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Abstract. In this article, we consider a class of nonlinear elliptic fourth-order equations with
the principal part satisfying a strengthened coercivity condition. It is supposed that the lower-
order term of the equations admits an arbitrary growth with respect to unknown function and the
growth rates of derivatives of this function coinciding with the exponents of the corresponding
energy space. We prove a theorem on existence of bounded generalized solutions of the Dirichlet
problem for equations of the given class.

1. Introduction

In [18] a class of nonlinear elliptic equations of the form

∑
|α |�m

(−1)|α |DαAα(x,u, . . . ,Dmu) = 0 in Ω, m > 1, (1.1)

was introduced, all generalized solutions of which are bounded and Hölder continuous.
This class is characterized by a strengthened coercivity condition on leading coefficients
Aα , 1 � |α| � m . In a model case this condition means that for every x ∈ Ω and for
every ξ = {ξα ∈ R : |α| � m} the following inequality holds:

∑
1�|α |�m

Aα(x,ξ )ξα � C

(
∑

|α |=1

|ξα |q + ∑
|α |=m

|ξα |p
)

.

Here Ω is a bounded domain of R
n , p � 2, mp < q < n and C > 0. At the same time,

in [18] it was supposed that the lower-order term A0 may have the growth of a rate less
than nq/(n− q)− 1 with respect to the function u and the growth of rates definitely
less than q and p with respect to the derivatives Dαu , |α| = 1, and the derivatives
Dαu , |α| = m , accordingly.

We observe that the proof of boundedness of generalized solutions in [18] uses
a modification of Moser’s method [15]. The approach of [18] was developed in [9,
10, 16], where the boundedness and regularity of solutions were studied for high-order
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equations and variational inequalities with degenerate nonlinear elliptic operator satis-
fying a strengthened coercivity condition. A system of two degenerate nonlinear elliptic
fourth-order equations with a strengthened coercivity condition was considered in [11],
and following the approach of [9, 10, 16] results on the boundedness and Hölder conti-
nuity of generalized solutions of the Dirichlet problem for this system were obtained.

Using an analogue of Stampacchia’s method [5, 19, 20], a weaker condition on in-
tegrability of data was established in [12] to guarantee the boundedness of generalized
solutions of nonlinear fourth-order equations with a strengthened coercivity. Moreover,
a dependence of summability of generalized solutions of these equations on integrabil-
ity of data was described in [12]. Analogous results for nonlinear high-order equations
with a strengthened coercivity were obtained in [21].

Let us give the precise description of the main results of [21].
Let m , n∈ N be numbers such that m � 3, n > 2(m−1) . Let p ∈ R be a number

such that 2n(m−2)/[n(m−1)−2]< p < n/m . We set p = 2p/[p(m−1)−2(m−2)] ,
and let q ∈ R be a number such that max(p,mp) < q < n .

Let Ω be a bounded open set of R
n . We denote by W 1,q

m,p(Ω) the set of all func-
tions u ∈W 1,q(Ω) having for every n -dimensional multiindex α , |α| = m , the weak
derivative Dαu ∈ Lp(Ω) . W 1,q

m,p(Ω) is a Banach space with the norm

‖u‖ = ‖u‖W1,q(Ω) +
(
∑

|α |=m

∫
Ω
|Dαu|pdx

)1/p

.

We denote by
◦
W 1,q

m,p(Ω) the closure of the set C∞
0 (Ω) in W 1,q

m,p(Ω) .
We set q∗ = nq/(n−q) . As is known (see for instance [4, Chapter 7]),

◦
W 1,q(Ω) ⊂ Lq∗(Ω), (1.2)

and there exists a positive constant c depending only on n and q such that for every

function u ∈ ◦
W 1,q(Ω) ,

(∫
Ω
|u|q∗ dx

)1/q∗

� c

(
∑

|α |=1

∫
Ω
|Dαu|q dx

)1/q

. (1.3)

We shall use the following notation: Λm is the set of all n -dimensional multi-
indices α such that 1 � |α| � m ; R

n,m is the space of all functions ξ : Λm → R ; if
u ∈ Wm,1(Ω) , then ∇mu : Ω → R

n,m is the mapping such that for every x ∈ Ω and
α ∈Λm , (∇mu(x))α = Dαu(x) . For every measurable set E ⊂Ω we denote by measE
Lebesgue measure of the set E .

Next, let c1,c2,c3 > 0, max(p,mp) < q1 < q and let the numbers pα be defined
by pα = q if |α| = 1, and

1
pα

=
|α|−1
p(m−1)

+
m−|α|

q1(m−1)
if 2 � |α| � m.
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Let g ∈ L1(Ω) , g � 0 in Ω , and let for every α ∈ Λm , Aα : Ω×R
n,m → R be a

Carathéodory function. Assume that for almost every x ∈ Ω and for every ξ ∈ R
n,m

the following inequalities hold:

∑
α∈Λm

|Aα(x,ξ )|pα/(pα−1) � c1 ∑
β∈Λm

|ξβ |pβ +g(x), (1.4)

∑
α∈Λm

Aα(x,ξ )ξα � c2

(
∑

|α |=1

|ξα |q + ∑
|α |=m

|ξα |p
)
−c3 ∑

2�|α |�m−1

|ξα |pα −g(x). (1.5)

Let
F ∈ Lq∗/(q∗−1)(Ω). (1.6)

The following Dirichlet problem is considered:

∑
α∈Λm

(−1)|α |DαAα(x,∇mu) = F in Ω, (1.7)

Dαu = 0, |α| � m−1, on ∂Ω. (1.8)

DEFINITION 1.1. A generalized solution of problem (1.7), (1.8) is a function u ∈
◦
W 1,q

m,p(Ω) such that for every function v ∈ ◦
W 1,q

m,p(Ω) ,

∫
Ω

(
∑

α∈Λm

Aα(x,∇mu)Dαv

)
dx =

∫
Ω

Fvdx. � (1.9)

