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POSITIVE WEAK RADIAL SOLUTIONS OF

NONLINEAR SYSTEMS WITH p–LAPLACIAN

SORIN BUDIŞAN

(Communicated by C. O. Alves)

Abstract. We study the existence and localization results for radial solutions of systems with
p -Laplacian. The compression and expansion conditions that are used are related to the first
eigenvalue of the p -Laplacian.

1. Introduction

Many authors studied different problems concerning the p -Laplacian equations.
For example, in [1] it is studied the existence and multiplicity of positive solutions for
the problem ⎧⎪⎨

⎪⎩
−div(|∇u|p−2∇u) = Kg(u)+λh(u)+ f in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

where λ > 0,1 < p <∞ , assuming that g : (0,∞)→ (0,∞) is a continuous nonincreas-
ing function (that may be singular at the origin), h : [0,∞) → [0,∞) is a continuous
nondecreasing function, K and f are nonnegative functions defined on Ω which satisfy
that K is non identically zero, K ∈ L∞(Ω) and f ∈C(Ω) . The solution is understood
in a weak sense, and for the proof of the main results some comparison results for p -
Laplacian are used. In [11] it is treated the non-existence of positive radially symmetric
solutions for the following p -Laplacian boundary value problem:⎧⎪⎨

⎪⎩
(|u′ |p−1 u′

)′ + f
(
t,u(t)

)
= 0, a < t < b, p > 1,

u(a)−B0(u′(a)) = 0,

u(b)+B1(u′(b)) = 0,

where f ∈C
(
[a,b]× [0,∞);(0,∞)

)
, B0(v) and B1(v) are both increasing, continuous,

odd functions defined on R and there exists a θ > 0 such that

0 � Bi(v) � θv for all v � 0 and for i = 0 or i = 1.
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In this paper we are concerned with a boundary value problem for a system of
equations with p -Laplacian ( p � 2):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−div(|∇u|p−2

s ∇u) = f (u) for |x| < T,

u > 0 for 0 < |x| < T,

u = 0 for x = 0,

∇u = 0 for |x| = T.

(1.1)

Here x = (x1,x2, ...,xN) ∈ RN , u =
(
u1(x),u2(x), ...,un(x)

)
and let

|x|e =

√√√√ N

∑
j=1

x2
j = r

be the euclidian norm. Also ∇u =
(
∇u1,∇u2, ...,∇un

)
is the gradient of u in the fol-

lowing sense:

∇ui =
( ∂ui

∂x1
,
∂ui

∂x2
, ...,

∂ui

∂xN

)
and |∇u |s=

n

∑
i=1

|∇ui|e,

and

div(|∇u|p−2
s ∇u)

=
(
div(|∇u |p−2

s ∇u1),div(|∇u|p−2
s ∇u2), ...,div(|∇u|p−2

s ∇un)
)
.

Searching a solution u(x) = v(|x|e), a radial solution of (1.1) can be considered as a
solution of the problem (as we will see from the following arguments):

⎧⎪⎪⎨
⎪⎪⎩

[( n
∑
i=1

|v′i(r) |
)p−2

v′(r)
]′

+ N−1
r

[( n
∑
i=1

|v′i(r)|
)p−2

v′(r)
]

= − f (v), 0 < r < T,

v′(T ) = v(0) = 0,

v > 0 on (0,T ).
(1.2)

Let g := |∇u|p−2
s ∇u. We have:

∂ui(x)
∂x j

=
∂vi(|x |e)

∂x j
=

∂vi(|x|e)
∂ | x|e

∂ |x|e
∂x j

= v′i(r)
x j

|x|e =
v′i(r)

r
x j.

This implies that

|∇ui|e =

√√√√ N

∑
j=1

(
∂ui

∂x j
)2 =

√√√√[
v′i(r)

r

]2 N

∑
j=1

x2
j =

√[
v′i(r)

r

]2

r2 = |v′i(r)|,
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so we have

|∇u|s =
n

∑
i=1

|v′i(r)|.

Then g = (∑n
i=1 |v′i(r)|)p−2

(
∇u1,∇u2, ...,∇un

)
. Denote

gi(x) := (
n

∑
i=1

|v′i(r) |)p−2∇ui

divg =
(
divg1,divg2, ...,divgn

)
h j(x) := (

n

∑
i=1

|v′i(r)|)p−2 ∂ui

∂x j
.

