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Abstract. In this paper, a kind of p-Laplacian neutral functional differential equation with time-
varying operator as follows(

ϕp
(
u′(t)−

n

∑
i=1

ci(t)u′(t − ri)
))′

= f (u′(t))+β(t)g(u(t − γ(t)))+ e(t),

is studied and some new results are obtained. It is worth noting that the parameters ci(t)(i =
1,2, · · · ,n) are functions and the coefficient β(t) (which is ahead of g ) is sign-variable here. It
is interesting, but it is so challenging and difficult that few people have discussed it so far.

1. Introduction

In the past few years, the existence of periodic solutions has been studied exten-
sively, see [1, 2, 3, 4, 5, 6, 7, 8] and references therein, especially the existence of
periodic solutions to p -Laplacian functional differential equations has received more
and more attention, see references [1, 3, 4, 6, 7, 8] for more details. For example, Lu
and Gui [6] studied a kind of p -Laplacian Rayleigh differential equation

(ϕp(y′(t)))′ + f (y′(t))+g(y(t− τ(t))) = e(t). (1.1)

Cheung and Ren [1] studied the existence of periodic solutions to a kind of p -Laplacian
Rayleigh equation of the form

(ϕp(x′(t)))′ + f (x′(t))+βg(x(t− τ(t))) = e(t), (1.2)

where β > 0 is a constant. Lu et al. [5] studied a kind of neutral differential equation
with deviating arguments as follows

(x(t)− cx(t− r)′′ + f (x′(t))+g(x(t− τ(t))) = p(t), (1.3)
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where c �= 1 is a constant, some results on the difference operator D :CT →CT , [Dx](t)=
x(t)− cx(t− r) and the existence of periodic solutions were obtained. Recently, Lu [4]
studied a p -Laplacian neutral functional differential equation of the form

(
ϕp
((

u(t)−
n

∑
j=1

c ju(t− r j)
)′))′

= f (u(t))u′(t)+α(t)g(u(t))+
n

∑
j=1

β j(t)g(u(t− γ j(t)))+ p(t), (1.4)

some results about the difference operator D :CT →CT , [Dx](t) = x(t)−
n
∑
j=1

c jx(t− r j)

and the existence of periodic solutions were presented.
On the other hand, Liang et al. [3] and Wang et al. [7] studied the existence of

periodic solutions to the following p -Laplacian neutral functional differential equations(
ϕp
((

x(t)− c(t)x(t−σ)
)(n)))(m)

+ f (x(t))x′(t)+g(x(t− τ(t))) = e(t) (1.5)

and (
ϕp
(
x′(t)− c(t)x′(t− r)

))′ = f (x(t))x′(t)+β (t)g(x(t− τ(t)))+ e(t), (1.6)

respectively, where β (t) is allowed to change sign.
Observing the above equations, it is easy to note that the coefficients which are

ahead of function g in Eqs.(1.1-1.4) are constants or the sign-fixed functions. More-
over, the coefficients c(t) of the difference operator in Eq.(1.5) and Eq.(1.6) are func-
tions, but the second term in these equations are f (x(t))x′(t) . Therefore, it is easy to
obtain the a priori bounds of periodic solutions for Eqs(1.1-1.6), which is crucial for
the existence of periodic solutions.

To the best of our knowledge, there are few results on the existence of periodic
solutions to the following equation of the type(

ϕp
(
u′(t)−

n

∑
i=1

ci(t)u′(t − ri)
))′

= f (u′(t))+β (t)g(u(t− γ(t)))+ e(t), (1.7)

where ϕp(u) = |u|p−2u for u �= 0 and ϕp(0) = 0, p > 1; f ,g∈C(R,R) ; e(t),β (t),γ(t)
are continuous periodic functions defined on R with period T > 0,∫ T

0
β (t)dt �= 0,

∫ T

0
e(t)dt = 0,

ci(t) ∈C1(R,R) and ci(t +T ) = ci(t) , (i = 1,2, · · · ,n) ; T,ri(i = 1,2, · · · ,n) are given
constants.

It is noted that in Eq.(1.7) the functions ci(t),(i = 1,2, · · · ,n) are not constants,
the sign of coefficient β (t) which is ahead of g can be changed, and the second term is
f (x′(t)) , so it is difficult to estimate a priori bounds of periodic solutions. There are two
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main difficulties. On the one hand,
∫ T
0 f (x′(t))dt = 0 is no longer valid for Eq.(1.7), on

the other hand, the difference operator A : CT → CT , [Ax](t) = x(t)−
n
∑
i=1

ci(t)x(t − ri)

has n continuous functions ci(t),(i = 1,2, · · · ,n) . To obtain a priori bounds of periodic
solutions and the existence of periodic solutions, one must overcome these difficulties.

Motivated by the above reasons, we will study the properties of time-varying dif-
ference operator A and the existence of periodic solutions to Eq.(1.7). Firstly, some
new results on the properties of operator A are obtained. Then, based on these prop-
erties of operator A and Mawhin continuation theorem, some new results about the
existence of periodic solutions are presented. Finally, a numerical example is given to
illustrate the availability of the obtained results.

2. Properties of time-varying operator A

In this section, we will investigate some properties of a time-varying operator A :

CT →CT , [Ax](t) = x(t)−
n
∑
i=1

ci(t)x(t− ri) by the knowledge of mathematical analysis.

