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POSITIVE WEAK RADIAL SOLUTIONS OF
NONLINEAR SYSTEMS WITH p-LAPLACIAN

SORIN BUDISAN

(Communicated by C. O. Alves)

Abstract. We study the existence and localization results for radial solutions of systems with
p-Laplacian. The compression and expansion conditions that are used are related to the first
eigenvalue of the p-Laplacian.

1. Introduction

Many authors studied different problems concerning the p-Laplacian equations.
For example, in [1] it is studied the existence and multiplicity of positive solutions for
the problem
—div(|Vu|P=2Vu) = Kg(u) + Ah(u) + f in Q,
u=0 ondQ,
u>0 inQ,

where A > 0,1 < p < o, assuming that g : (0,00) — (0,0) is a continuous nonincreas-
ing function (that may be singular at the origin), & : [0,00) — [0,°°) is a continuous
nondecreasing function, K and f are nonnegative functions defined on Q which satisfy
that K is non identically zero, K € L”(Q) and f € C(Q). The solution is understood
in a weak sense, and for the proof of the main results some comparison results for p-
Laplacian are used. In [11] it is treated the non-existence of positive radially symmetric
solutions for the following p-Laplacian boundary value problem:

(' [P~ 1u’)/—|—f(t u( )):O,a<t<b,p>1,
u(a) — Bo(u'(a)) =
u(b) +Bi(u' (b)) =

where f € C([a,b] x [0,20);(0,90)), By(v) and B;(v) are both increasing, continuous,
odd functions defined on R and there exists a 6 > 0 such that

(u
(u

0<Bi(v)<0Ov forallv>0 andfori=0ori=1.
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In this paper we are concerned with a boundary value problem for a system of
equations with p-Laplacian (p > 2):

—div(|Vul? V) = f(u) for |x| < T,
u>0 for0<|x| <T,

u=0 forx=0,

Vu=0 for |x| =T

(1.1

Here x = (x1,x2,...,xn) € RV, u = (u;(x),u2(x), ..., un(x)) and let

be the euclidian norm. Also Vu = (Vuy,Vus,...,Vu,) is the gradient of u in the fol-
lowing sense:

Jui Owi ou
axl ’ 8x2""’ axN

) and |Vu |s= Y [V,

Vui = (
i=1

and

div(|Vu|P~2Vu)
= (div(|Vu [P72 Vuy), div(|VulP "2 Vi), ..., div(|Vul? 2 Vuy,)).

Searching a solution u(x) = v(|x|,), a radial solution of (1.1) can be considered as a
solution of the problem (as we will see from the following arguments):

[(é vi(r) | )p72v/(r)}’+ N1 [(é \vg(r)|)17*2v/(,»)} = —f(v),0<r<T,
V(T) =v(0)=0,
v>0 on (0,T).
(1.2)
Let g:= |Vu|§’72Vu. We have:

dui(x) _ dvi(lxle) _ dvi(lxle) dlxle . x;  vilr)
ox;  9x;  9|x. ox =i =

This implies that

N
Vuile = 2

xJ
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so we have

n
Vuls = 3 vi(r)
i=1

Then g = (3, [Vi(r)[)?~2(Vu1, Vuz, ..., Vi, ). Denote

= 2|V )PV
divg = (dlvghdlng, ..,divgn)
= Z|V )P~ 2%.

ax j
‘We have that N
divg;(x 2
and

oh; 5o, p=30 (2, Vi(r)]) du;
ae = (=2 (X i) =g

2 / p—2 azui
H(Z o) 5

J

Also, we have

i)l _ avi(n)l dr _ dlvi(r)] x;

dx;  dr dx;  ar r’
and since Px)
nY) v
axj _Vl(r)ra
we have
2
Pui _Ivi(r)xj 9 rxp\ _ 9vi(r) Ir x; r—4
ox2 ox; 7+v’()8_xj<7> S or 8xj i(r) r2
J
x> r2—x2
=)+ i) —

These imply that

. n n V xz.
M (p-)(F i) AELD )

axj
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Hence we have

N X n V

< 2 2 N—-1 2
Z = (IVulf)Vi(r)+ | Vulf ™2V (r) + [Vul{vi(r).
- r

and

. N oh; _ r N—1 _
divg; = Y, === = [|Vul] ()] + = [[Vu |72 vi(n)] -
j=19%j r

So (1.1) reduces to (1.2). We will put the problem (1.2) in an equivalent form, as a
problem of fixed point.