REMARK 1.1. If v ∈ ◦
W 1,q

m,p(Ω) , by virtue of Nirenberg-Gagliardo interpolation
inequality [17], we have Dαv ∈ Lpα (Ω) , 1 < |α| < m . Then condition (1.4) ensures
the existence of the integral in the left-hand side of (1.9). Moreover, it follows from

(1.2) and (1.6) that for every function v ∈ ◦
W 1,q

m,p(Ω) the function Fv is summable on
Ω . �

By virtue of (1.2), every generalized solution of problem (1.7), (1.8) belongs to
the space Lq∗(Ω) . However, if the functions F and g have an improved summability,
then the summability of any generalized solution of the problem under consideration
is higher than the summability characterized by the exponent q∗ . The corresponding
dependence is described by the following theorem which is the main result of [21].

THEOREM 1.1. Suppose that r > q∗/(q∗ − 1) , the functions F and g belong to
Lr(Ω) , and M is a majorant for the norms ‖g‖Lr(Ω) and ‖F‖Lr(Ω) . Assume that u is a
generalized solution of problem (1.7) , (1.8) . Then the following assertions hold:

(i) if r < n/q and q∗ < λ < nr(q−1)/(n−qr) , then u ∈ Lλ (Ω) and ‖u‖Lλ (Ω) � C1 ,
where C1 is a positive number depending only on n, m, p, q , q1 , measΩ , c1 , c2 , c3 ,
r , M and λ ;
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(ii) if r = n/q, then
∫
Ω exp(b|u|1/σ )dx � C2 , where σ > 1 depends only on n, m, p,

q , q1 , and b and C2 are positive numbers depending only on n, m, p, q , q1 , measΩ,
c1 , c2 , c3 and M;

(iii) if r > n/q, then u ∈ L∞(Ω) and ‖u‖L∞(Ω) � C3 , where C3 is a positive number
depending only on n, m, p, q , q1 , measΩ , c1 , c2 , c3 , r and M .

REMARK 1.2. If t > n/q , r > n2/(nq−n+q) , g ∈ Lt(Ω) and F ∈ Lr(Ω) , then
the boundedness of generalized solutions of problem (1.7), (1.8) follows from [18].
Since n2/(nq− n+ q) > n/q , assertion (iii) of Theorem 1.1 gives a weaker (as com-
pared with [18]) condition on the summability of the right-hand side of equation (1.7)
under which generalized solutions of problem (1.7), (1.8) are bounded. This condition
(r > n/q) coincides with a condition for the boundedness of generalized solutions of
equations of the second order [13]. �

In the present article, we consider a class of nonlinear fourth-order equations of
type (1.1) (m = 2) with the principal part satisfying a strengthened coercivity condition
and the lower-order term admitting, unlike [12, 18, 21], an arbitrary growth with respect
to the function u , the growth of the rate q with respect to the derivatives Dαu , |α|= 1,
and the growth of the rate p with respect to the derivatives Dαu , |α| = 2. At the same
time, it is supposed that the lower-order term satisfies a sign condition. The main result
of the article is a theorem on existence of bounded generalized solutions of the Dirichlet
problem for equations investigated. We note that in the case under consideration q and
p are the exponents of the energy space corresponding to the given problem.

Similar results for nonlinear elliptic second-order equations with natural growth
lower-order terms were established for instance in [1-3].

Finally, we remark that a theory of existence and properties of solutions of nonlin-
ear elliptic fourth-order equations with coefficients satisfying a strengthened coercivity
condition and L1 -right-hand sides was developed in [6, 8].

2. Preliminaries and statement of the main result

Let n ∈ N , n > 2, and let Ω be a bounded open set of R
n .

We shall use the following notation: Λ is the set of all n -dimensional multi-
indices α such that |α| = 1 or |α| = 2; R

n,2 is the space of all mappings ξ : Λ→ R ;
if u ∈ W 2,1(Ω) , then ∇2u : Ω → R

n,2 , and for every x ∈ Ω and for every α ∈ Λ ,
(∇2u(x))α = Dαu(x) .

Let p∈ (1,n/2) and q∈ (2p,n) . We denote by W 1,q
2,p (Ω) the set of all functions in

W 1,q(Ω) that have the second-order generalized derivatives in Lp(Ω) . The set W 1,q
2,p (Ω)

is a Banach space with the norm

‖u‖ = ‖u‖W1,q(Ω) +
(
∑

|α |=2

∫
Ω
|Dαu|pdx

)1/p

.

We denote by
◦
W 1,q

2,p(Ω) the closure of the set C∞
0 (Ω) in W 1,q

2,p (Ω) .
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Next, let c1,c2,c3 > 0, let g1,g2,g3 be nonnegative summable functions on Ω ,
and let for every α ∈ Λ , Aα : Ω×R

n,2 → R be a Carathéodory function. We assume
that for almost every x ∈Ω and for every ξ ∈ R

n,2 the following inequalities hold:

∑
|α |=1

|Aα(x,ξ )|q/(q−1) � c1

(
∑

|α |=1

|ξα |q + ∑
|α |=2

|ξα |p
)

+g1(x), (2.1)

∑
|α |=2

|Aα(x,ξ )|p/(p−1) � c2

(
∑

|α |=1

|ξα |q + ∑
|α |=2

|ξα |p
)

+g2(x), (2.2)

∑
α∈Λ

Aα(x,ξ )ξα � c3

(
∑

|α |=1

|ξα |q + ∑
|α |=2

|ξα |p
)
−g3(x). (2.3)

We also assume that for almost every x ∈Ω and for every ξ ,ξ ′ ∈ R
n,2 , ξ 	= ξ ′ ,

∑
α∈Λ

[Aα(x,ξ )−Aα(x,ξ ′)](ξα − ξ ′
α) > 0. (2.4)