Some new results of the properties of A will be obtained. Let

CT = {x : x ∈C(R,R),x(t +T ) ≡ x(t), for all t ∈ R},

with norm |ϕ |0 = max
t∈[0,T ]

|ϕ(t)|, for all ϕ ∈CT ,

C1
T = {x : x ∈C1(R,R),x(t +T ) ≡ x(t), for all t ∈ R},

with norm ‖ϕ‖ = max{|ϕ |0, |ϕ ′|0}, for all ϕ ∈ C1
T . Therefore, CT and C1

T are both
Banach spaces. For ci ∈C1

T , let

c0
i = max

t∈[0,T ]
|ci(t)|, c1

i = max
t∈[0,T ]

|c′i(t)|, (i = 1,2, · · · ,n).

Define linear operators:

A : CT →CT , [Ax](t) = x(t)−
n

∑
i=1

ci(t)x(t− ri), for all t ∈ [0,T ]. (2.1)

Throughout this paper, let
m
∑
i=n

ri = 0 if n > m .

LEMMA 2.1. If
n
∑
i=1

c0
i < 1 , then A has continuous inverse A−1 on CT with the

following properties, where A is defined by (2.1):
(1) for all f ∈CT ,

[A−1 f ](t) = f (t)+
∞

∑
m=1

n

∑
i1=1

n

∑
i2=1

· · ·
n

∑
im=1

m

∏
j=1

ci j

(
t−

m

∑
k= j+1

rik

)
f

(
t −

m

∑
s=1

ris

)
;
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(2) it holds,

‖A−1‖ � 1

1−
n
∑
i=1

c0
i

;

(3) for all f ∈CT and p > 1 ,∫ T

0

∣∣[A−1 f ](t)
∣∣pdt � 1(

1−
n
∑
i=1

c0
i

)p

∫ T

0
| f (t)|pdt;

(4) for all f ∈C1
T ,

[A f ′](t) = [A f ]′(t)+
n

∑
i=1

c′i(t) f (t − ri);

(5) for all f ∈C1
T ,

[A−1 f ]′(t) = [A−1 f ′](t)+
∞

∑
m=1

n

∑
i1=1

n

∑
i2=1

· · ·
n

∑
im=1

(
m

∏
j=1

ci j

(
t−

m

∑
k= j+1

rik

))′
f
(
t−

m

∑
s=1

ris

)
.

Proof. Conclusions (1-4) are the direct results of [8]. For conclusion (5), one can
obtain it by calculating directly. �

Now suppose that there is an integer k ∈ {1,2, · · · ,n} such that

ck = min
t∈[0,T ]

|ck(t)| > 1 and δ :=
1
ck

+∑
i�=k

c0
i

ck
< 1.

From the definition of A we have

[Ax](t) = x(t)−
n

∑
i=1

ci(t)x(t − ri) = −ck(t)

[
x(t − rk)− x(t)

ck(t)
+∑

i�=k

ci(t)
ck(t)

x(t− ri)

]
.

Let [Ax](t) = f (t), f ∈CT , that is

−ck(t)

[
x(t − rk)− x(t)

ck(t)
+∑

i�=k

ci(t)
ck(t)

x(t − ri)

]
= f (t),

therefore

x(t − rk)− x(t)
ck(t)

+∑
i�=k

ci(t)
ck(t)

x(t− ri) = − f (t)
ck(t)

.

Doing variable transformation s = t− rk and replacing s with t finally:

x(t)− 1
ck(t + rk)

x(t + rk)−∑
i�=k

(
− ci(t + rk)

ck(t + rk)

)
x(t − ri + rk)
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= − f (t + rk)
ck(t + rk)

:= f1(t), (2.2)

and f1(t) ∈CT as well. Let E : CT →CT be defined by

[Ex](t) = x(t)− 1
ck(t + rk)

x(t + rk)−∑
i�=k

(
− ci(t + rk)

ck(t + rk)

)
x(t− ri + rk),

and

dk(t) =
1

ck(t + rk)
and di(t) = − ci(t + rk)

ck(t + rk)
, i = 1,2, · · · ,k−1,k+1, · · ·,n,

r̃k = −rk and r̃i = ri − rk, i = 1,2, · · · ,k−1,k+1, · · ·,n,

d0
i = max

t∈[0,T ]
|di(t)|, i = 1,2, · · · ,n.

Then we have

[Ex](t) = x(t)−
n

∑
i=1

di(t)x(t− r̃i) and
n

∑
i=1

d0
i � 1

ck
+∑

i�=k

c0
i

ck
= δ < 1.

Therefore, by Lemma 2.1 E has continuous inverse E−1 :CT →CT and it follows from
the equation (2.2) which is equivalent to [Ex](t) = f1(t) that x(t) = [E−1 f1](t), and
[E−1 f1](t) ∈CT also holds, this implies that A has continuous inverse A−1 :CT →CT ,
and

[A−1 f (t)] = x(t) = [E−1 f1](t).

Furthermore, one have following results.