We make the substitution w;(r) = |Vu |77 Vi(r), w= (w1, w2, ...,w,). Let SF :=
ur be the unique solution of the problem:

{_(|vu|§?—2v/(r)>' =F(r) forae.re|0,T],

v(0) =V/(T) =0, (13)
and
S:LY([0,T);R") — C'([0,T];R"), (SF)(r / /F d'r
with .
ow={a
Since

—(IVulzV(n) = =W (),
we find that u_,/(r) = (S(—w'))(r). Then (1.1) becomes:

wi(r) + Tw,-(r) =qi(r) := —fi(v(r)) forallie {1,...,n}. (1.4)
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We attach the homogenous equation

N-1
wi(r) + Tw,-(r) =0

whose solution is ' NC.
We search a particular solution of (1.4), in the form (w;),(r) = C(r)r'™V. Then

(w,-);(r) =C'(r)r' N —(N-1)C(r)r™N and C'(r) =r""1qi(r),

so we find

C(r) = /rtN*Iq,-(t)dt and (w))p(r) = N /rthlq,-(z)dt,

o o

and .
ow)(r) =V (C [ gieyar)
)
is the general solution of equation (1.4). We have
wi(T) = (3 i(T))P /(1) =0

since v/(T) = 0. This implies

T
C= —/ N lqi(t)dr

0

and
(W) (r) = —rN / "N gyt = PN /T "N gi(e)d,
(W) (r) =r"V lgi(r) + (1 —N)”fN/rlelqi(f)dt
T
T
= —f00) = (V= [ 00
and

(—wy) (r) = fi(v(r)) + (N — l)riN/Tthlfi(v(t))dt > 0. (1.5)

r

Define now the operator

T
(Hu)(r) == £ (v(r) + (N — 1)r N / N ()t > 0,
The problem (1.2) becomes the fixed point problem
u=(SH)(u)

Let us now present some properties of the operator S.
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LEMMA 1.1. (O’Regan and Precup [7])

1°If F e LY([0,T);RY) and u=SF, u= (uy,ua,...,u),then for every j, the function
u;j is nonnegative and nondecreasing,and the function | u(t)|s = X/ ;_,u;(t) is nonneg-
ative, nondecreasing and concave.

20 S(AF) = A7 TSF forall F € L'([0,T];R") and ) > 0.
30 IFO<F < B, then |(SF)(1)|s < |(SE)(¢t)]s for all t €[0,T].

Now we present the fixed point theorem that we use for our main results.

THEOREM 1.1. (Krasnoselskii [4]) Let (X, |.|) be a normed linear space, C C X
a cone, < the partial order relation induced by C, 0 <r <R and C,g ={x € C:
r < |x| < R}. Assume that N : Crg — C is a compact map and one of the following
conditions is satisfied:

(a) x £ Nx for |x| =r and Nx £ x for |x| =R;
(b) x £ Nx for |x| =R and Nx £ x for |x| =r.
Then N has a fixed point x with r < |x| <R.

2. Positive solutions of problem (1.1)

Let us denote by

n
Ulee = max |v { = max v, .
| | |y|e€[07T]‘ (‘y‘e)‘s 16[07T]j§1‘ J( )‘e

We search the fixed point of SH in a cone C of X, namely
t
C:={uecC([0,T;R"%) : u(0) =0, |u(r)|s > ?\u|w forallz € [0,T]}.