Let g4 and g5 be nonnegative summable functions on Ω , let b be a nonnegative
continuous function on R+ , and let B : Ω×R×R

n,2 → R be a Carathéodory function
such that for almost every x ∈Ω , for every s ∈ R and for every ξ ∈ R

n,2 the following
inequalities hold:

|B(x,s,ξ )| � b(|s|)
(
∑

|α |=1

|ξα |q + ∑
|α |=2

|ξα |p
)

+g4(x), (2.5)

B(x,s,ξ )s � −g5(x). (2.6)

Further, let
f ∈ Lq∗/(q∗−1)(Ω). (2.7)

We consider the following Dirichlet problem:

∑
α∈Λ

(−1)|α |DαAα(x,∇2u)+B(x,u,∇2u) = f in Ω, (2.8)

Dαu = 0, |α| = 0,1, on ∂Ω. (2.9)

Observe that, by virtue of (2.1) and (2.2), for every u, v ∈ ◦
W 1,q

2,p(Ω) and α ∈Λ the

function Aα(x,∇2u)Dαv is summable on Ω , and, by (2.5), for every u, v ∈ ◦
W 1,q

2,p(Ω)∩
L∞(Ω) the function B(x,u,∇2u)v is summable on Ω . Moreover, it follows from (1.2)

and (2.7) that for every v ∈ ◦
W 1,q

2,p(Ω) the function f v is summable on Ω .

DEFINITION 2.1. A generalized solution of problem (2.8), (2.9) is a function u ∈
◦
W 1,q

2,p(Ω)∩L∞(Ω) such that for every function v ∈ ◦
W 1,q

2,p(Ω)∩L∞(Ω) ,

∫
Ω

(
∑
α∈Λ

Aα(x,∇2u)Dαv+B(x,u,∇2u)v
)

dx =
∫
Ω

f vdx. � (2.10)
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The following theorem is the main result of the present article.

THEOREM 2.1. Let r > n/q, let the functions g2,g3,g5 and f belong to Lr(Ω) ,
and let M be a majorant for Lr(Ω)-norms of the functions g2,g3,g5 and f . Then there
exists a generalized solution u of problem (2.8) , (2.9) such that

‖u‖L∞(Ω) � C1, (2.11)

where C1 is a positive constant depending only on n, p, q , c , c2 , c3 , r , M and
measΩ .

REMARK 2.1. Condition r > n/q in the statement of Theorem 2.1 coincides with
the condition of boundedness of generalized solutions of the Dirichlet problem consid-
ered in [12] for equation (2.8) with B ≡ 0. �

REMARK 2.2. The proof of Theorem 2.1 is based on the consideration of a se-
quence of approximate problems for equations with bounded lower-order terms, ob-
taining the uniform boundedness of their solutions and the subsequent limit passage.
At the same time, the proof of the uniform boundedness of solutions of the approx-
imate problems uses the approach of [12] analogous to Stampacchia’s method. The
limit passage in the approximate problems is justified using ideas of [3, 6, 7]. �

EXAMPLE 2.1. Let for every n -dimensional multiindex α , |α| = 1, Aα : Ω×
R

n,2 → R be the function defined by

Aα(x,ξ ) =
(
∑

|β |=1

ξ 2
β

)(q−2)/2

ξα , (x,ξ ) ∈Ω×R
n,2,

and let for every n -dimensional multiindex α , |α| = 2, Aα : Ω×R
n,2 → R be the

function defined by

Aα(x,ξ ) =
(
∑

|β |=2

ξ 2
β

)(p−2)/2

ξα , (x,ξ ) ∈Ω×R
n,2.

Define the function B : Ω×R×R
n,2 → R by

B(x,s,ξ ) = s|s|γ
(
∑

|α |=1

|ξα |q + ∑
|α |=2

|ξα |p
)

, (x,s,ξ ) ∈Ω×R×R
n,2,

where γ > 0. Then the functions Aα , α ∈ Λ , satisfy inequalities (2.1)-(2.4), and the
function B satisfies inequalities (2.5), (2.6). �

Observe that the coefficients of the biharmonic operator Δ2u do not satisfy condi-
tion (2.3).
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3. Proof of Theorem 2.1

Step 1. Let for every i ∈ N , Ti : R → R be the function such that

Ti(s) =

{
s if |s| � i,

isigns if |s| > i.

Now, for every i ∈ N we define the function Bi :Ω×R×R
n,2 → R by

Bi(x,s,ξ ) = Ti(B(x,s,ξ )), (x,s,ξ ) ∈Ω×R×R
n,2.

From (1.3), (2.1)-(2.4) and (2.7) and the results of [14] on solvability of equations
with pseudomonotone operators it follows that if i ∈ N , then there exists a function

ui ∈
◦
W 1,q

2,p(Ω) such that for every v ∈ ◦
W 1,q

2,p(Ω) ,

∫
Ω

(
∑
α∈Λ

Aα(x,∇2ui)Dαv+Bi(x,ui,∇2ui)v
)

dx =
∫
Ω

f vdx. (3.1)

For every i ∈ N we set

Φi = ∑
|α |=1

|Dαui|q + ∑
|α |=2

|Dαui|p .

Observe that for every i ∈ N , ∫
Ω
Φi dx � c4, (3.2)

where c4 is a positive constant depending only on q , c , c3 , ‖g3‖L1(Ω) , ‖g5‖L1(Ω) and
‖ f‖Lq∗/(q∗−1)(Ω) . In fact, fixing an arbitrary i ∈ N and putting into (3.1) the function ui

instead of v , we get

∫
Ω

(
∑
α∈Λ

Aα(x,∇2ui)Dαui +Bi(x,ui,∇2ui)ui

)
dx =

∫
Ω

f ui dx.