LEMMA 2.2. If there is an integer k ∈ {1,2, · · · ,n} such that

ck = min
t∈[0,T ]

|ck(t)| > 1 and δ =
1
ck

+∑
i�=k

c0
i

ck
< 1,

then A has continuous inverse A−1 : CT →CT satisfying:
(1) for all f ∈CT ,

[A−1 f (t)] = − f (t + rk)
ck(t + rk)

+
∞

∑
m=1

n

∑
i1=1

n

∑
i2=1

· · ·
n

∑
im=1

m

∏
j=1

di j

(
t−

m

∑
k= j+1

r̃ik

)

·
(
−

f
(
t−

m
∑

s=1
r̃is + rk

)
ck
(
t−

m
∑

s=1
r̃is + rk

)),
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where di, r̃i(i = 1,2, · · · ,n) are defined above;
(2) it holds,

‖A−1‖ � 1
ck − ckδ

=
1

ck −1− ∑
i�=k

c0
i

;

(3) for all f ∈CT , p > 1 ,∫ T

0

∣∣[A−1 f ](t)
∣∣pdt �

(
1

ck −1− ∑
i�=k

c0
i

)p ∫ T

0
| f (t)|pdt;

(4) for all f ∈C1
T ,

[A f ′](t) = [A f ]′(t)+
n

∑
i=1

c′i(t) f (t − ri);

(5) for all f ∈C1
T ,

[A−1 f ]′(t) = [E−1 f ′1](t)+
∞

∑
m=1

n

∑
i1=1

n

∑
i2=1

· · ·
n

∑
im=1

( m

∏
j=1

di j

(
t−

m

∑
k= j+1

r̃ik

))′
· f1
(
t−

m

∑
s=1

r̃is

)
,

where r̃i,di (i = 1,2, · · · ,n) are defined above and f1(t) = − f (t+rk)
ck(t+rk)

.

Proof. Conclusions (1-3) is in [8] and conclusions (4-5) can be obtained by calcu-
lating directly. �

REMARK 2.1. From the lemmas 2.1 and 2.2, if A−1 exists, then A−1 is linear.

LEMMA 2.3. ([8]) If
n
∑
i=1

c0
i < 1

2 and f (t) ≡ 1 , then [A−1 f ](t) > 0 , for all t ∈ R .

LEMMA 2.4. ([8]) If there is an integer k ∈ {1,2, · · · ,n} such that

ck = min
t∈[0,T ]

|ck(t)| > 1 and δc0
k < (1− δ )ck,

where δ = 1
ck

+ ∑
i�=k

c0
i

ck
. Furthermore, if f (t) ≡ 1 , then [A−1 f ](t) �= 0 , for all t ∈ R .

REMARK 2.2. From the inequality δc0
k < (1−δ )ck one obtains δ < 1

2 easily, so
the inverse of A exists.

Moreover, when f (t) ≡ 1, for the equation

[Ax](t) = x(t)−
n

∑
i=1

ci(t)x(t − ri) ≡ 1, for all x(t) ∈CT , t ∈ [0,T ], (2.3)

we have the following conclusions.
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LEMMA 2.5. If f (t) ≡ 1 , then the following conclusions hold.

(1) If
n
∑
i=1

ci(t) is not a constant function, for all ci(t)∈CT (i = 1,2, · · · ,n) , then x(t) =

[A−1 f ](t) is not a constant function.

(2) If
n
∑
i=1

c0
i < 1

2 , then
∫ T
0 [A−1 f ](t)dt �= 0 .

(3) If there is an integer k ∈ {1,2, · · · ,n} such that

ck = min
t∈[0,T ]

|ck(t)| > 1 and δc0
k < (1− δ )ck,

where δ = 1
ck

+ ∑
i�=k

c0
i

ck
, then

∫ T
0 [A−1 f ](t)dt �= 0 .

Proof. (1) Assume, by way of contradiction, that the result does not hold, then
x(t) ≡C (C is a constant), t ∈ [0,T ] . Therefore

C−C
n

∑
i=1

ci(t) ≡ 1,

from (2.3) we know C �= 0, then

n

∑
i=1

ci(t) ≡ (C−1)/C,

which contradicts the assumption of
n
∑
i=1

ci(t) is not a constant function. This contradic-

tion implies that the conclusion (1) holds.

(2) Similar to the (1), assuming, by way of contradiction, that the result does not hold,
then ∫ T

0
[A−1 f ](t)dt =

∫ T

0
x(t)dt = 0,

which together with (2.3) yields

∫ T

0

[
1+

n

∑
i=1

ci(t)x(t− ri)

]
dt = 0,

1
T

∫ T

0

n

∑
i=1

ci(t)x(t− ri)dt = −1,

1 =

∣∣∣∣∣ 1T
∫ T

0

n

∑
i=1

ci(t)x(t − ri)dt

∣∣∣∣∣� 1
T

∫ T

0

n

∑
i=1

|ci(t)||x(t− ri)|dt � |x|0
n

∑
i=1

c0
i . (2.4)

On the other hand, by the Lemma 2.1 (2) and f (t) ≡ 1, we have

|x|0 =
∣∣[A−1 f ](t)

∣∣
0 � ‖A−1‖ · | f |0 = ‖A−1‖ � 1

1−
n
∑
i=1

c0
i

. (2.5)
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In view of |x|0 > 0 and from (2.4) and (2.5), we know
n
∑
i=1

c0
i � 1

2 , which contradicts

n
∑
i=1

c0
i < 1

2 . This contradiction implies that the conclusion (2) holds.

(3) By way of contradiction, supposing that the conclusion (3) does not hold, then∫ T

0
[A−1 f ](t)dt =

∫ T

0
x(t)dt = 0. (2.6)

Since f (t) ≡ 1, we have

[Ax](t) = x(t)−
n

∑
i=1

ci(t)x(t− ri)

= −ck(t)

[
x(t− rk)− x(t)

ck(t)
+∑

i�=k

ci(t)
ck(t)

x(t − ri)

]
≡ 1

that is

−ck(t)

[
x(t − rk)− x(t)

ck(t)
+∑

i�=k

ci(t)
ck(t)

x(t− ri)

]
≡ 1,

so

x(t − rk)− x(t)
ck(t)

+∑
i�=k

ci(t)
ck(t)

x(t− ri) ≡− 1
ck(t)

.