We have that

divgi(x) =
N

∑
j=1

∂h j

∂x j
,

and

∂h j

∂x j
= (p−2)

( n

∑
i=1

|v′i(r)|
)p−3 ∂

(
∑n

i=1 |v′i(r)|
)

∂x j

∂ui

∂x j

+
( n

∑
i=1

| v′i(r)|
)p−2 ∂ 2ui

∂x2
j

.

Also, we have
∂ |v′i(r)|
∂x j

=
∂ |v′i(r)|
∂ r

∂ r
∂x j

=
∂ |v′i(r)|
∂ r

x j

r
,

and since
∂ui(x)
∂x j

= v′i(r)
x j

r
,

we have

∂ 2ui

∂x2
j

=
∂v′i(r)
∂x j

x j

r
+ v′i(r)

∂
∂x j

(x j

r

)
=

∂v′i(r)
∂ r

∂ r
∂x j

x j

r
+ v′i(r)

r− x2
j
r

r2

= v′′i (r)
x2

j

r2 + v′i(r)
r2 − x2

j

r3 .

These imply that

∂h j

∂x j
= (p−2)

( n

∑
i=1

|v′i(r)|
)p−3 ∂ (∑n

i=1 |v′i(r)|)
∂ r

v′i(r)
x2

j

r2

+
( n

∑
i=1

|v′i(r)|
)p−2[

v′′i (r)
x2

j

r2 + v′i(r)
r2 − x2

j

r3

]
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and

N

∑
j=1

∂h j

∂x j
= (p−2)

( n

∑
i=1

|v′i(r)|
)p−3 ∂ (∑n

i=1 |v′i(r)|)
∂ r

v′i(r)
∑N

j=1 x2
j

r2 +

+
( n

∑
i=1

|v′i(r)|
)p−2[

v′′i (r)
∑N

j=1 x2
j

r2 + v′i(r)
Nr2 −∑N

j=1 x2
j

r3

]
.

Hence we have

N

∑
j=1

∂h j

∂x j
= (p−2)

( n

∑
i=1

|v′i(r)|
)p−3 ∂ (∑n

i=1 |v′i(r)|)
∂ r

v′i(r)

+
( n

∑
i=1

|v′i(r)|
)p−2[

v′′i (r)+
N−1

r
v′i(r)

]
,

N

∑
j=1

∂h j

∂x j
= (|∇u|p−2

s )′v′i(r)+ | ∇u|p−2
s v′′i (r)+

N−1
r

|∇u|p−2
s v′i(r).

and

divgi =
N

∑
j=1

∂h j

∂x j
=

[|∇u|p−2
s v′i(r)

]′
+

N−1
r

[|∇u |p−2
s v′i(r)

]
.

So (1.1) reduces to (1.2). We will put the problem (1.2) in an equivalent form, as a
problem of fixed point.

We make the substitution wi(r) = |∇u |p−2
s v′i(r), w =

(
w1,w2, ...,wn

)
. Let SF :=

uF be the unique solution of the problem:{
−(|∇u|p−2

s v′(r))′ = F(r) for a.e. r ∈ [0,T ],
v(0) = v′(T ) = 0,

(1.3)

and

S : L1([0,T ];Rn) →C1([0,T ];Rn), (SF)(r) =
∫ r

0
φ
(∫ T

s
F(τ)dτ

)
ds

with

φ(x) =

{
|x|− p−2

p−1 x for x �= 0,

0 for x = 0.

Since
−(|∇u|p−2

s v′(r)
)′ = −w′(r),

we find that u−w′(r) = (S(−w′))(r). Then (1.1) becomes:

w′
i(r)+

N−1
r

wi(r) = qi(r) := − fi(v(r)) for all i ∈ {1, ...,n}. (1.4)
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We attach the homogenous equation

w′
i(r)+

N−1
r

wi(r) = 0

whose solution is r1−NC .
We search a particular solution of (1.4), in the form (wi)p(r) = C(r)r1−N . Then

