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EXISTENCE OF POSITIVE SOLUTIONS TO A

QUASILINEAR ELLIPTIC SINGULAR NEUMANN PROBLEM

QING MIAO AND ZUODONG YANG

(Communicated by J. -M. Rakotoson)

Abstract. We show the existence of positive solution for the following singular Neumann prob-
lem {

−div(|∇u|m−2∇u)+ a(x)
uβ

= λh(x)up in BR,
∂u
∂ν = 0 on ∂BR,

where R > 0,λ > 0 is a positive parameter, β > 0, p∈ [0,m−1) . By means of double perturba-
tion argument and variational methods, we obtain a positive solution u ∈C1(BR\{0})∩C(BR) .

1. Introduction

In this paper,we are concerned with the existence of a positive solution to the
problem ⎧⎪⎨

⎪⎩
−div(|∇u|m−2∇u)+ a(x)

uβ
= λh(x)up in BR,

u > 0 in BR,
∂u
∂ν = 0 on ∂BR,

(P)

where BR = BR(0) ⊂ R
N(N � 1) , m � 2, 0 � p < m−1, β > 0 is a constant, λ > 0

is a positive parameter. Throughout this paper, we assume that h(x) = h(r) and a(x) =
a(r) , r = ‖x‖ , are two nonnegative C1 -functions with a,h �≡ 0.

The problem of the above form are mathematical models occuring in studies of the
m-Laplace system, generalized reaction-diffusion theory, non-Newtonian fluid theory
[2,19], non-Newtonian filtration [14] and the turbulent flow of a gas in porous medium.
In the non-Newtonian fluid theory, the quantity m is characteristic of the medium. Me-
dia with m > 2 are called dilatant fluids and those with m < 2 are called pseudoplastics.
If m = 2, they are Newtonian fluids. When m �= 2, the problem becomes more compli-
cated since certain nice properties in herent to the case m = 2 seem to be lost or at least
difficult to verify. The main differences between m = 2 and m �= 2 can be founded in
[8,12].
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In recent years, the existence and nonexistence of the positive solutions for the
quasilinear elliptic equations

div(|∇u|m−2∇u)+ f (x,u) = 0, x ∈ R
N ,

with m > 1 have been studied by many authors, see [9-11, 25, 27-28].
In [24], the author concerned the entire radially symmetric solutions of the prob-

lem
div(|∇u|m−2∇u) = q(x) f (u), x ∈ R

N .

In [13], the authors considerer the existence of positive solutions of the quasilinear
eigenvalue problem

−Δmu = λ f (u) in Ω, u = 0 on ∂Ω, (E)

where 1 < m < ∞ , λ > 0, and Ω ⊂ R
N(N � 2) is a bounded, connected, smooth

domain, under appropriate smoothness conditions on f .
By a positive solution of Eq.(E) we mean a pair (λ ,u) in R

+ ×C1
0(Ω) satisfying

Eq.(E) in the weak sense and with u > 0 in Ω .
It was shown in [26] that problem

div(|∇u|m−2∇u)+λq(x)u−γ = 0, x ∈ R
N ,

has a positive decaying entire solution for all λ > 0 if 1 < m < N , q(r) = q(|x|) ∈
C(R+) , q > 0 for r > 0, and 0 � γ < (m−1) for any

0 < ε < (N−m)(m−1−|γ|)/(m−1)

such that ∫ +∞

1
rm+ε−1+[(N−m)|γ|/(m−1)]q(r)dr < ∞,

and for r ∈ (0,1) , δ < 1, q(r) = O(r−δ ) .
In [20], the author investigated singular p -Laplacian equations of the form

div(|∇u|m−2∇u)+ f (x,u,∇u)u−β = 0, x ∈ R
N ,

where 1 < m � N, 0 � β < m−1, and f satisfy:

(f1) f (x,u,q) ∈ Cα
loc(R

N ×R+ ×R
N) , i.e., f : R

N ×R+ ×R
N → R is locally Hölder

continuous with index α ∈ (0,1) , here R+ = (0,∞) and R+ = [0,∞) ;
(f2) for every bounded domain D ⊂ R

N , for any M > 0, ∃ ρ(D,M) > 0 such that

| f (x,u,q)| � ρ(D,M)(1+ |q|m), x ∈ D, 0 � u � M, q ∈ R
N ,

and that there exist functions F,φ such that the conditions (F1)-(F4) below are valid.