This along with (2.3) and (2.6) implies that

c3

∫
Ω
Φi dx �

∫
Ω

f ui dx+
∫
Ω

g3 dx+
∫
Ω

g5 dx.

From this inequality, estimating the first addend in the right-hand side by means of
Hölder’s and Young’s inequalities and (1.3), we deduce (3.2).

By virtue of (3.2) and (1.3) and the compactness of the embedding of
◦
W 1,q(Ω)

into Lλ (Ω) with λ < q∗ , there exist an increasing sequence {i j} ⊂ N and a function

u ∈ ◦
W 1,q

2,p(Ω) such that

ui j → u weakly in
◦
W 1,q

2,p(Ω), (3.3)
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ui j → u a.e. in Ω. (3.4)

Step 2. Following [12], we will prove the uniform boundedness of the sequence
{ui} and then will establish estimate (2.11). For this we will need the following auxil-
iary result proved in [12].

LEMMA 3.1. Let ϕ be a nonincreasing nonnegative function on [0,+∞) . Let
C > 0 , 0 � τ1 < τ2 , γ > 1 and k0 � 0 . Let for every k and l such that k0 < k < l < 2k
the following inequality holds:

ϕ(l) � Ckτ1

(l− k)τ2
[ϕ(k)]γ .

Let d > k0 and
dτ2−τ1 � 2τ1+(2γ−1)τ2/(γ−1)C[ϕ(k0)]γ−1.

Then ϕ(k0 +d) = 0 .

Note that Lemma 3.1 is an analogue of the corresponding part of Stampacchia’s
lemma [20].

Let r > n/q , let the functions g2 , g3 , g5 and f belong to Lr(Ω) , and let M be a
majorant for Lr(Ω)-norms of the functions g2 , g3 , g5 and f .

By ci , i = 5,6, . . . , we shall denote positive constants depending only on n , p , q ,
c , c2 , c3 , r , M and measΩ .

Let us introduce some auxiliary numbers and functions. In view of the assumption
on r , we have (r−1)/r−1/q∗ > 0. We set

r1 =
(

r−1
r

− 1
q∗

)−1

, γ = q∗min

{
1

r1(q−1)
,

r−1
rq

}
. (3.5)

By the first equality of (3.5), we have

1
r1

+
1
r

+
1
q∗

= 1. (3.6)

Furthermore, from the inequality r > n/q and the definition of r1 and γ it follows that

γ > 1. (3.7)

We fix an arbitrary i ∈ N , and let ϕ be the function on [0,+∞) such that for every
s ∈ [0,+∞) ,

ϕ(s) = meas{|ui| � s}.
By virtue of (1.3) and (3.2), for every k > 0 we have kq∗ϕ(k) � cq∗cq∗/q

4 . There-
fore,

∀k � c(c4 +1), ϕ(k) < 1. (3.8)

Next, we set

t =
2qpr
q−2p

+2, (3.9)
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and let ψ be the function on (0,+∞) such that for every s ∈ (0,+∞) ,

ψ(s) = s− st +
t−1
t +1

st+1 .

We set
k0 = max{c(c4 +1), 6n(t−2)(c2 +n)/c3} (3.10)

and fix an arbitrary number k � k0 .
Let hk : R → R be the function such that

hk(s) =

⎧⎪⎪⎨
⎪⎪⎩

s if |s| � k,[
ψ

( |s|−k
k

)
+1

]
k signs if k < |s| < 2k,

2kt
t+1 signs if |s| � 2k.

We have hk ∈C2(R) and
|hk| < 2k in R, (3.11)

0 � h′k � 1 in R, (3.12)

|h′′k | �
t2

k
in R. (3.13)

Moreover, the following assertions hold:
(∗1) if ε ∈ (0,1) , s ∈ R and k � |s| � (1+ ε)k , then

|h′′k (s)| �
t2

k
εt−2 ;

(∗2) if ε ∈ (0,1) , s ∈ R and (1+ ε)k � |s| � 2k , then

|h′′k (s)| �
t
kε

(1−h′k(s));

(∗3) if k < l � 2k , s ∈ R and |s| � l , then

|s−hk(s)| � 2
t +1

(l− k)
(

l− k
k

)t−1

.

These assertions were proved in [12]. Assertion (∗3) implies that the following
assertion holds:

(∗4) if k < l � 2k , then

ϕ(l) � tq
∗
k(t−1)q∗

(l− k)tq∗
∫
Ω
|ui−hk(ui)|q∗dx. (3.14)

Let us estimate in a suitable way the integral in the right-hand side of inequality
(3.14). This will allow us to apply Lemma 3.1 and obtain the uniform boundedness of
the functions ui .
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Using properties (3.11)-(3.13), by analogy with Lemma 2.2 of [6], we establish

that hk(ui) ∈
◦
W 1,q

2,p(Ω) and the following assertions hold:
(∗5) for every n -dimensional multi-index α, |α| = 1,

Dαhk(ui) = h′k(ui)Dαui a.e. in Ω;

(∗6) for every n -dimensional multi-index α, |α| = 2,

|Dαhk(ui)−h′k(ui)Dαui| � |h′′k (ui)| ∑
|β |=1

|Dβui|2 a.e. in Ω.

We set

Ik =
∫
Ω
| f ||ui−hk(ui)|dx, Jk =

∫
Ω

g5|ui −hk(ui)|dx,

I′k =
∫
Ω

(
∑

|α |=2

|Aα(x,∇2ui)|
)(

∑
|β |=1

|Dβui|2
)
|h′′k (ui)|dx.