(wi)′p(r) = C′(r)r1−N − (N−1)C(r)r−N and C′(r) = rN−1qi(r),

so we find

C(r) =
∫ r

r0
tN−1qi(t)dt and (wi)p(r) = r1−N

∫ r

r0
tN−1qi(t)dt,

and

(wi)(r) = r1−N
(
C+

∫ r

r0
tN−1qi(t)dt

)
is the general solution of equation (1.4). We have

wi(T ) = (
n

∑
i=1

|v′i(T )|)p−2v′(T ) = 0

since v′(T ) = 0. This implies

C = −
∫ T

r0
tN−1qi(t)dt

and

(wi)(r) = −r1−N
∫ T

r
tN−1qi(t)dt = r1−N

∫ r

T
tN−1qi(t)dt,

(wi)′(r) = r1−NrN−1qi(r)+ (1−N)r−N
∫ r

T
tN−1qi(t)dt

= − fi(v(r))− (N−1)r−N
∫ T

r
tN−1 fi(v(t))dt

and

(−wi)′(r) = fi(v(r))+ (N−1)r−N
∫ T

r
tN−1 fi(v(t))dt > 0. (1.5)

Define now the operator

(Hu)(r) := f (v(r))+ (N−1)r−N
∫ T

r
tN−1 f (v(t))dt > 0.

The problem (1.2) becomes the fixed point problem

u = (SH)(u)

Let us now present some properties of the operator S.
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LEMMA 1.1. (O’Regan and Precup [7])

10 If F ∈ L1([0,T ];Rn
+) and u = SF , u = (u1,u2, ...,un), then for every j, the function

u j is nonnegative and nondecreasing,and the function | u(t)|s = ∑n
j=1 u j(t) is nonneg-

ative, nondecreasing and concave.

20 S(λF) = λ
1

p−1 SF for all F ∈ L1([0,T ] ;Rn) and λ > 0.

30 If 0 � F1 � F2, then |(SF1)(t)|s � |(SF2)(t)|s for all t ∈ [0,T ].

Now we present the fixed point theorem that we use for our main results.

THEOREM 1.1. (Krasnoselskii [4]) Let (X , |.|) be a normed linear space, C ⊂ X
a cone, � the partial order relation induced by C, 0 < r < R and Cr,R = {x ∈ C :
r � |x| � R}. Assume that N : Cr,R → C is a compact map and one of the following
conditions is satisfied:

(a) x � Nx for |x| = r and Nx � x for |x| = R;

(b) x � Nx for |x| = R and Nx � x for |x| = r.

Then N has a fixed point x with r < |x| < R.

2. Positive solutions of problem (1.1)

Let us denote by

|u|∞ = max
|y|e∈[0,T ]

|v(|y|e)|s = max
t∈[0,T ]

n

∑
j=1

|v j(t)|e .

We search the fixed point of SH in a cone C of X , namely

C :=
{
u ∈C

(
[0,T ];Rn

+
)

: u(0) = 0, |u(t)|s � t
T
|u|∞ for all t ∈ [0,T ]

}
.

From Lemma 1.1, we have for each F ∈ L1([0,T ];Rn
+),

(SF)(0) = 0, |SF|∞ = (SF)(T ) and |SF|s is a concave function. Consequently

|(SF)
( t

T
T

)
|s =| (SF)(t)|s � t

T
|SF|∞ for all t ∈ [0,T ]. (2.1)

Now, if u � 0, then by our form of H, we have Hu � 0, and so, by (2.1), SHu ∈ C.
Therefore

SH(C) ⊂C.

The Ascoli-Arzela theorem ensures that S is completely continuous from L1([0,T ];Rn)
to C([0,T ];Rn).Then, by our form of H , the operator SH is completely continuous
from C([0,T ];Rn) to itself.
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THEOREM 2.1. Let f ∈C
(
Rn

+;Rn
+
)
. Assume there are numbers α,β > 0, α �= β

and functions ϕ ,ψ ∈ L1([0,T ];R+) such that

S1

α p−1 <
[∫ T

0

(∫ T

s
τ−Nϕ(τ)dτ

) 1
p−1

ds
]1−p

, (2.2)

and
I1

β p−1 >
[∫ T

0

(∫ T

s
ψ(τ)dτ

) 1
p−1

ds
]1−p

, (2.3)

where

S1 := sup
x∈Rn

+, |x|�α , r∈(0,T )

| f (x(r))+ (N−1)r−N ∫ T
r tN−1 f (x(t))dt|

r−Nϕ(r)
,

I1 := inf
x∈Rn

+, |x|∈[ r
T β ,β ], r∈(0,T)

| f (x(r))+ (N −1)r−N ∫ T
r tN−1 f (x(t))dt|

ψ(r)
.