Doing variable transformation:

x(t) ≡ 1
ck(t + rk)

x(t + rk)−∑
i�=k

ci(t + rk)
ck(t + rk)

x(t − ri + rk)− 1
ck(t + rk)

,

which together with (2.6) we obtain

1
T

∫ T

0

x(t + rk)
ck(t + rk)

dt− 1
T

∫ T

0
∑
i�=k

ci(t + rk)
ck(t + rk)

x(t − ri + rk)dt

− 1
T

∫ T

0

1
ck(t + rk)

dt ≡ 1
T

∫ T

0
x(t)dt = 0,

so ∣∣∣ 1
T

∫ T

0

1
ck(t + rk)

dt
∣∣∣� 1

T

∫ T

0

∣∣∣ x(t + rk)
ck(t + rk)

∣∣∣dt

+
1
T

∫ T

0
∑
i�=k

∣∣∣∣ ci(t + rk)
ck(t + rk)

x(t− ri + rk)
∣∣∣∣dt

� |x|0
(

1
ck

+∑
i�=k

c0
i

ck

)
= |x|0δ ,
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together with ck(t) does not change sign on [0,T ] which from min
t∈[0,T ]

|ck(t)| > 1, we

get

1

c0
k

�
∣∣∣∣ 1T
∫ T

0

1
ck(t + rk)

dt

∣∣∣∣� |x|0δ , (2.7)

On the other hand, by the Lemma 2.2(2) and f (t) ≡ 1 we obtain

|x|0 = |[A−1 f ](t)|0 � ‖A−1‖ ·1 � 1
ck(1− δ )

, (2.8)

which together with (2.7), one has

δc0
k � ck(1− δ ),

which contradicts δc0
k < ck(1− δ ) . This contradiction implies that the conclusion (3)

holds. �

REMARK 2.3. The second conclusion can be obtained from Lemma 2.3. In fact,

from Lemma 2.3 we know, if
n
∑
i=1

c0
i < 1

2 and f (t) ≡ 1, then [A−1 f ](t) > 0, for all

t ∈ R , so
∫ T
0 [A−1 f ](t)dt > 0. In addition, the third conclusion can not be obtained

from Lemma 2.4 directly.

In view of Remark 2.1, we can conclude the following results from Lemma 2.5.

LEMMA 2.6. If f (t) ≡C �= 0 , for the equation

[Ax](t) = x(t)−
n

∑
i=1

ci(t)x(t − ri) ≡C,

where x(t) ∈CT , then the following conclusions hold.

(1) If
n
∑
i=1

c0
i < 1

2 , then
∫ T
0 [A−1C](t)dt �= 0 .

(2) If there is an integer k ∈ {1,2, · · · ,n} such that

ck = min
t∈[0,T ]

|ck(t)| > 1 and δc0
k < (1− δ )ck,

where δ = 1
ck

+ ∑
i�=k

c0
i

ck
, then

∫ T
0 [A−1C](t)dt �= 0 .

REMARK 2.4. These results on the properties of time-varying operator A improve
the results in previous literatures [3, 4, 5, 7, 8].
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3. The existence of periodic solutions

In this section, based on the above properties of operator A in the section 2 and
Mawhin’s continuation theorem [2], we investigate the existence of periodic solutions
to Eq.(1.1).

Firstly, we introduce Mawhin’s continuation theorem.

LEMMA 3.1. (Gaines and Mawhin [2]) Suppose that X and Y are two Banach
spaces, and L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Furthermore,
Ω⊂ X is an open bounded set and N(x,λ ) : Ω× [0,1]→ Y is L-compact on Ω . If:
(1) Lx �= λN(x,λ ), f or all x ∈ ∂Ω∩D(L),λ ∈ (0,1),
(2) QN(x,0) �= 0, f or all x ∈ ∂Ω∩ kerL,
(3) deg(JQN(·,0),Ω∩ kerL,0) �= 0 , where J : ImQ → kerL is an isomorphism,
then the equation Lx = Nx has a solution in Ω∩D(L) .

In order to apply Lemma 3.1 to study the existence of T−periodic solutions to

Eq.(1.1), supposing that
n
∑
i=1

c0
i < 1, so the problem of existence of T−periodic so-

lutions to Eq.(1.1) can be converted to the corresponding problem of the following
system: {

x′1(t) =
[
A−1 (ϕq(x2(·)))

]
(t),

x′2(t) = f
([

A−1 (ϕq(x2(·)))
]
(t)
)
+β (t)g(x1(t − γ(t))+ e(t), (3.1)

where q > 1 is a constant with 1
p + 1

q = 1. In fact, if x(·) = (x1(·),x2(·))
 is a
T−periodic solution to Eqs.(3.1), then x1(t) must be a T−periodic solution to Eq.(1.1).
Thus, in order to prove that Eq.(1.1) has a T−periodic solution, it suffices to show that
Eqs.(3.1) has a T−periodic solution.

