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EXISTENCE OF SOLUTIONS FOR THE COUPLED SYSTEMS

OF SECOND AND FOURTH ORDER ELLIPTIC EQUATIONS

LEI JI AND CHUN-LEI TANG

(Communicated by C. O. Alves)

Abstract. In this paper, under the nonquadraticity condition, we obtain two existence theorems
of nontrivial solutions for a coupled system of second and fourth order elliptic equations.

1. Introduction and main results

Consider the following coupled system of second and fourth order elliptic equa-
tions given by ⎧⎪⎪⎨

⎪⎪⎩

Δ2y+ k(y− z)+ = f1(x,y,z) in Ω,
−Δz− k(y− z)+ = f2(x,y,z) in Ω,
Δy = y = 0 on ∂Ω,
z = 0 on ∂Ω,

(1)

where Ω is an open bounded domain in RN (N � 3) with smooth boundary ∂Ω .
System (1) comes from the mathematical model of the suspension bridge presented

in Lazer and McKenna [14]. Many authors, using degree theory and the variational
method, investigated the equations corresponding to the suspension bridge. These re-
sults can be seen in [4], [8], [9], [13], [15], [16] and [17].

In [3], by the least action principle and the mountain pass theorem, the author stud-
ied the existence of nontrivial solutions for the following system under the perturbation
g = (g1,g2) being sublinear and superlinear with respect to u = (y,z) , respectively.

⎧⎪⎪⎨
⎪⎪⎩

yxxxx + k(y− z)+ = g1(x,y,z) in (0,π),
−zxx − k(y− z)+ = g2(x,y,z) in (0,π),
y(0) = y(π) = yxx(0) = yxx(π) = 0,
z(0) = z(π) = 0.

(2)

The other relevant studies can be found in [10] and [11]. In [2], the authors investi-
gated problem (1) under the potential F(x,u)

(
∇uF(x,u) = ( f1(x,u), f2(x,u))

)
being

a homogenous function using the variational approach. In [1], the author continued the
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work of [2] and extended the result in [12] to system (1) in which the nonlinearities are
more general than those in the result of [2] and obtained a nontrivial solution by the
mountain pass theorem. The result is the following theorem.

THEOREM A (see [1]). Let ∇uF(x,u) = f (x,u) = ( f1(x,u), f2(x,u))) . Suppose
that F(x,u) satisfies the following assumptions:

(F1) f : Ω×R
2 → R

2 is a Caratheodory function and there exist p such that

2 < p < 2∗ = 2N/(N−2)

and constant C > 0 such that for all u = (y,z) ∈ R
2 and almost every x ∈Ω ,

| f1(x,u)|+ | f2(x,u)| � C(1+ |u|p−1);

(F2) there exist θ ∈ (0, 1
2) and M > 0 such that

0 < F(x,u) � θu ·∇uF(x,u) for almost every x ∈Ω, if |u| � M;

(F3) lim
|u|→0

F(x,u)
|u|2 = 0 uniformly for a.e. x ∈Ω.

Let λ1 be the first eigenvalue of (−Δ,H1
0 (Ω)) and λ = min{λ1,λ 2

1 } . Assume that
k > −λ/2 . Then system (1) has at least one nontrivial solution.

It should be noted that condition (F2) is the well-known Ambrosetti-Rabinowitz
condition. It usually plays a very important role in verifying that the corresponding
functional has a Mountain-Pass geometry and showing a related (PS)c sequence is
bounded. In this paper, motivated by [1] and [6], we consider system (1) under the
nonquadraticity condition which was introduced by D. G. Costa and C. A. Magalhaes
in [6]. Using the linking theorem, we obtain two existence results of nontrivial solutions
for system (1).

Let Ω ⊂ RN(N � 3) be a bounded smooth domain. By H and V we denote the
spaces of L2(Ω)×L2(Ω) and

(
H2(Ω)∩H1

0 (Ω)
)×H1

0 (Ω) , respectively. For u = (y,z) ,
we denote by

‖u‖2
H = ‖y‖2

L2(Ω) +‖z‖2
L2(Ω) and ‖u‖2

V =
∫
Ω
|Δy|2 dx+

∫
Ω
|∇z|2 dx,

the norms on H and V , respectively. By ‖u‖r we denote the norm of u = (y,z) ∈
Lr(Ω)× Lr(Ω) . The embedding from V into H is continuous, and moreover it is
actually compact.