Here the norm |.| is |.|s.
Then (1.1) has at least one solution u ∈C with |u|s increasing, concave and

min{α,β} < |u|∞ < max{α,β}.

REMARK 2.1. Notice the sup and inf in the above expresions are assumed to be
essential, i.e., with respect to all t ∈ (0,T ) except a set of measure zero. We also make

the convention that f (x(r))
ϕ(r) =∞ if ϕ(r) = 0, and the same for f (x(r))

ψ(r) . Then S1 excludes

that ϕ be zero on a set of positive measure, while if ψ(r) = 0 for t ∈ [a0,b0] ⊂ [0,T ],
then inf in I1 will be taken over t ∈ (0,T )\ [a0,b0].

Proof. From the assumptions on f we have H : C
(
[0,T ];Rn

+
) → L1

(
[0,T ];Rn

+
)

is well defined, continuous and bounded. We shall apply Krasnoselskii’s fixed point
theorem, Theorem 1.1. Let u ∈ C with | u|∞ = α. We claim that u � (SH)(u). To
prove this, assume the contrary, i.e. u � (SH)(u). Then we deduce

α = |u|∞ � |(SH)(u)|∞
=

∫ T

0

(∫ T

s

∣∣ f (u(τ)
)
+(N−1)τ−N

∫ T

τ
tN−1 f

(
u(t)

)
dt

∣∣dτ) 1
p−1

ds

�
(

sup
x∈Rn

+ , |x|�α , r∈(0,T )

| f (x(r))+ (N −1)r−N ∫ T
r tN−1 f (x(t))dt|

r−Nϕ(r)

) 1
p−1

·
∫ T

0

(∫ T

s
τ−Nϕ(τ)dτ

) 1
p−1

ds < α,

which is a contradicition because of (2.2). So we have that u � (SH)(u).
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Next we show that u � SHu for every u∈C with |u|∞ = β . Assume the contrary,
i.e. u � SHu . Then we obtain

β = |u|∞ � |SHu|∞ = |(SHu
)
(T )|s

=
∫ T

0

(∫ T

s
| f (u(τ)

)
+(N−1)τ−N

∫ T

τ
tN−1 f

(
u(t)

)
dt|dτ

) 1
p−1

ds

�
(

inf
x∈Rn

+ , |x|∈
[

r
T β , β

]
, r∈(0,T )

| f (x(r))+ (N−1)r−N ∫ T
r tN−1 f (x(t))dt|

ψ(r)

) 1
p−1

·
∫ T

0

(∫ T

s
ψ(τ)dτ

) 1
p−1

ds > β ,

which is a contradiction, according with (2.3). So u � SHu. Now we can apply Theo-
rem 1.1.

REMARK 2.2. 10 ) If f is nondecreasing on [0,max{α,β}], the condition (2.2)
can be replaced with

TN f (α)
α p−1

1
inf

r∈(0,T)
ϕ(r)

<
[∫ T

0

(∫ T

s
τ−Nϕ(τ)dτ

) 1
p−1 ds

]1−p
(2.4)

for inf
r∈(0,T )

ϕ(r) > 0. Indeed, because f is nondecreasing, we have that f (x) � f (α),

for every |x| � α , so (2.2) becomes

S2 := sup
r∈(0,T )

f (α)+ (N−1)r−N f (α)
∫ T
r tN−1dt

r−Nϕ(r)

<
[∫ T

0

(∫ T

s
τ−Nϕ(τ)dτ

) 1
p−1

ds
]1−p

α p−1,

and we have

S2 := f (α) sup
r∈(0,T )

1+(N−1)r−N tN
N

∣∣∣T
r

r−Nϕ(r)

= f (α) sup
r∈(0,T )

1+(N−1)TN−rN
N r−N

r−Nϕ(r)

= f (α) sup
r∈(0,T )

[
1+ N−1

N (TNr−N −1)
]
rN

ϕ(r)

= f (α) sup
r∈(0,T )

rN + N−1
N (TN − rN)
ϕ(r)

.
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Let

θ (r) := rN +
N−1

N
(TN − rN) = rN(1− N−1

N
)+

N−1
N

TN

=
rN

N
+

N−1
N

TN � TN

N
+

N−1
N

TN = TN .