Putting the function ui −hk(ui) into (3.1) instead of v , we obtain

∫
Ω

(
∑
α∈Λ

Aα(x,∇2ui)Dα(ui−hk(ui))
)

dx

+
∫
Ω

Bi(x,ui,∇2ui)(ui−hk(ui))dx =
∫
Ω

f (ui −hk(ui))dx. (3.15)

Using (2.6) and the fact that in the set {|ui| � k}

0 � ui−hk(ui)
ui

� |ui−hk(ui)|
k0

,

we establish that ∫
Ω

Bi(x,ui,∇2ui)(ui −hk(ui))dx � − 1
k0

Jk. (3.16)

From (3.15) and (3.16) and assertions (∗5) and (∗6) we deduce that

∫
Ω

(
∑
α∈Λ

Aα(x,∇2ui)Dαui

)
(1−h′k(ui))dx � Ik + I′k +

1
k0

Jk.

Hence, using (2.3) and (3.12) and the fact that h′k = 1 on (−k,k) , we get

c3

∫
Ω
Φi(1−h′k(ui))dx �

∫
{|ui|�k}

g3 dx+ Ik + I′k +
1
k0

Jk. (3.17)

Let us obtain suitable estimates for the addends in the right-hand side of inequality
(3.17). Clearly, ∫

{|ui|�k}
g3 dx � M[ϕ(k)](r−1)/r. (3.18)
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Using inequality (1.3), assertion (∗5) and (3.6) and (3.12), we get

Ik � c3

8

∫
Ω
Φi(1−h′k(ui))dx+ c5[ϕ(k)]q/(q−1)r1 , (3.19)

1
k0

Jk � c3

8

∫
Ω
Φi(1−h′k(ui))dx+ c6[ϕ(k)]q/(q−1)r1 . (3.20)

In turn, as in [12], using (2.2), (3.2), (3.8)-(3.10) and (3.13) along with assertions
(∗1) and (∗2) , we find that

I′k � c3

2

∫
Ω
Φi(1−h′k(ui))dx+ c7[ϕ(k)](r−1)/r. (3.21)

From (3.17)-(3.21) it follows that

c3

∫
Ω
Φi(1−h′k(ui))dx � 4(M + c7)[ϕ(k)](r−1)/r +4(c5 + c6)[ϕ(k)]q/(q−1)r1 .

The result obtained along with inequality (1.3), assertion (∗5) and the second
equality of (3.5) allows us to conclude that∫

Ω
|ui−hk(ui)|q∗dx � c8[ϕ(k)]γ .

From this and assertion (∗4) we deduce that the following assertion holds:
(∗7) if k0 � k < l � 2k , then

ϕ(l) � c9k(t−1)q∗

(l− k)tq∗
[ϕ(k)]γ .

Using this assertion, inequality (3.7) and Lemma 3.1, we establish that for every
i ∈ N , ui ∈ L∞(Ω) and

‖ui‖L∞(Ω) � C1, (3.22)

where C1 is a positive constant depending only on n , p , q , c , c2 , c3 , r , M and
measΩ . Now, from (3.22) and (3.4) we deduce (2.11).

Step 3. We set b̃ = max
s∈[0,C1]

b(s) and

λ = 2+4C1b̃/c3. (3.23)

Let us show that
lim
j→∞

∫
Ω
Φi j |ui j −u|λ dx = 0. (3.24)

To this purpose, we fix j ∈ N and set

v j = |ui j −u|λ (ui j −u) .

Using (2.11) and (3.22) and taking into account the inequality λ > 1, we establish that

v j ∈
◦
W 1,q

2,p(Ω) and the following assertions hold:
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(∗8) for every n -dimensional multi-index α, |α| = 1,

Dαv j = (λ +1)|ui j −u|λDα(ui j −u) a.e. in Ω;

(∗9) for every n -dimensional multi-index α, |α| = 2,

|Dαv j − (λ +1)|ui j −u|λDα(ui j −u)|
� λ (λ +1)|ui j −u|λ−1 ∑

|β |=1

|Dβ (ui j −u)|2 a.e. in Ω.

We set

ρ j =
∫
Ω
| f ||ui j −u|λ+1dx,

ρ ′
j =

∫
Ω

(
∑
α∈Λ

|Aα(x,∇2ui j)||Dαu|
)
|ui j −u|λ dx,

ρ ′′
j =

∫
Ω
|B(x,ui j ,∇2ui j )||ui j −u|λ dx,

ρ ′′′
j =

∫
Ω

(
∑

|α |=2

|Aα(x,∇2ui j )|
)(

∑
|β |=1

|Dβ (ui j −u)|2
)
|ui j −u|λ−1dx.

Since v j ∈
◦
W 1,q

2,p(Ω) , by virtue of (3.1), we have

∫
Ω

(
∑
α∈Λ

Aα(x,∇2ui j)D
αv j +Bij(x,ui j ,∇2ui j)v j

)
dx =

∫
Ω

f v j dx . (3.25)

This equality, assertions (∗8) and (∗9) and (2.11) and (3.22) imply that

(λ +1)
∫
Ω

(
∑
α∈Λ

Aα(x,∇2ui j )D
αui j

)
|ui j −u|λ dx

� ρ j +(λ +1)ρ ′
j +2C1ρ ′′

j +λ (λ +1)ρ ′′′
j .

Hence, using (2.3), we get

c3(λ +1)
∫
Ω
Φi j |ui j −u|λ dx � (λ +1)

∫
Ω

g3|ui j −u|λ dx

+ρ j +(λ +1)ρ ′
j +2C1ρ ′′

j +λ (λ +1)ρ ′′′
j . (3.26)

Setting
Φ = ∑

|α |=1

|Dαu|q + ∑
|α |=2

|Dαu|p,

we observe that, by (3.2) and (3.3), ∫
Ω
Φdx � c4. (3.27)
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Then, using Yong’s inequality and (2.1) and (2.2), we find that

(λ +1)ρ ′
j � (λ +1)c3

2

∫
Ω
Φi j |ui j −u|λ dx

+ c10(λ +1)
∫
Ω
(Φ+g1 +g2)|ui j −u|λ dx , (3.28)

and using (2.5) and (3.22), we establish that

2C1ρ ′′
j � 2C1b̃

∫
Ω
Φi j |ui j −u|λ dx+2C1

∫
Ω

g4|ui j −u|λ dx . (3.29)

From (3.23), (3.26), (3.28) and (3.29) it follows that

c3

∫
Ω
Φi j |ui j −u|λ dx � (λ +1)c11

∫
Ω

(
Φ+

4

∑
m=1

gm

)
|ui j −u|λ dx+λ (λ +1)ρ ′′′

j .