Now, let

X = Y =
{
x = (x1(·),x2(·))
 ∈C(R,R2) : x1 ∈CT ,x2 ∈CT

}
,

‖ψ‖ = max{|ψ1|0, |ψ2|0},∀ψ ∈ X or Y . Then, X and Y are both Banach spaces.
Defining a linear operator

L : D(L)∩X → Y, Lx = x′ = (x′1,x
′
2)

T , (3.2)

where D(L) =
{
x = (x1(·),x2(·))
 ∈ C1(R,R2) : x1 ∈ C1

T ,x2 ∈ C1
T

}
and a nonlinear

operator N : X → Y by setting

[Nx](t) =
( [

A−1 (ϕq(x2(·)))
]
(t)

f
([

A−1 (ϕq(x2(·)))
]
(t)
)
+β (t)g(x1(t− γ(t))+ e(t)

)
(3.3)

and another nonlinear operator N(·,λ ) : X × [0,1]→ Y by setting

[N(x,λ )](t) =
( [

A−1 (ϕq(x2(·)))
]
(t)

f
(
λ
[
A−1 (ϕq(x2(·)))

]
(t)
)
+β (t)g(x1(t− γ(t))+ e(t)

)
. (3.4)
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It is easy to see that N(·,1) = N and Eqs.(3.1) can be converted to the abstract
equation Lx = Nx . Moreover, it follows from the definition of L that kerL = R2 and

ImL =
{

y ∈Y :
∫ T
0 y(s)ds = 0

}
. So ImL is closed in Y and dim kerL = codim ImL =

2, then the operator L is a Fredholm operator with index zero. Meanwhile, let projec-
tors P : X → kerL and Q : Y → ImQ be defined by

Px =
1
T

∫ T

0
x(t)dt, Qy =

1
T

∫ T

0
y(t)dt. (3.5)

Therefore kerL = ImP, kerQ = ImL . Let operator KP denote the inverse of
L|D(L)∩kerP , then

[Kpy](t) =
∫ T

0
G(t,s)y(s)ds, (3.6)

where

G(t,s) =
{ s

T , 0 � s � t � T,
s−T
T , 0 � t � s � T.

(3.7)

From (3.3), (3.4) and (3.5) we know N is L -compact on Ω and N(·,λ ) is L -
compact on Ω× [0,1] , where Ω is an open bounded subset of X .

For the sake of convenience, we list the following conditions.
[H1] There are constants r > 0 and m > 0 such that | f (x)| � r|x|m , for all x ∈ R .
[H2] There are constants �1 > 0 and �2 > 0 such that

�1|x|m � |g(x)| � �2|x|m and xg(x) > 0, for all |x| > 0.

[H3] Let K1 =
n
∑
i=1

c0
i

(
1+

n
∑
i=1

c0
i

) p
q

and

K2 =
rDT

(p−m)(m+1)
mp

1−E
+

rT 2−m+1
p

1−E
+ |β |0�2T2m

[(
DT

p−m
mp

1−E

)m+1

+
(

T
p−1
p

1−E

)m+1]
,

where

D =

⎧⎪⎨⎪⎩
[

r
�1
∫ T
0 β−(t)dt

] 1
m

2
1−m
m , 0 < m � 1,[

r
�1
∫ T
0 β−(t)dt

] 1
m

, m > 1.

E =

⎧⎪⎪⎨⎪⎪⎩
[

�2
∫ T
0 β+(t)dt

�1
∫ T
0 β−(t)dt

] 1
m

2
1−m
m , 0 < m � 1,[

�2
∫ T
0 β+(t)dt

�1
∫ T
0 β−(t)dt

] 1
m

, m > 1.

and β+(t) = max{β (t),0}, β−(t)= max{−β (t),0}. Supposing the following inequal-
ities hold

E < 1 and

⎧⎪⎪⎨⎪⎪⎩
K1(

1−
n
∑

i=1
c0
i

)p < 1, if m < p−1,

K1+K2(
1−

n
∑

i=1
c0
i

)p < 1, if m = p−1.

THEOREM 3.1. Under the assumptions [H1]- [H3] and
n
∑
i=1

c0
i < 1

2 , Eq.(1.7) has

at least one T-periodic solution.



200 ZHENGXIN WANG, JINDE CAO AND SHIPING LU

Proof. Let Ω1 = {x : Lx = λN(x,λ ),λ ∈ (0,1)}. If x(·) = (u(·),v(·))
 ∈Ω1 , then
one can obtain from (3.2) and (3.4) that{

u′(t) = λ
[
A−1 (ϕq(v(·)))

]
(t),

v′(t) = λ f
(
λ
[
A−1 (ϕq(v(·)))

]
(t)
)
+λβ (t)g(u(t− γ(t)))+λe(t). (3.8)

From the first equation of (3.8), we have v(t) = ϕp
(

1
λ [Au′](t)

)
, which together with

the second equation of (3.8) yields[
ϕp
(
[Au′](t)

)]′ = λ p f
(
u′(t)

)
+λ pβ (t)g(u(t− γ(t)))+λ pe(t). (3.9)

Integrating two sides of Eq.(3.9) on the interval [0,T ] ,∫ T

0
f
(
u′(t)

)
dt +

∫ T

0
β (t)g(u(t− γ(t)))dt = 0. (3.10)

Let β+(t) = max{β (t),0},β−(t) = max{−β (t),0} , so β (t) = β+(t)− β−(t) ,
furthermore,∫ T

0
β+(t)dt � 0,

∫ T

0
β−(t)dt � 0 and

∫ T

0
β (t)dt =

∫ T

0
β+(t)dt−

∫ T

0
β−(t)dt.

Since
∫ T
0 β (t)dt �= 0,

∫ T
0 β+(t)dt and

∫ T
0 β−(t)dt need not be all vanish, without loss

of generality, supposing
∫ T
0 β−(t)dt > 0 (The case of

∫ T
0 β+(t)dt > 0 is shown as

Remark 3.2). Note that (3.10) implies∫ T

0
β−(t)g(u(t− γ(t)))dt =

∫ T

0
f
(
u′(t)

)
dt +

∫ T

0
β+(t)g(u(t− γ(t)))dt.