Then for any β ∈ [0,m−1) , the problem has a positive entire solution u satisfying

ε−1φ(|x|) � u(x) � ε, x ∈ R
N , lim

|x|→∞
u(x) = 0,
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where ε > 1 is a constant.

(F1) F ∈Cα
loc(R+ ×R+×R+),φ ∈Cα

loc(R+×R+) and

0 < φ(|x|,u) � f (x,u, p) � F(|x|,u, |p|) for all (x,u, p) ∈ R
N ×R+×R

N ;

(F2) φ(r,u) is non-decreasing in u ∈ R+ ; F(r,u,q) is non-decreasing both in u ∈ R+
and in q ∈ R+ ;

(F3) for any r ∈ I , there is some subinterval I of R+ such that

lim
ξ→∞

ξ 1− β
m−1 φ(r,ξ−1ϕ(r)) = ∞ ;

(F4) for any r ∈ R+ ,

lim
ξ→∞

ξ−1+ β
m−1 F(r,ξ ,ξ ) = 0

and there exists a nonnegative measurable function M(t) ∈ Λ1 , with a constant ξ0 > 1
such that

ξ−1+ β
m−1 F(r,ξ ,ξ )(ϕ(r))−β � M(r), r ∈ R+ for all ξ � ξ0.

For m = 2, there is a lot of papers in the literature dealing with singular problem
with Dirichlet or Neumann boundary conditions, we can cite for example, the papers of
Cirstea and Radulescu [4], Crandall, Rabinowitz and Tartar [5], del Pino and Hernandez
[21] and reference therein.

The related results to a singular semilinear elliptic the boundary value problem{
Δu+λq(x)uγ = 0, x ∈Ω,
u = 0, x ∈ ∂Ω,

have been extensively studied when Ω⊂ R
N or Ω= R

N , see [3, 6-7, 15-17, 23].
The results to a semilinear elliptic boundary value problem⎧⎨

⎩
−Δu+a(x)u−β = λh(x)up, x ∈ BR,
u > 0, x ∈ BR,
∂u
∂ν = 0, x ∈ ∂BR,

and ⎧⎨
⎩

−Δu = logu+h(x)uq, x ∈ BR,
u > 0, x ∈ BR,
∂u
∂ν = 0, x ∈ ∂BR,

have been studied, see [1, 22].
The class of problems considered in this paper was motivated by the semilin-

ear problem with Neumann problem. When p = 2, the main point of interest of
the author with respect to the problem is the existence of positive solution, i.e. u ∈
C2(BR\{0})∩C(BR) , u > 0 in BR (see [1]). To obtain their results, the authors
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use the nice properties of the operator −Δ , for example, strong maximum principle,
strong comparison principle and so on. Moreover, the authors obtained the estimate
||Ur||C3[ρ ,R] . This paper, we are interested in the existence of positive weak solution of

(P) , i.e. u ∈ C1(BR\{0})∩C(BR) , u > 0 in BR . Unfortunately, as we know, for the
operator −Δmu with m �= 2, many nice properties inherent to −Δ are lost or difficult
to verify. For example, the strong maximum principle is lost. In this paper, we will use
the weak comparison principle. Because of the weak regularity, we only consider the
estimate ||φm(u′r)||C1[ρ ,R] .

We modify the method developed in [1], and give the following theorem.