(3.30)
Finally, using Hölder’s inequality and (2.2), (3.2) and (3.27), we obtain

ρ ′′′
j �

[∫
Ω

(
∑

|α |=2

|Aα(x,∇2ui j)|
) p

p−1

dx

] p−1
p

[∫
Ω

(
∑

|β |=1

|Dβ (ui j −u)|
) q

2

dx

] 2
q

×
[∫

Ω
|ui j −u|

(λ−1)qp
q−2p dx

] q−2p
qp

� c12

[∫
Ω
|ui j −u|

(λ−1)qp
q−2p dx

] q−2p
qp

. (3.31)

From (3.30), (3.31), (3.4) and (3.22) we infer (3.24).
Now, taking into account that for every ε > 0 and for every j ∈ N ,

∫
Ω
Φi j |ui j −u|dx � ε

2c4

∫
Ω
Φi j dx+

(
2c4

ε

)λ−1 ∫
Ω
Φi j |ui j −u|λ dx

and using (3.2) and (3.24), we get

lim
j→∞

∫
Ω
Φi j |ui j −u|dx = 0. (3.32)

Observe that the idea of using the function v j to obtain (3.24) is suggested by [3]
where a function of the same kind was utilized to get a property analogous to (3.24) in
the case of degenerate second-order elliptic equations.

Step 4. For every i ∈ N we set

Φ̃i = ∑
α∈Λ

[Aα(x,∇2ui)−Aα(x,∇2u)](Dαui−Dαu).

Let us demonstrate that

lim
j→∞

∫
Ω
Φ̃i j dx = 0. (3.33)
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We fix j ∈ N . Since ui j −u ∈ ◦
W 1,q

2,p(Ω) , by virtue of (3.1), we have

∫
Ω
Φ̃i j dx =

∫
Ω

f (ui j −u)dx−
∫
Ω

Bij (x,ui j ,∇2ui j)(ui j −u)dx

−
∫
Ω

(
∑
α∈Λ

Aα(x,∇2u)(Dαui j −Dαu)
)

dx. (3.34)

The integrals in the right-hand side of (3.34) tend to zero as j → ∞ . In fact, using (2.5)
and (3.22), we obtain∣∣∣∣

∫
Ω

Bij (x,ui j ,∇2ui j)(ui j −u)dx

∣∣∣∣ �
∫
Ω
|B(x,ui j ,∇2ui j)||ui j −u|dx

� b̃
∫
Ω
Φi j |ui j −u|dx+

∫
Ω

g4|ui j −u|dx.

This along with (3.32), (3.4) and (3.22) implies that

lim
j→∞

∫
Ω

Bij (x,ui j ,∇2ui j )(ui j −u)dx = 0. (3.35)

By virtue of (2.7) and (3.3), we have

lim
j→∞

∫
Ω

f (ui j −u)dx = 0. (3.36)

Using (2.1), (2.2) and (3.3), we get

lim
j→∞

∫
Ω

(
∑
α∈Λ

Aα(x,∇2u)(Dαui j −Dαu)
)

dx = 0. (3.37)

From (3.34)-(3.37) we deduce (3.33).
Step 5. Let us show that

∀α ∈ Λ, Dαui j → Dαu in measure . (3.38)

To this purpose, we introduce some auxiliary functions and sets.
Let for every x ∈Ω , Ax : R

n,2×R
n,2 → R be the function such that for every pair

(ξ ,ξ ′) ∈ R
n,2×R

n,2 ,

Ax(ξ ,ξ ′) = ∑
α∈Λ

[Aα(x,ξ )−Aα(x,ξ ′)](ξα − ξ ′
α) .

Since Aα , α ∈ Λ , are Carathéodory functions and for almost every x ∈ Ω and for
every ξ ,ξ ′ ∈ R

n,2×R
n,2 , ξ 	= ξ ′ , inequality (2.4) holds, there exists a set E ⊂Ω with

measure zero such that:

(i) for every x ∈Ω\E the function Ax is continuous in R
n,2×R

n,2 ;

(ii) for every x ∈Ω\E and for every ξ ,ξ ′ ∈ R
n,2 , ξ 	= ξ ′ , we have Ax(ξ ,ξ ′) > 0 .
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For every θ > 0 and for every m > θ we set

Gθ ,m =
{

(ξ ,ξ ′) ∈ R
n,2×R

n,2 : ∑
α∈Λ

|ξα − ξ ′
α | � θ , ∑

α∈Λ
|ξα | � m, ∑

α∈Λ
|ξ ′
α | � m

}
.

Evidently, for every θ > 0 and for every m > θ the set Gθ ,m is nonempty, closed and
bounded.

Let for every θ > 0 and for every m > θ , μθ ,m :Ω→ R be the function such that

μθ ,m(x) =

⎧⎨
⎩

min
Gθ ,m

Ax if x ∈Ω\E,

0 if x ∈ E.

Using properties (i) and (ii) along with (2.1) and (2.2) and taking into account the fact
that Aα , α ∈ Λ , are Carathéodory functions, we establish that if θ > 0 and m > θ ,
then

μθ ,m � 0 in Ω, μθ ,m > 0 a.e. in Ω, (3.39)

μθ ,m ∈ L1(Ω) . (3.40)

Next, we will need the following simple result.