Let λ1 be the first eigenvalue, which is positive, of the eigenvalue problem

−Δu = λu in Ω, u = 0 on ∂Ω,

and ϕ1 is the eigenfunction corresponding to λ1 , with ϕ1(x) > 0 for all x∈Ω . We can
easily know that λ 2

1 is the first eigenvalue of the eigenvalue problem

Δ2u = λu in Ω, Δu = u = 0 on ∂Ω.
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Let
λ = min{λ1,λ 2

1 }, λ = max{λ1,λ 2
1 }.

Then λ > 0, λ > 0. It follows from the Poincar é inequality that

‖u‖2
V � λ‖u‖2

H

for all u ∈V .
Now we state the assumptions imposed on F in this paper, where ∇uF(x,u) =

f (x,u) = ( f1(x,u), f2(x,u)) .
(H1) f : Ω×R

2 → R
2 is a Caratheodory function, that is, f (x,u) is measurable

in x for each u = (y,z) ∈ R
2 and continuous in u = (y,z) ∈ R

2 for almost every x ∈Ω ,
and there exist 2 < p < 2∗ = 2N/(N−2), a0, b0 > 0 such that for all u = (y,z) ∈ R

2

and almost every x ∈Ω ,

| f1(x,u)|+ | f2(x,u)| � a0|u|p−1 +b0.

(H2) There exist q > 2 and a1 > 0 such that

limsup
|u|→∞

F(x,u)
|u|q � a1 < ∞ uniformly for a.e. x ∈Ω.

(H3) There exist N
2 (q−2) < μ � q and b1 > 0 such that

liminf
|u|→∞

f (x,u)u−2F(x,u)
|u|μ � b1 > 0 uniformly for a.e. x ∈Ω.

The main results in this paper are the following theorems.

THEOREM 1. Suppose that − 1
2λ < k � 0 and (H1)-(H3) hold. Assume that there

exist a2, b2 > 0 such that

limsup
|u|→0

2F(x,u)
|u|2 � a2 < λ +2k and liminf

|u|→∞

2F(x,u)
|u|2 � b2 > λ (3)

uniformly for a.e.x∈Ω. Then there exists at least one nontrivial solution of system (1) .

THEOREM 2. Suppose that k � 0 and (H1)-(H3) hold. Assume that there exist
a3, b3 > 0 such that

limsup
|u|→0

2F(x,u)
|u|2 � a3 < λ and liminf

|u|→∞

2F(x,u)
|u|2 � b3 > λ +2k (4)

uniformly for a.e.x∈Ω. Then there exists at least one nontrivial solution of system (1) .

COROLLARY 1. Suppose that k > − 1
2λ and (H1)-(H3) hold. Assume that

limsup
|u|→0

2F(x,u)
|u|2 = 0 and liminf

|u|→∞

2F(x,u)
|u|2 = +∞

uniformly for a.e. x ∈Ω . Then system (1) has at least one nontrivial solution.
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REMARK 1. There are functions F(x,u) satisfying our corollary and not satisfy-
ing condition (F2) in Theorem A. For example, let F(x,u) = |u|2 ln(1+ |u|2) . It is easy
to see that F(x,u) satisfies our corollary, but doesn’t satisfy (F2) of Theorem A.

2. Proof of theorems

We shall find weak solutions of problem (1) in space V . We have known that
the weak solutions u = (y,z) of problem (1) are the critical points of the following
functional defined in space V :

J(u) =
1
2

∫
Ω

(
|Δy|2 + |∇z|2 + k

(
(y− z)+

)2
)

dx−
∫
Ω

F(x,u)dx,

where u = (y,z) ∈ V and ∇uF(x,u) = f (x,u) = ( f1(x,u), f2(x,u)) . It is easy to know
that the functional J is well defined and J ∈C1(V,R) under condition (H1) , and more-
over,

〈J′(u),v〉 =
∫
Ω

(
ΔyΔξ +∇z∇η+ k(y− z)+ξ − k(y− z)+η

− f1(x,u)ξ − f2(x,u)η
)

dx

for all u = (y,z), v = (ξ , η) ∈V.

For convenience, we state the definition of condition (C)c introduced by Cerami
in [7] (see also [5]), abstract linking concept and theorem (see [5]).

A functional J ∈ C1(E,R) is said to satisfy condition (C)c, c ∈ R , if, whenever
{un} ⊂ E is such that J(un) → c and (1+‖un‖)‖J′(un)‖ → 0, then {un} possesses a
convergent subsequence.

DEFINITION 1. (see [5]) Let S be a closed subset of a real Hilbert space X . Let
Q be a Hilbert manifold with relative boundary ∂Q . We shall say that S and ∂Q link
if:
(1◦) S∩∂Q = /0;
(2◦) for any map φ ∈C0(X ,X) such that φ |∂Q = id there holds

φ(Q)∩S �= /0.