THEOREM 1.1. The problem (P) has a positive solution u∈C1(BR\{0})∩C(BR) ,
if one of the following conditions holds.
(1) For λ � ||a||∞ , β > 0 and h(x) � 1 for all x ∈ BR .
(2) For λ > 0 large enough and 0 < β < 1 .

(3) For λ > 0 large enough, a(x)
d(x,∂BR)mβ/(m−1) bounded in BR and 0 < β < 1 .

2. The perturbed problems

In this section, we study the perturbed problems used to get a solution to (P) . In
the first perturbation for each ε > 0, we consider a family of approximate problems⎧⎪⎨

⎪⎩
−div(|∇u|m−2∇u)+ a(x)u

(u+ε)β+1 = λh(x)up in BR,

u > 0 in BR,
∂u
∂ν = 0 on ∂BR.

(Pε)

Our goal is to get a solution to the above problem for each ε > 0 and let ε → 0 in
order to find a solution to (P) .

For each 0 < r < R , define A := BR\Br . Consider the second family of problems⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−div(|∇u|m−2∇u)+ a(x)u
(u+ε)β+1 = λh(x)up in BR\Br,

u > 0 in BR\Br,
u = σ on ∂Br,
∂u
∂ν = 0 on ∂BR,

(Pε,r)

where σ > 0 is an appropriate fixed constant. When r → 0+ , we get a solution to (Pε) .

2.1. Existence of subsolution to (Pε,r)

In this subsection, we will show the existence of subsolution u to (Pε,r) , which
does not depend on r and ε . To this end, we will drive our study in three cases.

CASE 1.
(
λ � ||a||∞ , β > 0 and h(x) � 1 for all x ∈ BR

)
Since a(x)

(1+ε)β+1 � λh(x) , in this case, u = 1 is a subsolution to (Pε,r) , provided

that σ > 1.
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CASE 2.
(
λ > 0 large enough and 0 < β < 1

)
Let ξ be a positive solution of the below problem{−div(|∇u|m−2∇u) = h(x)(d(x,∂BR))pγ in BR,

u = 0 on ∂BR,

where γ = m(m−1)
(m−1)+β .

Define u = kξ γ/(m−1) . Computing the equation

−div(|∇u|m−2∇u)+
a(x)
uβ

= −
( kγ

m−1

)m−1
(γ−m+1)ξ γ−m|∇ξ |m

+
( kγ

m−1

)m−1
ξ γ−m+1h(x)(d(x,∂BR))pγ

+
a(x)k−β

ξ βγ/(m−1) .

Since β ∈ (0,1) , γ > m−1 and consequent for k > 0 large, in the interior and near the
boundary ∂BR we have

a(x)k−β −
( kγ

m−1

)m−1
(γ−m+1)|∇ξ |m < 0.

Now take λ > 0 large enough such that

( kγ
m−1

)m−1
ξ γ−m+1h(x)(d(x,∂BR))pγ � λh(x)up,

hence

−div(|∇u|m−2∇u)+
a(x)
uβ

� λh(x)up in BR.

Finally we choose σ such that kξ γ/(m−1) < σ .

CASE 3.
(
λ > 0 large enough and a(x)

d(x,∂BR)mβ/(m−1) bounded in BR and 0 < β < 1)

Fixing γ = m , u = kξm/(m−1) and repeating the same argument of Case 2, we get

−div(|∇u|m−2∇u)+
a(x)
uβ

= −
( km

m−1

)m−1|∇ξ |m +
( km

m−1

)m−1
ξh(x)(d(x,∂BR))pm +

a(x)k−β

ξ βm/(m−1) ,

since a(x)
d(x,∂BR)mβ/(m−1) bounded in BR , there exists N > 0 such that
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−div(|∇u|m−2∇u)+
a(x)
uβ

� −
( km

m−1

)m−1|∇ξ |m +
( km

m−1

)m−1
ξh(x)(d(x,∂BR))pm +Nk−β ,

thus, using similar argument to Case 2, for k and λ large, we arrive at the same con-
clusion.