LEMMA 3.2. Let μ ∈ L1(Ω) , μ > 0 a.e. in Ω , and let {Ej} be a sequence of
measurable sets lying in Ω such that

lim
j→∞

∫
Ej

μ dx = 0 .

Then
lim
j→∞

meas Ej = 0 .

Concerning the proof of this result see for instance [7].
Now, we pass to the immediate proof of assertion (3.38). We fix θ > 0 and ε > 0.

Using (3.2), we obtain that for every m > 0 and for every j ∈ N ,

mmeas{Φi j � m} �
∫
{Φi j �m}

Φi j dx � c4 .

Therefore, there exists m > max(1,θ ) such that

sup
j∈N

meas

{
∑
α∈Λ

|Dαui j | � m

}
� ε, meas

{
∑
α∈Λ

|Dαu| � m

}
� ε . (3.41)

For every j ∈ N we set

Ej =
{
∑
α∈Λ

|Dαui j | � m, ∑
α∈Λ

|Dαu| � m, ∑
α∈Λ

|Dαui j −Dαu| � θ
}

.
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Let j ∈ N and x ∈ Ej \E . We have

∑
α∈Λ

|Dαui j | � m, ∑
α∈Λ

|Dαu| � m, ∑
α∈Λ

|Dαui j −Dαu| � θ .

Hence (∇2ui j(x),∇2u(x)) ∈ Gθ ,m . Then, by virtue of the definition of μθ ,m and Ax ,
we have μθ ,m(x) � Φ̃i j (x) .

Now, we conclude that for every j ∈ N ,∫
Ej

μθ ,m dx �
∫

Ej

Φ̃i j dx �
∫
Ω
Φ̃i j dx .

This and (3.33) imply that

lim
j→∞

∫
Ej

μθ ,m dx = 0 .

Hence, taking into account (3.39) and (3.40) and applying Lemma 3.2, we deduce that

lim
j→∞

measEj = 0. (3.42)

Obviously, for every j ∈ N ,

meas

{
∑
α∈Λ

|Dαui j −Dαu| � θ
}

� meas

{
∑
α∈Λ

|Dαui j | > m

}

+ meas

{
∑
α∈Λ

|Dαu| > m

}
+measEj.

From this and (3.41) and (3.42) we infer (3.38).
We remark that in the proof of assertion (3.38) we used some ideas of [6, 7].
By virtue of (3.38) and F. Riesz’s theorem, for every α ∈ Λ there exists a sub-

sequence of the sequence {Dαui j} that converges to Dαu a.e. in Ω . Taking it into
account, we may assume, without loss of generality, that

∀α ∈ Λ, Dαui j → Dαu a.e. in Ω. (3.43)

Step 6. Let us prove that the following assertion holds:
(∗10) for every ε > 0 there exists δ > 0 such that for every measurable set G⊂Ω ,

meas G < δ , we have

limsup
j→∞

∫
G
Φi j dx � ε. (3.44)

We set

c13 = (c1c4 +‖g1‖L1(Ω))
q−1
q , c14 = (c2c4 +‖g2‖L1(Ω))

p−1
p . (3.45)

Let ε > 0. By virtue of the property of absolute continuity of Lebesgue integral,
there exists δ > 0 such that for every measurable set G ⊂Ω , meas G < δ , we have∫

G
g3 dx � c3ε

2
, (3.46)



A CLASS OF NONLINEAR FOURTH-ORDER EQUATIONS 263

∫
G

(
∑

|α |=1

|Dαu|q
)

dx �
(

c3ε
4c13

)q

,

∫
G

(
∑

|α |=2

|Dαu|p
)

dx �
(

c3ε
4c14

)p

. (3.47)

We fix an arbitrary measurable set G ⊂Ω such that meas G < δ . For every j ∈ N we
set

σ j =
∫

G

(
∑
α∈Λ

Aα(x,∇2u)(Dαui j −Dαu)
)

dx,

σ ′
j =

∫
G

(
∑
α∈Λ

Aα(x,∇2ui j )D
αu

)
dx.

Using (2.1), (2.2) and (3.3), we establish that

lim
j→∞

σ j = 0. (3.48)

Now, we fix j ∈ N . By means of (2.3) we get

c3

∫
G
Φi j dx �

∫
Ω
Φ̃i j dx+

∫
G

g3 dx+σ j +σ ′
j. (3.49)

Using Hölder’s inequality along with (2.1), (2.2), (3.2) and (3.45), we obtain

σ ′
j �

[∫
G
(c1Φi j +g1)dx

] q−1
q

[∫
G

(
∑

|α |=1

|Dαu|q
)

dx

] 1
q

+
[∫

G
(c2Φi j +g2)dx

] p−1
p

[∫
G

(
∑

|α |=2

|Dαu|p
)

dx

] 1
p

� c13

[∫
G

(
∑

|α |=1

|Dαu|q
)

dx

] 1
q

+ c14

[∫
G

(
∑

|α |=2

|Dαu|p
)

dx

] 1
p

.

This and (3.47) imply that
σ ′

j � c3ε/2. (3.50)

Using (3.46), (3.49) and (3.50), we get

c3

∫
G
Φi j dx �

∫
Ω
Φ̃i j dx+σ j + c3ε.

This along with (3.33) and (3.48) implies (3.44). Thus assertion (∗10) holds.
Step 7. Let us show that the following assertions hold:

(∗11) for every function v ∈ ◦
W 1,q

2,p(Ω) ,

lim
j→∞

∫
Ω

(
∑
α∈Λ

Aα(x,∇2ui j)D
αv

)
dx =

∫
Ω

(
∑
α∈Λ

Aα(x,∇2u)Dαv

)
dx ;
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(∗12) for every function v ∈ ◦
W 1,q

2,p(Ω)∩L∞(Ω) ,

lim
j→∞

∫
Ω

Bij (x,ui j ,∇2ui j )vdx =
∫
Ω

B(x,u,∇2u)vdx.