Then

S2 � f (α)T N sup
r∈(0,T)

1
ϕ(r)

= f (α)T N 1
inf

r∈(0,T )
ϕ(r)

,

so we can replace (2.2) by (2.4).

20 ) If in addition we suppose ϕ ≡ 1, the condition (2.4) becomes

f (α)T N

α p−1 <
[∫ T

0

(∫ T

s
τ−Ndτ

) 1
p−1

ds
]1−p

(2.5)

and if in addition p > N, (2.5) can be replaced by the suficient condition

f (α)
α p−1 <

( p−N
p−1

)p−1 N−1
T p . (2.6)

Indeed, the right side from (2.5) can be written

[∫ T

0

( τ−N+1

−N +1

∣∣∣T
s

) 1
p−1

ds
]1−p

=
[∫ T

0

(T 1−N − s1−N

1−N

) 1
p−1

ds
]1−p

=
[∫ T

0

(s1−N −T 1−N

N−1

) 1
p−1

ds
]1−p

= (N−1)
[∫ T

0
(s1−N −T 1−N)

1
p−1 ds

]1−p
. (2.7)

Since ∫ T

0
(s1−N −T1−N)

1
p−1 ds �

∫ T

0
(s1−N)

1
p−1 ds,

we obtain that [∫ T

0
(s1−N)

1
p−1 ds

]1−p
�

[∫ T

0
(s1−N −T1−N)

1
p−1 ds

]1−p
, (2.8)

with

[∫ T

0
(s1−N)

1
p−1 ds

]1−p
=

[
s

1−N
p−1 +1

1−N
p−1 +1

∣∣∣T
0

]1−p

=
( p−1

p−N

)1−p(
T

p−N
p−1

)1−p
=

( p−N
p−1

)p−1 1
T p−N

and (2.8) becomes

( p−N
p−1

)p−1 1
T p−N �

[∫ T

0
(s1−N −T 1−N)

1
p−1 ds

]1−p
. (2.9)
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From (2.7) and (2.9) we deduce that (2.5) can be replaced by

f (α)T N

α p−1 <
N−1
T p−N

( p−N
p−1

)p−1
,

which is equivalent to

f (α)
α p−1 <

(N−1)T−N

T p−N

( p−N
p−1

)p−1
,

which is (2.6).

30 ) If ψ = 0 for 0 � t � a < T and ψ(t) = 1 for a � t � T, then the condition
(2.3), becomes

I2 :=
infr∈(a,T ), x∈Rn

+, |x|∈[ r
T β ,β ]

∣∣ f (x(r))+ (N −1)r−N ∫ T
r tN−1 f (x(t))dt

∣∣
β p−1

>
( p

p−1

)p−1 1
(T −a)p .

If, in addition, f is nondecreasing on
[
0,max{α,β}] we obtain

I2 =
f ( a

T β ) infr∈(a,T)
∣∣1+(N−1)r−N ∫ T

r tN−1dt
∣∣

β p−1 ,

where

inf
r∈(a,T)

∣∣∣1+(N−1)r−N
∫ T

r
tN−1dt

∣∣∣ = inf
r∈(a,T )

∣∣∣1+(N−1)r−N tN

N

∣∣T
r

∣∣∣
= inf

r∈(a,T )

∣∣∣1+
N−1

N
r−N(TN − rN

∣∣∣
= inf

r∈(a,T )

∣∣∣ 1
N

+
N−1

N
r−NTN

∣∣∣
=

1
N

+
N−1

N
T−NTN = 1,

so I2 = f
(

a
T β

)
/β p−1 and the condition (2.3) becomes

f
(

a
T β

)
β p−1 >

(
p

p−1

)p−1 1
(T −a)p . (2.10)

For a given compact interval [c,d] , let λ1 and φ1 be the first eigenvalue and a corre-
sponding positive eigenfunction of the problem{

−div(|∇u|p−2∇u) = λ |u|p−2u,

u(c) = u′(d) = 0.
(2.11)
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Notice that

λ1 = inf

{∫ d
c |∇u|pdt∫ d
c |u|pdt

: u ∈C1[c,d]−{0},u(c) = u′(d) = 0

}
,λ1 > 0,

and there exists a function φ1 ∈ C1[c,d] with φ1(c) = φ ′
1(d) = 0 and φ1(t) > 0 on

(c,d) , for which the above inf is reached. In the sequel we shall always assume that
|φ1|∞ = max

t∈[c,d]
φ1(t) = 1.