2.2. Existence of supersolution to (Pε,r)

In this subsection, we will use variational method to get a supersolution to (Pε,r) .
Hereafter, σ > ||u||∞ and X denotes the subspace of H1(A) , A = BR\Br , given by

X = {v ∈ H1(A) : v(r) = 0,v is radially symmetic}

endowed with the norm

||v|| =
(∫

A
|∇v|mds

) 1
m
.

We stress that ||.|| is a norm in X , since Poincare inequality holds in X , that is,
there exist η > 0 such that

∫
A
|v|mdx � η

∫
A
|∇v|mdx, ∀ v ∈ X . (2.1)

Note that v ∈ X is a solution of the problem below⎧⎪⎪⎨
⎪⎪⎩

−(sN−1φm(v′))′ = λ sN−1h(s)(v+σ)p in (r,R),
v > 0 in (r,R),
v(r) = 0,
v′(R) = 0,

(2.2)

where φm(s) = |s|m−2s , the function u = v+σ is a supersolution to (Pε,r) , because it
is easy to check that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−(sN−1φm(u′))′ + sN−1a(x)u

(u+ε)β+1 � λ sN−1h(s)up in (r,R),
u > 0 in (r,R),
u(r) = σ ,
u′(R) = 0.

To get a solution to (2.2), we will apply variational methods to the functional
I : X → R given by

I(v) =
1
m

∫ R

r
sN−1|v′|mds−λ

∫ R

r
sN−1h(s)F(v(s))ds,

where F(t) =
∫ t
0((z+σ)+)pdz and z+ = max{z,0} .
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LEMMA 2.1. The functional I is C1 , weakly lower semicontinuous and coercive
so that there exists v ∈ X such that

I(v) = min
u∈X

I(u) and I′(v) = 0.

The proof is standard by (2.1).
From the above details, we conclude that v is a solution to (2.2). Also, since v is

a weak solution of (2.2), we have

v(s) =
∫ s

r
φ−1

m

[
t1−N

∫ R

t
λ zN−1h(z)(v(z)+σ)pdz

]
dt,

in which

φ−1
m (u) =

{
u

1
m−1 , if u � 0,

−(−u)
1

m−1 , if u < 0.

Then we define ur := v+σ .

LEMMA 2.2. The function ur = v+σ is a supersolution to (Pε,r) with ur(s) � σ
and ur(s) � u(s) for every s ∈ [r,R] . Moreover,

ur(s) = σ +
∫ s

r
φ−1

m

[
t1−N

∫ R

t
λ zN−1h(z)up

r (z)dz
]
dt, (2.3)

then ur ∈C1[r,R] .

LEMMA 2.3. There exists a constant M > 0 such that ||ur||C[r,R] � M for all r ∈
(0,R) . Moreover, for each ρ ∈ (0,R) , there exists Cρ > 0 and rρ ∈ (0,R) such that we
have the following estimates:

||ur||C[ρ ,R], ||ur||C1[ρ ,R], ||φm(u′r)||C1[ρ ,R] � Cρ .

Proof. From (2.3), we have that

ur(s) = σ +
∫ s

r
φ−1

m

[
t1−N

∫ R

t
λ zN−1h(z)up

r (z)dz
]
dt

� σ +
∫ R

r
φ−1

m

[
t1−N

∫ R

t
λ zN−1h(z)up

r (z)dz
]
dt

� σ + ||ur||
p

m−1
C[r,R]

∫ R

r
φ−1

m

[
t1−N

∫ R

t
λ zN−1h(z)dz

]
dt.

But ∫ R

r
φ−1

m

[
t1−N

∫ R

t
λ zN−1h(z)dz

]
dt � C1

for some constant independent of r .
Using the hypothesis p∈ (0,m−1) , there exist positive constants C2,C3 indepen-

dents of r verifying the inequality

ur(s) � C2 +C3||ur||
p

m−1
C[r,R],
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which implies that there exists M > 0 independent of r , such that

||ur||C[r,R] � M.