Applying the integrating mean theorem, one can see that there exists a constant ξ ∈
[0,T ] such that

g(u(ξ − γ(ξ )))
∫ T

0
β−(t)dt =

∫ T

0
f
(
u′(t)

)
dt +

∫ T

0
β+(t)g(u(t− γ(t)))dt. (3.11)

Now we claim that there exist constants D and E such that

|u(ξ − γ(ξ ))| � D

(∫ T

0
|u′(t)|mdt

) 1
m

+E|u|0, (3.12)

where

D =

⎧⎪⎨⎪⎩
[

r
�1
∫ T
0 β−(t)dt

] 1
m

2
1−m
m , 0 < m � 1,[

r
�1
∫ T
0 β−(t)dt

] 1
m

, m > 1.

E =

⎧⎪⎪⎨⎪⎪⎩
[

�2
∫ T
0 β+(t)dt

�1
∫ T
0 β−(t)dt

] 1
m

2
1−m
m , 0 < m � 1,[

�2
∫ T
0 β+(t)dt

�1
∫ T
0 β−(t)dt

] 1
m

, m > 1.

Case 1: If u(ξ − γ(ξ )) = 0, then (3.12) holds.
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Case 2: If |u(ξ−γ(ξ ))|> 0, let I1 = {t ∈ [0,T ] : u(t−γ(t)) = 0}, I2 = {t ∈ [0,T ] :
|u(t− γ(t))|> 0} . By (3.11) and assumption [H1]- [H2] one has g(0) = 0 and

�1|u(ξ − γ(ξ ))|m
∫ T

0
β−(t)dt

� |g(u(ξ − γ(ξ ))|
∫ T

0
β−(t)dt

�
∫ T

0
| f (u′(t)) |dt +

(∫
I1

+
∫

I2

)
β+(t)|g(u(t− γ(t)))|dt

� r
∫ T

0
|u′(t)|mdt + �2|u|m0

∫ T

0
β+(t)dt.

If 0 < m � 1, then by Jensen inequality, one has

|u(ξ − γ(ξ ))| �
[

r

�1
∫ T
0 β−(t)dt

∫ T

0
|u′(t)|mdt +

�2
∫ T
0 β+(t)dt

�1
∫ T
0 β−(t)dt

|u|m0
] 1

m

= 2
1
m

[
1
2

r

�1
∫ T
0 β−(t)dt

∫ T

0
|u′(t)|mdt +

1
2

�2
∫ T
0 β+(t)dt

�1
∫ T
0 β−(t)dt

|u|m0
] 1

m

� 2
1
m

[
1
2

(
r

�1
∫ T
0 β−(t)dt

∫ T

0
|u′(t)|mdt

) 1
m

+
1
2

(
�2
∫ T
0 β+(t)dt

�1
∫ T
0 β−(t)dt

|u|m0
) 1

m
]

=
[

r

�1
∫ T
0 β−(t)dt

] 1
m

2
1−m
m

(∫ T

0
|u′(t)|mdt

) 1
m

+
[
�2
∫ T
0 β+(t)dt

�1
∫ T
0 β−(t)dt

] 1
m

2
1−m
m |u|0.

If m > 1, then by (a+b)
1
m � a

1
m +b

1
m ,a,b ∈ [0,+∞),m > 1, one has

|u(ξ − γ(ξ ))|�
[

r

�1
∫ T
0 β−(t)dt

] 1
m(∫ T

0
|u′(t)|mdt

) 1
m +

[
�2
∫ T
0 β+(t)dt

�1
∫ T
0 β−(t)dt

] 1
m

|u|0.

It is easy to see that (3.12) holds.
Let ξ − γ(ξ ) = kT + ξ , where k is an integer and ξ ∈ [0,T ] , note that (3.12)

implies

|u(ξ )| = |u(ξ − γ(ξ ))|� D

(∫ T

0
|u′(t)|mdt

) 1
m

+E|u|0.

Therefore,

|u(t)| =
∣∣∣∣u(ξ )+

∫ t

ξ
u′(s)ds

∣∣∣∣� |u(ξ )|+
∣∣∣∣∫ t

ξ
|u′(s)|ds

∣∣∣∣
� D

(∫ T

0
|u′(t)|mdt

) 1
m

+E|u|0 +
∫ T

0
|u′(t)|dt, for all t ∈ [0,T ],
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that is

|u|0 � D

(∫ T

0
|u′(t)|mdt

) 1
m

+E|u|0 +
∫ T

0
|u′(t)|dt,

then by E < 1, one obtains

|u|0 � D
1−E

(∫ T

0
|u′(t)|mdt

) 1
m

+
1

1−E

∫ T

0
|u′(t)|dt. (3.13)

Since ∫ T

0
[ϕp([Au′](t))]′u(t)dt = u(t)ϕp([Au′](t))|T0 −

∫ T

0
ϕp([Au′](t))u′(t)dt

= −
∫ T

0
ϕp([Au′](t))