The following remark give a type of linking geometry structure which is a special case
of Proposition 2.2 in [5].

REMARK 2. Let X be a Hilbert space, x0 ∈X with ‖x0‖= 1. Let t0 > ρ > 0, and
S = {x ∈ X | ‖x‖ = ρ} , Q = {tx0 | 0 � t � t0} with relative boundary ∂Q = {0, t0x0} .
Then S and ∂Q link.
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THEOREM B (see [5, Theorem 2.3]). Let X be a real Hilbert space. Suppose
that J ∈ C1(X ,R) and satisfies condition (C)c for all c > 0 . There exists a closed
subset S ⊂ X and a Hilbert manifold Q⊂ X with boundary ∂Q verifying the following
conditions:

(i) sup
u∈∂Q

J(u) � α < β � inf
u∈S

J(u) for some 0 � α < β ;

(ii) S and ∂Q link;

(iii) sup
u∈Q

J(u) < +∞ .

Then J possesses a critical value c � β .

LEMMA 1. Assume that k > − 1
2λ and (H1)-(H3) hold. Then J satisfies condi-

tion (C)c for every c ∈ R .

Proof. From the Sobolev embedding theorem, we can easily know that the embed-
ding of V → Lp(Ω)×Lp(Ω) is compact, for any p < 2∗ = 2N/(N−2) . And combining
with condition (H1) , we see that the map K : V →V ∗ given by

K(u) =
(
k(y− z)+,−k(y− z)+

)− (
f1(x,u), f2(x,u)

)

is compact.
Now let c ∈ R and {un} ⊂V being such that

J(un) → c and (1+‖un‖)‖J′(un)‖→ 0. (5)

It suffices to show that
{‖un‖V

}
is bounded.

From (5) we obtain that there exists M > 0 such that

|J(un)| � M and (1+‖un‖)‖J′(un)‖ � M. (6)

Using (H3) , for some M1 > 0, when |u| � M1 we have

f (x,u)u−2F(x,u)
|u|μ � 1

2
b1 > 0, i.e.

f (x,u)u−2F(x,u) � 1
2
b1|u|μ . (7)

When |u| < M1 , using the subcritical growth condition (H1) one has
∣∣∣ f (x,u)u−2F(x,u)

∣∣∣ � | f (x,u)| · |u|+2|F(x,u)|
�

(∣∣ f1(x,u)
∣∣+ ∣∣ f2(x,u)

∣∣) · |u|
+2

∣∣∣∣
∫ 1

0
(∇uF(x,su),u)ds

∣∣∣∣
� (a0|u|p−1 +b0) · |u|+2

∫ 1

0
| f (x,su)| · |u|ds
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� (a0|u|p +b0|u|)+2
∫ 1

0
(a0|su|p−1 +b0) · |u|ds

� (a0|u|p +b0|u|)+2(a0|u|p−1 +b0) · |u|
� C0 (8)

for some C0 > 0. Then from (7) and (8) there exists C1 > 0 such that

f (x,u)u−2F(x,u) � 1
2
b1|u|μ −C1

for all u ∈ R
2 and a.e. x ∈Ω . So one has

3M � 2J(un)−〈J′(un),un〉
=

∫
Ω

(
|Δyn|2 + |∇zn|2 + k

(
(yn− zn)+

)2
)

dx−2
∫
Ω

F(x,un)dx

−
∫
Ω

(
|Δyn|2 + |∇zn|2 + k(yn− zn)+(yn− zn)− f (x,un)un

)
dx

=
∫
Ω

(
f (x,un)un−2F(x,un)

)
dx

�
∫
Ω

(1
2
b1|un|μ −C1

)
dx

=
1
2
b1

∫
Ω
|un|μ dx−C1meas(Ω)

by (6). Hence
{∫

Ω |un|μ dx
}

is a bounded sequence, that is, there exists C2 > 0 such
that

∫
Ω
|un|μ dx � C2 (9)

for all n . Using (H2) , for some M2 > 0, when |u|� M2 we obtain

F(x,u)
|u|q � 2a1, i.e.

F(x,u) � 2a1|u|q.