In fact, let v ∈ ◦
W 1,q

2,p(Ω) . In view of (3.43), we have

∑
α∈Λ

Aα(x,∇2ui j )D
αv → ∑

α∈Λ
Aα(x,∇2u)Dαv a.e. in Ω. (3.51)

Let ε > 0. Reasoning by analogy with the proof of inequality (3.50), we establish that
there exists ε1 > 0 such that for every measurable set G ⊂ Ω , meas G � ε1 , and for
every j ∈ N the following inequalities hold:

∫
G

∣∣∣ ∑
α∈Λ

Aα(x,∇2ui j)D
αv

∣∣∣dx � ε
4

,

∫
G

∣∣∣ ∑
α∈Λ

Aα(x,∇2u)Dαv
∣∣∣dx � ε

4
. (3.52)

By virtue of (3.51) and Egoroff’s theorem, there exists a measurable set Ω1 ⊂ Ω such
that

meas(Ω\Ω1) � ε1, (3.53)

∑
α∈Λ

Aα(x,∇2ui j )D
αv → ∑

α∈Λ
Aα(x,∇2u)Dαv uniformly in Ω1.

Then there exists j1 ∈ N such that for every j ∈ N , j � j1 , we have

∫
Ω1

∣∣∣∣ ∑
α∈Λ

Aα(x,∇2ui j)D
αv− ∑

α∈Λ
Aα(x,∇2u)Dαv

∣∣∣∣dx � ε
2

. (3.54)

Let us fix j ∈ N , j � j1 . Using (3.52)-(3.54), we obtain

∥∥∥∥ ∑
α∈Λ

Aα(x,∇2ui j)D
αv− ∑

α∈Λ
Aα(x,∇2u)Dαv

∥∥∥∥
L1(Ω)

�
∫
Ω\Ω1

∣∣∣ ∑
α∈Λ

Aα(x,∇2ui j )D
αv

∣∣∣dx+
∫
Ω\Ω1

∣∣∣ ∑
α∈Λ

Aα(x,∇2u)Dαv
∣∣∣dx+

ε
2

� ε.

Therefore, ∥∥∥∥ ∑
α∈Λ

Aα(x,∇2ui j)D
αv− ∑

α∈Λ
Aα(x,∇2u)Dαv

∥∥∥∥
L1(Ω)

→ 0.

Thus assertion (∗11) holds.

Further, let v ∈ ◦
W 1,q

2,p(Ω)∩L∞(Ω) . Owing to (3.43) and (3.4), we have

Bij (x,ui j ,∇2ui j )v → B(x,u,∇2u)v a.e. in Ω. (3.55)
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Let ε > 0. Using (2.5) and (3.22), assertion (∗10) and the boundedness of the function
v , we establish that there exists ε2 > 0 such that for every measurable set G ⊂ Ω ,
measG � ε2 , the following inequalities hold:

limsup
j→∞

∫
G
|Bij(x,ui j ,∇2ui j )v|dx � ε

3
, (3.56)

∫
G
|B(x,u,∇2u)v|dx � ε

3
. (3.57)

In view of (3.55), there exists a measurable set Ω2 ⊂Ω such that

meas(Ω\Ω2) � ε2 (3.58)

and Bij(x,ui j ,∇2ui j)v→ B(x,u,∇2u)v uniformly in Ω2 . Then there exists j2 ∈ N such
that for every j ∈ N , j � j2 , we have∫

Ω2

|Bij (x,ui j ,∇2ui j )v−B(x,u,∇2u)v|dx � ε
3

. (3.59)

We fix j ∈ N , j � j2 . Using (3.57)-(3.59), we obtain∫
Ω
|Bij (x,ui j ,∇2ui j)v−B(x,u,∇2u)v|dx

� ε
3

+
∫
Ω\Ω2

|B(x,u,∇2u)v|dx+
∫
Ω\Ω2

|Bij(x,ui j ,∇2ui j )v|dx

� 2ε
3

+
∫
Ω\Ω2

|Bij (x,ui j ,∇2ui j)v|dx.

This along with (3.56) and (3.58) implies that

limsup
j→∞

∫
Ω
|Bij (x,ui j ,∇2ui j )v−B(x,u,∇2u)v|dx � ε.

Hence, taking into account the arbitrariness of ε , we deduce that assertion (∗12) holds.
From (3.1) and assertions (∗11) and (∗12) it follows that for every function v ∈

◦
W 1,q

2,p(Ω)∩L∞(Ω) ,

∫
Ω

(
∑
α∈Λ

Aα(x,∇2u)Dαv+B(x,u,∇2u)v
)

dx =
∫
Ω

f vdx.

The established properties of the function u allow us to conclude that u is a gen-
eralized solution of problem (2.8), (2.9). This completes the proof of Theorem 2.1.

RE F ER EN C ES

[1] A. BENSOUSSAN, L. BOCCARDO AND F. MURAT, On a nonlinear partial differential equation hav-
ing natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5, 4
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Dunod; Gauthier-Villars, Paris, 1969.

[15] J. MOSER, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differ-
ential equations, Comm. Pure Appl. Math., 13 (1960), 457–468.

[16] F. NICOLOSI AND I. V. SKRYPNIK, Nirenberg-Gagliardo interpolation inequality and regularity of
solutions of nonlinear higher order equations, Topol. Methods Nonlinear Anal., 7, 2 (1996), 327–347.

[17] L. NIRENBERG, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13, 3 (1959),
115–162.

[18] I. V. SKRYPNIK, Higher order quasilinear elliptic equations with continouos generalized solutions,
(Russian), Differentsialnye Uravneniya, 14, 6 (1978), 1104–1118.

[19] G. STAMPACCHIA, Régularisation des solutions de problèmes aux limites elliptiques à données dis-
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