From Lemma 1.1, we have for each F € L'([0,T];R".),
(SF)(0) =0,|SF| = (SF)(T) and |SF|y is a concave function. Consequently

|(SF) (%T) s =| (SF)(2)]s = %\SFL,O forall 7 € [0, 7). @.1)

Now, if u > 0, then by our form of H, we have Hu > 0, and so, by (2.1), SHu € C.
Therefore

SH(C) C C.

The Ascoli-Arzela theorem ensures that S is completely continuous from L! ([0, T]; R")
to C([0,T];R").Then, by our form of H, the operator SH is completely continuous
from C([0,T];R") to itself.
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THEOREM 2.1. Let f€C (R'L;Rf’k) . Assume there are numbers o, 3 >0, o #£
and functions @,y € L'([0,T];R ) such that

aspl_l < [/OT ([r No(r )d'r>%dsrip, 2.2)

1

/ /l[f dr T s} o’ 2.3)

FGe(r) + (N = )N [TV F(x(e)) |

and

where

S1 = sup - ,
eR", [xl<a, re(0.T) rNo(r)
_ inf |f(x(r)) + (N — l)r*Nf,Tthlf(x(t))dt\'
x€R”, [x|e[4#B,B], r€(0,T) v (r)

Here the norm |.| is |.|s.
Then (1.1) has at least one solution # € C with |u|, increasing, concave and
min{o, B} < |ule < max{o,B}.

REMARK 2.1. Notice the sup and inf in the above expresions are assumed to be

essential, i.e., with respect to all z € (0,T) except a set of measure zero. We also make

)

the convention that % =oo if @(r) =0, and the same for % Then S; excludes

that @ be zero on a set of positive measure, while if y(r) =0 for 7 € [ag,bo] C [0,T],
then inf in I; will be taken over ¢ € (0,T) \ [ag, bo].

Proof. From the assumptions on f we have H : C([0,T];R%) — L'([0,T];R")
is well defined, continuous and bounded. We shall apply Krasnoselskii’s fixed point
theorem, Theorem 1.1. Let u € C with | ul. = 0. We claim that u £ (SH)(u). To
prove this, assume the contrary, i.e. u < (SH)(u). Then we deduce

o = |u|o < |(SH)(u)|
1
=

(1)
T T —N TNfl

= (/ |f(u(t)) +(N—1)T /Tt f(u( )dt’dr) ds
( £ () + (N = 1)r N [TV £ (x(e)) | ) m
XGRi

sup =
Ix|<a, re(0,T) rNo(r)

_1
p—1

-/OT </STT_N(p(T)dT> ds < a,

which is a contradicition because of (2.2). So we have that u % (SH)(u).
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Next we show that u # SHu for every u € C with |u|.. = . Assume the contrary,
i.e. u > SHu. Then we obtain

B = luleo > |SHu|.. = | (SHu)(T)]s

_ [ T|f(u(r))+(N—l)‘L'_N TzN—lf(u(t))dz|dr '%Ids
0 s T

g ( inf )+ (V= D T x| ) :
x€RY, |x|e [%ﬁ, B]7 re(0,T) w(r)

./()T (/YTI[/(T)dT>ﬁdS>B7

which is a contradiction, according with (2.3). So u # SHu. Now we can apply Theo-
rem 1.1.

REMARK 2.2. 19) If f is nondecreasing on [0,max{c,}], the condition (2.2)
can be replaced with

TV f(o) 1 T T e
o i(%fn‘p B < [ /0 ( [ 7 No(1)dT) lds} (2.4)
re(0,

for i(r(l)fT)(p(r) > 0. Indeed, because f is nondecreasing, we have that f(x) < f(a),
re(0,

for every |x| < o, so (2.2) becomes

Fla)+ (N = D)r N f(a) [T ¥ Lar
Sy =
2= 2o F V()

- UOT (/T vVo(1)dr) ﬁds] Pt

and we have

T
—NN

Sy = L
I T e
_ L+ (V- B
= f(a)r:(‘(l)%) rNo(r)
1+ 5L (Y — 1|
N f(a),:(l(l)%) o(r)
B PN DL (TN — )
IR
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Let
N-—1 N-—1 N-—1
=N — (V- =N - —)+ —=TV
0(r) i= ¥+ —— (T =) = V(1 - =)+ —
_ N _
:ﬁ+N lTN<L N—1.n_ o~
N N N N
Then | |
S < f()TN sup —— = f()TN —
re(0,7) (1) inf ¢(r)
re(0,T)

so we can replace (2.2) by (2.4).

