactly generalized eigenvectors of the opera-
tor A. Hence from corollary to Theorem 3 of [27] it follows that the generalized eigen-
vectors of the operator A constitute a Riesz basis of the space X = W 1

2 ([−h,0],Cn)
provided that in addition to the condition detA00 �= 0 the condition detA0m �= 0 also
holds, and zeroes λ j, j ∈ N of quasipolynomial (5.14) constitute a separate set, i.e.

inf
j,k∈N, k �= j

∣∣λk −λ j
∣∣ > 0 (5.15)

THEOREM 5.2. If detA00 �= 0 , detA0m �= 0 and the eigenvalues λ j, j ∈ N of the
operator A constitute a separate set, then system (5.10) is exact null-controllable on
[0,t1] , t1 > nh, by controls vanishing after time moment t1 -nh, if and only if the se-
quence (5.9) is strongly minimal2.

Condition (5.15) holds for systems (5.10) with commensurable delays (λ j = jh
for some h ∈ R) [4].

2Here bjk =
(
B,ψ jk

)
= bT cjk , j ∈ N, k = 1, ...,β j , where c jk = ψ jk (0) are defined in [10].
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6. Comments

There exists the powerful technique of moment problem based on the theory of
Riesz basis of exponentials. This theory has a long history [1], [3], [12], [26] and it
has been essentially developed in [2], [24], [25], [29], (see also references therein).
The approach based on the theory of Riesz basis of exponentials is very useful tool to
analyze exact controllability problems for hyperbolic control systems. Unfortunately
the corresponding families of exponentials arising in parabolic control systems as well
as in functional differential control systems don’t constitute a Riesz basis, and the op-
erators generating semigroups of systems under investigations not always has a basis
of their generalized eigenvectors. Therefore one needs another approach to investigate
exact controllability problem. One of possible approaches has been developed in [21],
where the authors have constructed a special Riesz basis based on a Riesz basis of
finite-dimensional invariant subspaces allowing to use some special moment problem.
The authors of [21] investigate the controllability problem which can be considered as
attainability. It differs from the exact null controllability problem considered in the
given paper.

Theorem 4.2 allows to investigate exact null-controllability problems in the case
when corresponding families of exponential are not Riesz basis in the closure of their
linear span. It reduces the exact null-controllability problem to the investigation of the
strong minimality property for exponential families. For example, strongly minimal
sequence of exponentials (4.17) considered on page 182 is not a basis in the closure
of its linear span, but it allows to establish exact null-controllability for classical heat
equation (parabolic equation) governed by boundary control (well-known result).

Sometimes the strong minimality property for exponential families can be easily
verified and can be applied for exact null-controllability of parabolic control equations
(see the example of minimal sequence of exponentials on the Page 182). But as a usual
the establishing of the strong minimality of exponentials is not always trivial.

In our private opinion the strongly minimal sequences of exponentials as well as
basic families of exponentials play an important role in controllability theory. Condi-
tions for strong minimality of families of exponentials generated by partial differential
equations have been investigated in the literature, however the strong minimality of
families of exponentials generated by functional-differential control systems are almost
not investigated (to the author’s knowledge).

Use of asymptotic formulas for zeroes of quasipolynomial (5.14) (see [4]) in The-
orem 5.1 may be considered as an approach for establishing the strong minimality of
(5.9) generated by linear time-invariant neutral control systems.
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