[
[Au′](t)+

n

∑
i=1

ci(t)u′(t − ri)
]
dt

= −
∫ T

0

∣∣[Au′](t)
∣∣p dt−

∫ T

0
ϕp([Au′](t))

n

∑
i=1

ci(t)u′(t− ri)dt,

which together with Eq.(3.9) yields∫ T

0

∣∣[Au′](t)
∣∣pdt

= −
∫ T

0
[ϕp([Au′](t))]′u(t)dt−

∫ T

0
ϕp([Au′](t))

n

∑
i=1

ci(t)u′(t− ri)dt

= −
∫ T

0
ϕp([Au′](t))

n

∑
i=1

ci(t)u′(t− ri)dt

−λ p
∫ T

0
[ f (u′(t))+β (t)g(u(t− γ(t)))+ e(t)]u(t)dt

�
n

∑
i=1

c0
i

(∫ T

0
|ϕp([Au′](t))|qdt

) 1
q
(∫ T

0
|u′(t)|pdt

) 1
p

+
[
r
∫ T

0
|u′(t)|mdt + |β |0�2T |u|m0 + |e|0T

]
|u|0

�
n

∑
i=1

c0
i

(∫ T

0

∣∣∣u′(t)− n

∑
i=1

ci(t)u′(t − ri)
∣∣∣pdt

) 1
q (∫ T

0
|u′(t)|pdt

) 1
p

+
(

r
∫ T

0
|u′(t)|mdt + |e|0T

)[
D

1−E

(∫ T

0
|u′(t)|mdt

) 1
m

+
1

1−E

∫ T

0
|u′(t)|dt

]

+ |β |0�2T

[
D

1−E

(∫ T

0
|u′(t)|mdt

) 1
m

+
1

1−E

∫ T

0
|u′(t)|dt

]m+1



THE p-LAPLACIAN NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION 203

�
n

∑
i=1

c0
i

[(∫ T

0
|u′(t)|pdt

) 1
p

+
n

∑
i=1

c0
i

(∫ T

0
|u′(t)|pdt

) 1
p
] p

q (∫ T

0
|u′(t)|pdt

) 1
p

+
[

rD
1−E

T
(p−m)(m+1)

mp +
r

1−E
T 2−m+1

p

](∫ T

0
|u′(t)|pdt

)m+1
p

+ |β |0�2T2m
[( D

1−E

)m+1
T

(p−m)(m+1)
mp

+
( 1

1−E

)m+1
T

(p−1)(m+1)
p

](∫ T

0
|u′(t)|pdt

)m+1
p

+
|e|0TD
1−E

(∫ T

0
|u′(t)|pdt

) 1
p

T
p−m
mp +

|e|0T
1−E

(∫ T

0
|u′(t)|pdt

) 1
p

T 1− 1
p

� K1

∫ T

0
|u′(t)|pdt +K2

(∫ T

0
|u′(t)|pdt

)m+1
p

+K3

(∫ T

0
|u′(t)|pdt

) 1
p

,

where

1
p

+
1
q

= 1, K1 =
n

∑
i=1

c0
i

(
1+

n

∑
i=1

c0
i

) p
q
, K3 =

|e|0DT 1+ p−m
mp

1−E
+

|e|0T 2− 1
p

1−E

and

K2 =
rDT

(p−m)(m+1)
mp

1−E
+

rT 2−m+1
p

1−E
+ |β |0�2T2m

[(DT
p−m
mp

1−E

)m+1
+
( T

p−1
p

1−E

)m+1
]
.

Then by Lemma 2.1(3) one gets∫ T

0
|u′(t)|pdt =

∫ T

0
|[A−1Au′](t)|pdt

� 1(
1−

n
∑
i=1

c0
i

)p
∫ T

0
|[Au′](t)|pdt

� 1(
1−

n
∑
i=1

c0
i

)p
[
K1

∫ T

0
|u′(t)|pdt

+K2
(∫ T

0
|u′(t)|pdt

)m+1
p +K3

(∫ T

0
|u′(t)|pdt

) 1
p

]
.

Therefore, it follows from m � p− 1 and [H3] that
∫ T
0 |u′(t)|pdt is bounded, which

means there exists a positive constant M0 (independent of λ ) such that∫ T

0
|u′(t)|pdt � M0. (3.14)
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It follows from (3.13) and (3.14) that

|u|0 � D
1−E

(∫ T

0
|u′(t)|pdt

) 1
p

T
p−m
pm +

1
1−E

(∫ T

0
|u′(t)|pdt

) 1
p

T
p−1
p

� D
1−E

M
1
p
0 T

p−m
pm +

1
1−E

M
1
p
0 T

p−1
p := M1.

From the first equation of (3.8) again that∫ T

0

[
A−1 (ϕq(v(·)))

]
(t)dt = 0,

this implies that there exists a constant η ∈ [0,T ] such that A−1(ϕq(v(η))) = 0, which
together with the first part of Lemma 2.1,

ϕq(v(η))+
∞

∑
m=1

n

∑
i1=1

n

∑
i2=1

· · ·
n

∑
im=1

m

∏
j=1

ci j

(
η−

m

∑
k= j+1

rik

)
ϕq

(
v

(
η−

m

∑
s=1

ris

))
= 0,

therefore

|v(η)|q−1 = |ϕq(v(η))| �
∞

∑
m=1

n

∑
i1=1

n

∑
i2=1

· · ·
n

∑
im=1

m

∏
j=1

c0
i j |v|q−1

0 �

n
∑
i=1

c0
i

1−
n
∑
i=1

c0
i

|v|q−1
0 ,

that is

|v(η)| �
[ n

∑
i=1

c0
i

1−
n
∑
i=1

c0
i

] 1
q−1

|v|0. (3.15)

It follows from the second equation of Eq.(3.8) that∫ T

0
|v′(t)|dt �

∫ T

0
| f (u′(t)) |dt +

∫ T

0
|β (t)g(u(t− γ(t)))|dt +

∫ T

0
|e(t)|dt

� r

(∫ T

0
|u′(t)|pdt

)m
p

T 1−m
p + |β |0gMT + |e|0T

� rM
m
p

0 T 1−m
p + |β |0gMT + |e|0T := M̃0,

where gM = max
|u|�M1

|g(u)| , together with (3.15) one obtains

|v(t)| � |v(η)|+
∫ T

0
|v′(t)|dt �

[ n
∑
i=1

c0
i

1−
n
∑
i=1

c0
i

] 1
q−1

|v|0 + M̃0.
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It follows from
n
∑
i=1

c0
i < 1

2 that

[ n
∑

i=1
c0
i

1−
n
∑
i=1

c0
i

] 1
q−1

< 1, therefore there exists a positive con-

stant M2 such that
|v|0 � M2.