29) If in addition we suppose @ = 1, the condition (2.4) becomes

< [[[([ )]

and if in addition p > N, (2.5) can be replaced by the suficient condition

fla) (p—N p—IN—1
T < p—l> — (2.6)
Indeed, the right side from (2.5) can be written

A T M e L

[ Sy e [e-rial

= .27
0

=)

Since

T e T 1

/ (slfN—TlfN)f’*'dsgf (slfN)I’*lds7
0 0

we obtain that

(2.8)
with
1-N
r 1 ql-p s by ioe
1-Ny 517 _
[ 6t 7al [ H
() () = (e
p—N p—1 Tr—N
and (2.8) becomes
—N\r,-1 1 T 1-p
() e < [ -rnyta
p— 0
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From (2.7) and (2.9) we deduce that (2.5) can be replaced by

flo)TV - N—1<p—N>zH
ap1 TP-N\p—1 ’

which is equivalent to

fla) (N—DTN /p—Ny\r-1
ar 1S TN (p—1> ’
which is (2.6).
3 Ify=0for 0<r<a<T and y(t) =1 for a <t < T, then the condition

(2.3), becomes
infre(a,7), xerr, je(s 8.6 [F () + (N = D)=V [TV f(x(r))dt
prt

12 =

~ <pz—)1>pil(T—la)1"

If, in addition, f is nondecreasing on [0, max{ct, 3}] we obtain

F(§B)infeqr) [1+ (N — D)r N [T N |
pr-! )

L=
where

T tN T

inf [1+(N—1 *N/ t’“d:‘: inf |[1+(N—1)rN—

re(a,T) ( )r r re(a,T) ( )r N'T

N—1

= inf 14+ SN
re(a,T) N

1 N-1
= inf | TN
re(a,T) N N

1 N-1
=—+—T NN =1,
N' N

so I, = f(%B)/BP~" and the condition (2.3) becomes
f(£B) p \'
Br 1 > (p_ 1) (T—a)p. (2.10)

For a given compact interval [c,d], let A; and ¢; be the first eigenvalue and a corre-
sponding positive eigenfunction of the problem

2.11)

—div(|Vu[P=2Vu) = A|u|P~2u,
u(c) =u'(d) =0.
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Notice that

| [ [VulPdr 1 / }
M=infq =“—uecC'lc,d|— {0}, u(c)=u'(d) =0p,A; >0,
=it n = Cled) {0 ule) = (@) =0 |

and there exists a function ¢; € C'[c,d] with ¢;(c) = ¢{(d) =0 and ¢;(¢) > 0 on
(c,d), for which the above inf is reached. In the sequel we shall always assume that

|¢1‘”:t2}a§}¢10) =1L

B}

THEOREM 2.2. Let f € C(R";R"). Assume that there exist intervals [a,b] and
[A, B] with [a,b] C[0,T) C [A,B], suchthatif A,¢ and A, ® denote the first eigenvalue
and the first positive eigenfunction for the interval |a,b] and respectively, |A,B], then
the following conditions are satisfied:

(i) there are constants ¢,C > 0 with
o)1 <1 aete(ab), (2.12)

1<CP(t)P~! aere(0,T); (2.13)

(ii) there are numbers a3 >0, oo # B such that

max |f(x)| T
xeR"xl<a [r N ()P tdr
o [1+(N— l)r:(%?n T ] <A, (214)

minerr | (vie[5p.6). refas) |F(X(7))]
c o

>AM, (2.15)

where M > 1 is such that
T
¢(r)P*1+(N—1)r*N/ NPt <MO(P! forre[0,T).  (2.16)
Then (1.1) has at least one solution u € C with |u|y increasing, concave and

min{a, B} < |u| < max{c,B}.