THEOREM 2.2. Let f ∈C
(
Rn

+;Rn
+
)
. Assume that there exist intervals [a,b] and

[A,B] with [a,b]⊆ [0,T ]⊆ [A,B], such that if λ ,φ and Λ,Φ denote the first eigenvalue
and the first positive eigenfunction for the interval [a,b] and respectively, [A,B], then
the following conditions are satisfied:

(i) there are constants c,C > 0 with

cφ(t)p−1 � 1 a.e. t ∈ (a,b), (2.12)

1 � CΦ(t)p−1 a.e. t ∈ (0,T ); (2.13)

(ii) there are numbers α,β > 0 , α �= β such that

C

max
x∈Rn

+,|x|�α
| f (x)|

α p−1

[
1+(N−1) sup

r∈(0,T)

∫ T
r tN−1Φ(t)p−1dt

rNΦ(r)p−1

]
< Λ, (2.14)

c
minx∈Rn

+ , |x|∈[ r
T β ,β ], r∈[a,b] | f (x(r))|
β p−1 [

1+(N−1) inf
r∈(0,T)

∫ T
r tN−1φ(t)p−1dt

rNφ(r)p−1

]
> λM, (2.15)

where M > 1 is such that

φ(r)p−1 +(N−1)r−N
∫ T

r
tN−1φ(t)p−1dt � Mφ(r)p−1 for r ∈ [0,T ]. (2.16)

Then (1.1) has at least one solution u ∈C with |u|s increasing, concave and

min{α,β} < |u|∞ < max{α,β}.

Proof. We apply Theorem 2.1 to ϕ(t) = tNΦ(t)p−1 for t ∈ [0,T ], ψ(t) = φ(t)p−1

for t ∈ [a,b] and ψ(t) = 0 for t ∈ [0,T ] \ [a,b]. First we check inequality (2.2). For
t ∈ (0,T ), from (2.13) we find that

| f (x)| � CΦ(t)p−1| f (x)| = Ct−Nϕ(t)| f (x)|.
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Hence
supx∈Rn

+ , |x|�α , r∈(0,T )
| f (x(r))|
r−Nϕ(r)

α p−1 � C
maxx∈Rn

+, |x|�α | f (x)|
α p−1 . (2.17)

On the other hand, because Λ and Φ are the first eigenvalue, respectively the first
eigenfunction of the problem (2.11), based on the relations (1.3) and (1.5), we obtain

Φ(r) = S
(
Λ(Φ(r)p−1 +(N−1)r−N

∫ T

r
tN−1Φ(t)p−1dt)

)
= Λ

1
p−1 S

(
Φ(r)p−1 +(N−1)r−N

∫ T

r
tN−1Φ(t)p−1dt

)
,

using Lemma 1.1, 20. Hence, we find

Λ− 1
p−1Φ(r) = S

(
Φ(r)p−1 +(N−1)r−N

∫ T

r
tN−1Φ(t)p−1dt

)
� S

(
Φ(r)p−1),

because Φ� 0 and S is increasing, according to Lemma 1.1, 10. Thus, we find that

Λ− 1
p−1Φ(r) � S

(
r−Nϕ(r)

)
=

∫ r

0

(∫ T

s
ϕ(τ)τ−Ndτ

) 1
p−1

ds (2.18)

basing on S definition and the fact that ϕ ∈ L1
(
[0,T ];R+

)
, so we have that |ϕ | = ϕ .

Since ϕ > 0 and max
r∈[0,T ]

Φ(r) � max
r∈[A,B]

Φ(r) = |Φ|∞ = 1, from (2.18) we obtain

Λ− 1
p−1 �

∫ T

0

(∫ T

s
ϕ(τ)τ−Ndτ

) 1
p−1

ds,

that is,

Λ �
[∫ T

0

(∫ T

s
ϕ(τ)τ−Ndτ

) 1
p−1

ds
]1−p

. (2.19)

We have

sup
r∈(0,T ), u∈Rn

+, |u|�α

∣∣ f (u(r))+ (N−1)r−N ∫ T
r tN−1 f (u(t))dt

∣∣
r−Nϕ(r)