When |u| < M2 , as before, there exists C3 > 0 such that F(x,u) � C3 . So we have

F(x,u) � 2a1|u|q +C3 (10)

for all u ∈ R
2 and a.e. x ∈Ω . On one hand, from (6) and (10) we obtain

J(un)+
∫
Ω

F(x,un)dx � M +
∫
Ω

(
2a1|un|q +C3

)
dx

= M +2a1‖un‖q
q +C3meas(Ω)



= 2a1‖un‖q

q +C4. (11)
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On the other hand, when − 1
2λ < k � 0 one has

J(un)+
∫
Ω

F(x,un)dx =
1
2

∫
Ω

(
|Δyn|2 + |∇zn|2 + k

(
(yn− zn)+

)2
)

dx

=
1
2
‖un‖2

V +
1
2
k
∫
Ω

(
(yn − zn)+

)2
dx

� 1
2
‖un‖2

V +
k
λ
‖un‖2

V

=
(1

2
+

k
λ

)
‖un‖2

V

� l‖un‖2
V (12)

for some 0 < l < 1
2 + k

λ � 1
2 . If k > 0 we have

J(un)+
∫
Ω

F(x,un)dx =
1
2

∫
Ω

(
|Δyn|2 + |∇zn|2 + k

(
(yn− zn)+

)2
)

dx

� 1
2
‖un‖2

V

� l‖un‖2
V . (13)

Thus from (11), (12) and (13), when k > − 1
2λ we obtain

l‖un‖2
V � 2a1‖un‖q

q +C4. (14)

Therefore, use the Hölder inequality together with (9) and the Sobolev inequality
‖u‖2∗ � C‖u‖V in the above estimate (14) to obtain

l‖un‖2
V � 2a1‖un‖q

q +C4

� 2a1

(∫
Ω
(|un|

μ(2∗−q)
2∗−μ )

2∗−μ
2∗−q dx

) 2∗−q
2∗−μ ·

(∫
Ω
(|un|

2∗(q−μ)
2∗−μ )

2∗−μ
q−μ dx

) q−μ
2∗−μ +C4

= 2a1

(∫
Ω
|un|μ dx

) 2∗−q
2∗−μ · ‖un‖

2∗(q−μ)
2∗−μ

2∗ +C4

� C5‖un‖
2∗(q−μ)
2∗−μ

2∗ +C4

� C6‖un‖
2∗(q−μ)
2∗−μ

V +C4 (15)

for some C5 > 0, C6 > 0. Finally, since we are taking N
2 (q−2) < μ � q , it follows that

2∗(q−μ)
2∗−μ < 2, and hence, (15) implies that

{‖un‖V
}

is bounded. Thus the functional J
satisfies condition (C)c for every c ∈ R .

PROOF OF THEOREM 1. First, from Lemma 1 we know that J satisfies condition
(C)c for every c ∈ R .
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Second, assume that (3) holds, then there exist ρ , γ > 0 such that J(u) � γ > 0 if
‖u‖V = ρ . Moreover, there exists u0 ∈V such that J(tu0) →−∞ as t → ∞ .

In view of (3) and condition (H1) , choosing

ε0 = min
{λ +2k−a2

2
,
b2−λ

2

}
,

then a2 + ε0 < λ +2k, b2− ε0 > λ . For ε0 > 0 there exist A � 0 and B � 0 such that

1
2
(b2− ε0)|u|2−B � F(x,u) � 1

2
(a2 + ε0)|u|2 +A|u|p (16)

for all u ∈ R
2 and a.e. x ∈Ω . Then we have

J(u) =
1
2

∫
Ω

(
|Δy|2 + |∇z|2 + k

(
(y− z)+

)2
)

dx−
∫
Ω

F(x,u)dx

� 1
2
‖u‖2

V +
1
2

∫
Ω

k
(
(y− z)+

)2
dx−

∫
Ω

(1
2
(a2 + ε0)|u|2 +A|u|p

)
dx

� 1
2
‖u‖2

V +
(
k− a2 + ε0

2

)
‖u‖2

H −A‖u‖p
p

� 1
2
‖u‖2

V +
(
k− a2 + ε0

2

) 1
λ
‖u‖2

V −A‖u‖p
p

� 1
2

(
1+

2k− (a2 + ε0)
λ

)
‖u‖2

V −C7‖u‖p
V

for some C7 > 0.
Therefore, since p > 2, we obtain the estimate

J(u) � 1
4

(
1+

2k− (a2 + ε0)
λ

)
ρ2 ≡ γ > 0, ∀‖u‖V = ρ

with ρ =
{

1
4C7

(1+ 2k−(a2+ε0)
λ )

} 1
p−2

> 0. By (16), one has

J(u) =
1
2

∫
Ω

(
|Δy|2 + |∇z|2 + k

(
(y− z)+

)2
)

dx−
∫
Ω

F(x,u)dx

� 1
2
‖u‖2

V −
∫
Ω

(1
2
(b2− ε0)|u|2−B

)
dx

=
1
2

(
‖u‖2

V − (b2− ε0)‖u‖2
H

)
+Bmeas(Ω),

so we get

J(tu) � 1
2
t2

(
‖u‖2

V − (b2− ε0)‖u‖2
H

)
+Bmeas(Ω). (17)