Proof. We apply Theorem 2.1to ¢(t) =tN®(¢)P~! fort €[0,T], w(t) = ¢ ()P~}
for z € [a,b] and w(¢) =0 for r € [0,T]\ [a, } First we check inequality (2.2). For
t €(0,T), from (2.13) we find that

F)] < CROP | f ()| =Cr V()| f(x)]-
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Hence

SUPxeR? , [x|<at, r€(0.T) —lf—(Nf;.())! KR, |y <o |f(x )\

ap-1

o 2.17)

On the other hand, because A and @ are the first eigenvalue, respectively the first
eigenfunction of the problem (2.11), based on the relations (1.3) and (1.5), we obtain

O(r) =S(A@(r)P '+ (N—1)r /TtN*1q>(z)P*1dt))

r

1 T
= APTS(@() (V= Y [T (e ar),

r

using Lemma 1.1, 29 Hence, we find

1 T
ATPT() = S(@() 4 (V= D [TV )

> s(@(n" ),

because ® > 0 and S is increasing, according to Lemma 1.1, 19. Thus, we find that

A7) > S(r Vo(r) = /Or ([<p(r)r—Ndr) s 2.18)

basing on S definition and the fact that ¢ € L'([0,T];R.), so we have that |¢| =

Since ¢ >0 and max ®(r) < max ®(r) = |®|. = 1, from (2.18) we obtain
rel0,7) relA,B|

AT > / /(p tVdr ﬁds,

that is,
L 1—
/ / o(t Ndr 'ds] " (2.19)
‘We have
|Fu(r)+ (N = 1)r N [TV f(u(r))dr |
sup N
re(0,T), ueR’, |u|<a (P( )

O

re(0.7), ueR", uj<ar © rNo(r)

N_1) r TN L) ,) N o(t)dr
+(N—-1 sup p=
re(0.7), ueR", ul<a No(r)

< sup \Ji(l\b;("))\
re(0.7), uek?, lul<a T O(r)

7 0(0) SUPre(0.7), ek uj<or| s |dt
+(N—1) sup
re(0,T) o(r)
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T
—S;[1+(N=1) sup ML

re(0,T) o(r)

where
S(u(r))
rNo(r)

S3 1= sup
re(0,T), ueR’, |u|<a

and @(r) = N ®(r)P~L. Now, (2.14), (2.17) and (2.19) imply (2.2).
Now we will check (2.3). The norm implied is |.|s, so we obtain:

. LF((r) + (N = DN [T V=1 f(x(r))dt|
inf
re(0,7), xeR™L, |x|€[+B,B] y(r)
- inf f(x(r))

7 re(01), xeRY, [xe[58.8] W(r)

+(N-1)-

_ T — . X
PN LNy () infcpn |x|e[%B,B],te(O,T)%dt

inf
re(0,T), xR, |x|€[£B,B] w(r)
rN [T N=Yy () dr
=L[1+(N=1) inf r , 2.20
sV, B8 v e
where
. - )] - G|
re(0.T), xR, |fe[£B.8] W(r)  relab], xR, [xe[£8.8]  W(r)

For ¢ € (a,b), from (2.12) we obtain that

[FO)] = co(0)P £ (x(1))] = ey (t)] f(x(2))]-
Therefore,
- TG R
re(0.1), <RY, WEFBB) i) MiNrelab] xRy, [de(£B.6) £ (x(r))]

pr1 g pr1

Since A and ¢ there are the first eigenvalue, respectively eigenfunction of problem
(2.11), together with (1.3) and (1.5) imply

2.21)