In fact, since

||ur||
m−1−p

m−1
C[r,R] � C2||ur||−

p
m−1

C[r,R] +C3,

if ||ur||C[r,R] → ∞ as r → 0, we get a contradiction. The estimates involving the norms
||ur||C1[ρ ,R], ||φm(u′r)||C1[ρ ,R] follows easily using the estimative found for ||ur||C[ρ ,R] .�

2.3. Existence of solution to (Pε,r)

In this subsection, we use the sub-supersolution (u and ur respectively) to obtain
a solution for the problem (Pε,r) .

We use an interaction method starting from u0 = u and define the sequence un ,
n ∈ N , by solving the problems⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−(sN−1φm(u′n+1))

′ + sN−1a(s)un+1
(un+ε)β+1 = λ sN−1h(s)up

n in (r,R),
un+1 > 0 in (r,R),
un+1(r) = σ ,
u′n+1(R) = 0.

From [18], we first give the following Lemma.

LEMMA 2.4. (Weak Comparison Principle) Let Ω be a bounded domain in R
N

(N � 2) with smooth boundary ∂Ω and θ : (0,∞) → (0,∞) is continuous and nonde-
creasing. Let u1,u2 ∈W 1,m(Ω) satisfy

∫
Ω
|∇u1|m−2∇u1∇ψdx+

∫
Ω
θ (u1)ψdx �

∫
Ω
|∇u2|m−2∇u2∇ψdx+

∫
Ω
θ (u2)ψdx

for all nonnegative ψ ∈W 1,m
0 (Ω) . Then the inequality

u1 � u2 on ∂Ω,

implies that
u1 � u2 in Ω.

LEMMA 2.5. The sequence un is nondecreasing and satisfies

u0(s) � un(s) � un+1(s) � ur(s) for all s ∈ [r,R] and all n ∈ N.

Proof. We just need to see that u0 � u1 � ur . From the definition of u1 , we have{−(sN−1φm(u′0))
′ +g(s)u0 � −(sN−1φm(u′1))

′ +g(s)u1, ∀s ∈ (r,R),
(u0−u1)(r) � 0, (u0−u1)′(R) = 0,
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where g(s) = sN−1a(s)
(u0+ε)β+1 . From Lemma 2.4, we obtain that

u0 � u1(s), ∀s ∈ [r,R].

On the other hand,{−(sN−1φm(u′1))
′ +g(s)u1 � −(sN−1φm(u′r))′ +g(s)ur, ∀s ∈ (r,R),

(u1−ur)(r) � 0, (u1−ur)′(R) = 0,

and again apply Lemma 2.4, we get

u1 � ur(s), ∀s ∈ [r,R].

Thus,
u0 � u1(s) � ur(s), ∀s ∈ [r,R].

Now, the proof follows by induction at n . �

By Lemma 2.5, we define the pointwise limit

uεr (s) := lim
n→∞

un(s), ∀s ∈ [r,R],

and we see that
1 � uεr (s) � ur(s), ∀s ∈ [r,R]. (2.4)

LEMMA 2.6. The function uεr belongs to C1[r,R] and verifies (Pε,r) .

Proof. For each n ∈ N , we have

un(s) = σ +
∫ s

r
φ−1

m

[
t1−N

∫ R

t
zN−1(λh(z)up

n−1−
a(z)un

(un−1 + ε)β+1
)dz

]
dt,

since
u(s) � un(s) � ur(s) � M, ∀n ∈ N.

From Lemma 2.3, we obtain that ||φm(u′r)||C1[ρ ,R] is bounded. So for some subse-
quence, still denote by un , we have that

un → uεr in C1[r,R].