Let u0 = (ϕ1,ϕ1) , ϕ1 is the eigenfunction corresponding to λ1 , with ϕ1(x) > 0 for all
x ∈Ω . Then we obtain

‖u0‖2
V =

∫
Ω
|Δϕ1|2 dx+

∫
Ω
|∇ϕ1|2 dx
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= λ 2
1 ‖ϕ1‖2

L2(Ω) +λ1‖ϕ1‖2
L2(Ω)

� λ
(
‖ϕ1‖2

L2(Ω) +‖ϕ1‖2
L2(Ω)

)

= λ‖u0‖2
H

< (b2− ε0)‖u0‖2
H . (18)

From (17) and (18), one has

J(tu0) � 1
2
t2

(
‖u0‖2

V − (b2− ε0)‖u0‖2
H

)
+Bmeas(Ω) →−∞

when t → ∞ .
At last, taking S = {u| ‖u‖V = ρ} and Q = {tu0| 0 � t � t0} with t0 > ρ being

such that J(t0u0) � 0, then J has a critical value c � γ > 0 via Remark 2 by Theorem
B. Hence system (1) has a nontrivial solution u = (y,z) ∈ V , which completes our
proof. �

PROOF OF THEOREM 2. First, we also obtain that the functional J satisfies con-
dition (C)c for every c ∈ R from Lemma 1.

In view of (4) and condition (H1) , choosing ε1 = min
{λ−a3

2 , b3−(λ+2k)
2

}
, then

a3 + ε1 < λ , b3− ε1 > λ +2k . For ε1 > 0, there exist D � 0 and E � 0 such that

1
2
(b3 − ε1)|u|2−E � F(x,u) � 1

2
(a3 + ε1)|u|2 +D|u|p (19)

for all u ∈ R
2 and a.e. x ∈Ω . Then we have

J(u) =
1
2

∫
Ω

(
|Δy|2 + |∇z|2 + k

(
(y− z)+

)2
)

dx−
∫
Ω

F(x,u)dx

� 1
2
‖u‖2

V −
∫
Ω

(1
2
(a3 + ε1)|u|2 +D|u|p

)
dx

� 1
2
‖u‖2

V − 1
2
(a3 + ε1)

1
λ
‖u‖2

V −C8‖u‖p
V

=
1
2

(
1− a3 + ε1

λ

)
‖u‖2

V −C8‖u‖p
V

for some C8 > 0.
Since a3+ε1

λ < 1, p > 2, we obtain the estimate

J(u) � 1
4

(
1− a3 + ε1

λ

)
δ 2 ≡ ζ > 0, ∀‖u‖V = δ

with δ =
(

1
4C8

(1− a3+ε1
λ )

) 1
p−2

> 0. By (19), one has

J(u) =
1
2

∫
Ω

(
|Δy|2 + |∇z|2 + k

(
(y− z)+

)2
)

dx−
∫
Ω

F(x,u)dx
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� 1
2
‖u‖2

V + k
∫
Ω
(y2 + z2)dx−

∫
Ω

(1
2
(b3− ε1)|u|2−E

)
dx

=
1
2

(
‖u‖2

V − (
(b3 − ε1)−2k

)‖u‖2
H

)
+E meas Ω,

so we have

J(tu) � 1
2
t2

(
‖u‖2

V − (
(b3− ε1)−2k

)‖u‖2
H

)
+E meas(Ω). (20)

Let u0 = (ϕ1,ϕ1) , then one has

‖u0‖2
V =

∫
Ω
|Δϕ1|2 dx+

∫
Ω
|∇ϕ1|2 dx

= λ 2
1 ‖ϕ1‖2

L2(Ω) +λ1‖ϕ1‖2
L2(Ω)

� λ
(‖ϕ1‖2

L2(Ω) +‖ϕ1‖2
L2(Ω)

)
= λ‖u0‖2

H

<
(
(b3− ε1)−2k

)‖u0‖2
H . (21)

From (20) and (21), we obtain

J(tu0) � 1
2
t2

(
‖u0‖2

V − (
(b3− ε1)−2k

)‖u0‖2
H

)
+E meas(Ω) →−∞

when t → ∞ .
At last, taking S = {u| ‖u‖V = δ} and Q = {tu0| 0 � t � t0} with t0 > δ being

such that J(t0u0) � 0, then J has a critical value d � ζ > 0 via Remark 2 by Theorem
B. Hence system (1) has a nontrivial solution u = (y,z) ∈ V , which completes our
proof. �
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