� sup
r∈(0,T ), u∈Rn

+, |u|�α

| f (u(r))|
r−Nϕ(r)

+ (N−1) sup
r∈(0,T), u∈Rn

+, |u|�α

r−N ∫ T
r tN−1| f (u(t))

t−Nϕ(t) |t−Nϕ(t)dt

r−Nϕ(r)

� sup
r∈(0,T ), u∈Rn

+, |u|�α

| f (u(r))|
r−Nϕ(r)

+ (N−1) sup
r∈(0,T)

∫ T
r t−1ϕ(t)supt∈(0,T ), u∈Rn

+, |u|�α | f (u(t))
t−Nϕ(t) |dt

ϕ(r)
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= S3

[
1+(N−1) sup

r∈(0,T)

∫ T
r t−1ϕ(t)dt

ϕ(r)

]
,

where

S3 := sup
r∈(0,T), u∈Rn

+, |u|�α

∣∣∣ f (u(r))
r−Nϕ(r)

∣∣∣
and ϕ(r) = rNΦ(r)p−1. Now, (2.14), (2.17) and (2.19) imply (2.2).

Now we will check (2.3). The norm implied is |.|s , so we obtain:

inf
r∈(0,T ), x∈Rn

+, |x|∈[ r
T β ,β ]

| f (x(r))+ (N −1)r−N ∫ T
r tN−1 f (x(t))dt|

ψ(r)

�
∣∣∣∣ inf
r∈(0,T ), x∈Rn

+, |x|∈[ r
T β ,β ]

f (x(r))
ψ(r)

+ (N−1)·

inf
r∈(0,T ), x∈Rn

+, |x|∈[ r
T β ,β ]

r−N ∫ T
r tN−1ψ(t) infx∈Rn

+ , |x|∈[ t
T β ,β ], t∈(0,T )

f (x(t))
ψ(t) dt

ψ(r)

∣∣∣∣
= I3[1+(N−1) inf

r∈(0,T)

r−N ∫ T
r tN−1ψ(t)dt
ψ(r)

], (2.20)

where

I3 := inf
r∈(0,T ), x∈Rn

+ , |x|∈[ r
T β ,β ]

| f (x(r))|
ψ(r)

= min
r∈[a,b], x∈Rn

+ , |x|∈[ r
T β ,β ]

| f (x(r))|
ψ(r)

.

For t ∈ (a,b) , from (2.12) we obtain that

| f (x(t))| � cφ(t)p−1| f (x(t))| = cψ(t)| f (x(t))|.

Therefore,

infr∈(0,T ), x∈Rn
+, |x|∈[ r

T β ,β ]
| f (x(r))|
ψ(r)

β p−1 � c
minr∈[a,b], x∈Rn

+, |x|∈[ r
T β ,β ] | f (x(r))|

β p−1 . (2.21)

Since λ and φ there are the first eigenvalue, respectively eigenfunction of problem
(2.11), together with (1.3) and (1.5) imply

φ(r) = S
(
λ (φ(r)p−1 +(N−1)r−N

∫ T

r
tN−1φ(t)p−1dt)

)
= λ

1
p−1 S

(
φ(r)p−1 +(N−1)r−N

∫ T

r
tN−1φ(t)p−1dt

)
,

using Lemma 1.1, 20. So

λ
1

1−p φ(r) = S
(
φ(r)p−1 +(N−1)r−N

∫ T

r
tN−1φ(t)p−1dt

)
� S

(
Mφ(r)p−1),
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basing on φ � 0, S is increasing, and according with Lemma 1.1, 10 ,20 and (2.16).
So, we have

λ
1

1−p φ(r) � S
(
Mψ(r)

)
= M

1
p−1

∫ r

0

(∫ T

s
ψ(τ)dτ

) 1
p−1

ds

and since max
r∈[0,T ]

φ(r) � max
r∈[a,b]

φ(r) = |φ |∞= 1, we obtain

(
Mλ

) 1
1−p �

∫ T

0

(∫ T

s
ψ(τ)dτ

) 1
p−1

ds,

that is,

Mλ �
[∫ T

0

(∫ T

s
ψ(τ)dτ

) 1
p−1

ds
]1−p

. (2.22)

From (2.20), (2.21), (2.15) and (2.22) we obtain (2.3). So Theorem 2.1 may be applied
and the conclusion follows.