Therefore, uεr is a solution of the problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(sN−1φm(uε
′

r ))′ + sN−1a(s)uεr
(uεr +ε)β+1 = λ sN−1h(s)(uεr )

p in (r,R),
uεr > σ in (r,R),
uεr (r) = σ ,
(uεr )′(R) = 0.
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2.4. Existence of solution to (Pε)

From Lemma 2.6, uεr is given by

uεr = σ +
∫ s

t
φ−1

m

[
t1−N

∫ R

t
zN−1(λh(z)(uεr )

p − a(z)uεr
(uεr + ε)β+1

)dz
]
dt, (2.5)

and
u(s) � uεr (s) � ur(s) � M, ∀s ∈ [r,R]. (2.6)

Using (2.5) and (2.6), as in Lemma 2.3, we can prove that for each ρ ∈ (0,R) there
exist Cρ > 0 and rρ ∈ (r,R) , such that

||uεr ||C[ρ ,R], ||uεr ||C1[ρ ,R], ||φm(uε
′

r )||C1[ρ ,R] � Cρ .

Then from the compact imbedding C1[ρ ,R] ↪→ C[ρ ,R] , we see that there exist a
sequence rn ∈ (0,R) with rn → 0 and uε : (0,R]→ R , such that the sequence wn = uεrn
satisfies

wn → uε in C1
loc(0,R),

and
wn → uε in C[ρ ,R] ∀ρ ∈ (0,R).

The above limits imply that uε is a solution of the problem (Pε) written in radial
form: ⎧⎪⎨

⎪⎩
−(sN−1φm(u′ε))′ +

sN−1a(s)uε
(uε+ε)β+1 = λ sN−1h(s)(uε )p in (0,R),

uε > 0 in (0,R),
u′ε(R) = 0.

2.5. Existence of solution to (P)

Now we would like to pass the limit in the family uε obtained in above subsection
and get a solution to (P) . In order to do that, we need some estimates like the ones in
Lemma 2.3.

First, we observe that the following estimate holds in (0,R) ,

u(s) � uε(s) � M, ∀s ∈ (0,R). (2.7)

Note that the family uε verifies

uε(s) = uε(R/2)+
∫ s

R/2
φ−1

m

[
t1−N

∫ R

t
zN−1(λh(z)up

ε − a(z)uε
(uε + ε)β+1

)dz
]
dt, (2.8)

if s ∈ [R
2 ,R] ,

uε(s) = uε(R/2)−
∫ R/2

s
φ−1

m

[
t1−N

∫ R

t
zN−1(λh(z)up

ε − a(z)uε
(uε + ε)β+1

)dz
]
dt, (2.9)

if s ∈ (0, R
2 ] .
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Using (2.7)-(2.9), for each ρ ∈ (0,R) fixed, there exist Cρ > 0 and ερ ∈ (r,R) ,
such that

||uε ||C[ρ ,R], ||uε ||C1[ρ ,R], ||φm(u′ε)||C1[ρ ,R] � Cρ , ∀ε ∈ (0,ερ).

Hence, there exist a sequence ln ∈ (0,R) with ln → 0 and u : (0,R] → R , such that the
sequence zn = uln satisfies

zn → u in C1
loc(0,R),

and
zn → u in C[ρ ,R], ∀ρ ∈ (0,R).

Using the above information, u(s) � u(s) , ∀s ∈ (0,R] and u is a solution of the
problem ⎧⎪⎨

⎪⎩
−(sN−1φm(u′))′ + sN−1a(s)

uβ
= λ sN−1h(s)up in (0,R),

u > 0 in (0,R),
u′(R) = 0.

(2.10)

We see that u ∈ C1(0,R)∩C(0,R] . Now, the next Lemma shows that we can
extend u to the interval [0,R] in such a way that u is continuous on [0,R] .

We use the same arguments with Lemma 2.6 in [1], and give the following lemma.

LEMMA 2.7. If u is the solution found for (2.10) , we have that limr→0 u(r) ex-
ists. Hence, we can extend u to the interval [0,R] , assuming u(0) = limr→0 u(r) . Thus
getting the regularity u ∈C1(BR\{0})∩C(BR) .

Using the above information, we give the proof of Theorem 1.1.
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