Let Ω2 = {x : x ∈ kerL,QN(x,0) = 0} . If x(·) = (x1(·),x2(·))
 ∈Ω2 , then x is a
constant vector, and

QN(x,0) =

⎛⎜⎝ 1
T

∫ T

0

[
A−1 (ϕq(x2))

]
(t)dt

1
T

∫ T

0
[ f (0)+β (t)g(x1)+ e(t)]dt

⎞⎟⎠= 0. (3.16)

From assumption [H1] we know f (0) = 0, which together with
∫ T
0 e(t)dt = 0 we have⎧⎪⎨⎪⎩

1
T

∫ T

0

[
A−1 (ϕq(x2))

]
(t)dt = 0,

g(x1)
T

∫ T

0
β (t)dt = 0.

(3.17)

In view of
∫ T
0 β (t)dt �= 0 and the second formula of (3.17), we know g(x1) = 0,

which together with [H2] we obtain x1 = 0. Moreover, it follows from the first formula
of (3.17) that 1

T

∫ T
0 A−1

(
ϕq(x2)

)
dt = 0, by Lemma 2.6 we obtain ϕq(x2) = 0, that is

x2 = 0. Therefore Ω2 ⊂Ω1 .
Now, if we set Ω= {x : x = (u,v)
 ∈ X , |u|0 < M1 +1, |v|0 < M2 +1} , then Ω2 ⊂

Ω1 ⊂ Ω . So conditions (1) and (2) of Lemma 3.1 are satisfied. Now we prove that
condition (3) of Lemma 3.1 is satisfied.

For all x ∈Ω∩kerL,λ ∈ [0,1] , defining

H(x,λ ) =
{
λJQN(x,0)+ (1−λ )x, if

∫ T
0 β (t)dt > 0,

λJQN(x,0)− (1−λ )x, if
∫ T
0 β (t)dt < 0,

where J : ImQ → kerL is a homeomorphism with J(x1,x2) = (x2,x1) . Hence

H(x,λ ) �= 0, for all (x,λ ) ∈ ∂Ω∩kerL× [0,1].

By the degree theory, one has

deg{JQN(·,0),Ω∩kerL,0} = deg{H(·,1),Ω∩kerL,0}
= deg{H(·,0),Ω∩kerL,0}
= deg{±I,Ω∩kerL,0} �= 0.

Applying Lemma 3.1, proof is completed. �

REMARK 3.1. Noting the definitions of L and N(·, ·) , one can obtain kerL = R2

and g(x1) is a constant, when x = (x1,x2)
 ∈ kerL . Therefore, it is easy to obtain (3.17)
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from (3.16), and this also implies that it is easy to obtain the solutions of QN(x,0) = 0.
If one defines L = (Ax′1,x

′
2)


 , then the priori estimates of QN(x,0) = 0 will be very
difficult, furthermore, it may be difficult to obtain the existence of periodic solutions to
Eq.(1.7).

REMARK 3.2. If
∫ T
0 β+(t)dt > 0, then it follows from (3.10) that

∫ T

0
β+(t)g(u(t− γ(t)))dt =

∫ T

0
β−(t)g(u(t− γ(t)))dt−

∫ T

0
f
(
u′(t)

)
dt.

By the integrating mean theorem, we also know that there exists a constant ϑ ∈ [0,T ]
such that

g(u(ϑ − γ(ϑ)))
∫ T

0
β+(t)dt =

∫ T

0
β−(t)g(u(t− γ(t)))dt−

∫ T

0
f
(
u′(t)

)
dt.

The remainder is similarly to Theorem 3.1. Therefore Theorem 3.1 only needs one of∫ T
0 β+(t)dt and

∫ T
0 β−(t)dt is positive.

4. Numerical simulation

EXAMPLE 4.1. Considering the following equation:

[
ϕ5

(
u′(t)−

( 1
12

cost
)
u′(t−5)−

( 1
12

sin t
)
u′(t−3)

)]′
= 5(u′(t))3 +3

(
sin t−

√
3

2

)
(u(t− cost))3 + cost. (4.1)

Corresponding to Eq.(1.7), we have p = 5, T = 2π , f (x) = 5x3 , g(x) = 3x3 , r = 5,

�1 = 2, �2 = 4, m = 3, c1(t) = 1
12 cost , c2(t) = 1

12 sin t , β (t) = sin t−
√

3
2 , γ(t) = cost ,

e(t) = cost . Moreover,
2
∑
i=1

c0
i = 1

6 < 1
2 and it is easy to verify that [H1] to [H3] all hold.

Thus by applying Theorem 3.1, we know that Eq.(4.1) has at least one 2π−periodic
solution.

REMARK 4.1. It is easy to see that the conclusion of Example 4.1 can not be
obtained by references [1, 2, 3, 4, 5, 6, 7, 8], and what is more important is that the
properties of time-varying operator A improve the results in previous literatures [3, 4,
5, 7, 8].
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