Now let

h0 := lim
|x|→0, x∈Rn

+

| f (x)|
|x|p−1 and h∞ = lim

|x|→∞, x∈Rn
+

| f (x)|
|x|p−1 ,

assuming that these limits exist in R+∪{∞} .

THEOREM 2.3. Let be f ∈C
(
Rn

+;Rn
+
)

and suppose that there exist the intervals
[a,b] and [A,B] with [a,b] ⊂ [0,T ] ⊆ [A,B] and a > 0 so that the condition (i) from
Theorem 2.2 to be fulfiled (λ ,φ ,Λ ,Φ are from Theorem 2.2). Also, we suppose that
the condition (2.16) is satisfied. In addition, we suppose that one of the following two
conditions holds:
(a)

Ch0

(
1+(N−1) sup

r∈(0,T)

∫ T
r tN−1Φ(t)p−1dt

rNΦ(r)p−1

)
< Λ

and

(
a
T

)p−1ch∞
[
1+(N−1) inf

r∈(0,T)

r−N ∫ T
r tN−1φ(t)p−1dt
φ(r)p−1

]
> λM

or
(b)

(
a
T

)p−1ch0

[
1+(N−1) inf

r∈(0,T)

r−N ∫ T
r tN−1φ(t)p−1dt
φ(r)p−1

]
> λM

and

Ch∞
(
1+(N−1) sup

r∈(0,T)

∫ T
r tN−1Φ(t)p−1dt

rNΦ(r)p−1

)
< Λ.

Then (1.1) has a solution.
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Proof. We apply Theorem 2.2.
Suppose (a). Then there exist α,β > 0, α < β so that

C
| f (x)|
|x|p−1

(
1+(N−1) sup

r∈(0,T)

∫ T
r tN−1Φ(t)p−1dt

rNΦ(r)p−1

)
< Λ for every x ∈ Rn

+

with 0 < |x| � α and

( a
T

)p−1
c
| f (x)|
|x|p−1

[
1+(N−1) inf

r∈(0,T)

r−N ∫ T
r tN−1φ(t)p−1dt
φ(r)p−1

]
> λM,

for every x ∈ Rn
+ with |x| � a

T β . Now it follows that the conditions (2.14) and (2.15)
are satisfied.

Suppose (b). Then we can find α0,β > 0 with

( a
T

)p−1
c
| f (x)|
|x|p−1

[
1+(N−1) inf

r∈(0,T)

r−N ∫ T
r tN−1φ(t)p−1dt
φ(r)p−1

]
> λM

for every x ∈ Rn
+ with 0 < |x| � β and (2.15) follows. Also,

C
| f (x)|
|x|p−1

(
1+(N−1) sup

r∈(0,T)

∫ T
r tN−1Φ(t)p−1dt

rNΦ(r)p−1

)
< Λ (2.23)

for every x ∈ Rn
+ with |x| � α0 . We choose α �= β with α � α0 and

α >

(
C
Λ

max
|x|�α0

| f (x)|
(
1+(N−1) sup

r∈(0,T)

∫ T
r tN−1Φ(t)p−1dt

rNΦ(r)p−1

)) 1
p−1

. (2.24)

Then (2.24) shows that

C
| f (x)|
α p−1

(
1+(N−1) sup

r∈(0,T)

∫ T
r tN−1Φ(t)p−1dt

rNΦ(r)p−1

)
< Λ for |x| � α0. (2.25)

From (2.23) we obtain

C
| f (x)|
α p−1

(
1+(N−1) sup

r∈(0,T)

∫ T
r tN−1Φ(t)p−1dt

rNΦ(r)p−1

)

� C
| f (x)|
|x|p−1

(
1+(N−1) sup

r∈(0,T)

∫ T
r tN−1Φ(t)p−1 dt

rNΦ(r)p−1

)
< Λ (2.26)

for α0 � |x| � α. Now, (2.25) and (2.26) guarantee (2.14).

REMARK 2.3. 10 ) The relation (2.10) from Remark 2.2, 30 is also found in [7]
(Remark 2.3, 30 ).
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20 ) For p > N , the relation (2.6), namely

f (α)
α p−1 <

( p−N
p−1

)p−1 N−1
T p ,

from Remark 2.2, 20 is similar to the relation

f (α)
α p−1 <

( p
p−1

)p−1 1
T p

from [7], Remark 2.3, 30 .
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