T
O =SAOM " + =1 [* Mo an)

r

1 T
=27 18(0 () + (V= [N g a),

r

using Lemma 1.1, 2°. So

ATF(r) =S(o(r)P~ + (N — 1) / Lo dr) < S(Mo (1Y),

r
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basing on ¢ > 0, S is increasing, and according with Lemma 1.1, 19,20 and (2.16).
So, we have

1

17500 < s(uy(r) =m7T [ ([ wwar)as

and since max ¢(r) > max ¢(r) = |0 |.= 1, we obtain
re(0,T] r€(a,b)

1

(M/l%//w dr_ls,

1

/ /l[/ dr = s} -’ 2.22)

From (2.20), (2.21), (2.15) and (2.22) we obtain (2.3). So Theorem 2.1 may be applied
and the conclusion follows.
Now let

that is,

ho:=  lim SO d = ()]

[x[—0, xR’ \x\P—l [x[—e0, x€RY |)C|p_1 ’

assuming that these limits exist in R U {eo}.

THEOREM 2.3. Let be f€C (R'jr;R'jr) and suppose that there exist the intervals
[a,b] and [A,B] with [a,b] C [0,T] C [A,B] and a > 0 so that the condition (i) from
Theorem 2.2 to be fulfiled (A, d, N, ® are from Theorem 2.2). Also, we suppose that
the condition (2.16) is satisfied. In addition, we suppose that one of the following two
conditions holds:

(a)
B TN ()r—Ldr
Ch0(1+(N 1)r€s(t(1)%) (T ><A
and ;
N (T N—14/\p—1
[ L e P T o) dr
(%) chw[l—k(N 1) dnf S ]>)LM
or
(b) .
N (T N—14(\p—1
a. .,y oy e T ()P dt
(57 eho[14 (N 1) inf A | >am
and

T N—1 —1
D(r)?
Cha (14 (N=1) sup Jr ” @ d’) <A
reor) @ (r)?

Then (1.1) has a solution.
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Proof. We apply Theorem 2.2.
Suppose (a). Then there exist o, >0, oo < 8 so that

C‘f( )| <1+(N—1) sup frTzN—lq)(t p=1gy

e e ) <A forevery € R

with 0 < |x| < o and

(%)p_lcmx)\ [+ (v=1) inf PN g

[P~ re(0,7) ¢(r)r-t ] > AM:

for every x € R with |x| > %B. Now it follows that the conditions (2.14) and (2.15)
are satisfied.
Suppose (b). Then we can find o, f > 0 with

a p-1 |f()] [ o frTfN_1¢(f)p_1df}

— 1+(N—-1 f AM
@) e[l W= it — ] >
for every x € R’ with 0 < |x| < B and (2.15) follows. Also,

)

[P

TN o ()P dr
(1 (N l)r::g)?T) T ) <A (2.23)

for every x € R with |x| > og. We choose o # B with a > ap and

r - ..
o> (9 max | £(x)|(1+(N=1) sup L @ ldt)) L 24

Alx<ag rer)y V@ (r)P!

Then (2.24) shows that

o)l R SO
. < 0. .
aP — 1+ (N— 1>r€S(L(l)PT) (T <A for x| < o (2.25)

From (2.23) we obtain
1f(x)| JTN 1 (r)r—1dr
C—=(1+(N—1 r
pra ( )r:(%% Nd(r)r—1

S

[P~

T N—1 p—1
"D (¢ dt
<C <1+(N—1) sup Jr (

<A (2:26)
reo.ry  MN@(r)p! )
for op < |x| < a. Now, (2.25) and (2.26) guarantee (2.14).

REMARK 2.3. 19) The relation (2.10) from Remark 2.2, 3° is also found in [7]
(Remark 2.3, 39).
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29) For p > N, the relation (2.6), namely

fla) - (p—N)P—lN—l
ar-1 p—1 TP’

from Remark 2.2, 29 is similar to the relation

)y

ar-1 p—1 TP

from [7], Remark 2.3, 3°.
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