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EXISTENCE OF SOLUTIONS FOR THE COUPLED SYSTEMS
OF SECOND AND FOURTH ORDER ELLIPTIC EQUATIONS

LEI JT AND CHUN-LEI TANG

(Communicated by C. O. Alves)

Abstract. In this paper, under the nonquadraticity condition, we obtain two existence theorems
of nontrivial solutions for a coupled system of second and fourth order elliptic equations.

1. Introduction and main results

Consider the following coupled system of second and fourth order elliptic equa-
tions given by
Ny+k(y—2)" = filx,y,2) inQ,
—Az—k(y— Z)+ = f2(x,y,2) in Q,
Ay=y=0 ondQ,
z=0 on 0Q,

)

where Q is an open bounded domain in RV (N > 3) with smooth boundary 9Q.

System (1) comes from the mathematical model of the suspension bridge presented
in Lazer and McKenna [14]. Many authors, using degree theory and the variational
method, investigated the equations corresponding to the suspension bridge. These re-
sults can be seen in [4], [8], [9], [13], [15], [16] and [17].

In [3], by the least action principle and the mountain pass theorem, the author stud-
ied the existence of nontrivial solutions for the following system under the perturbation
g = (g1,82) being sublinear and superlinear with respect to u = (y,z), respectively.

Yo Th(y—2)" = g1(x,3,2) in (0,7),
o — k(y_ Z)Jr = gz(x,y,z) in (0772’-)’ )
¥(0) = y(m) = yxx(0) = yue(7) =0,

The other relevant studies can be found in [10] and [11]. In [2], the authors investi-
gated problem (1) under the potential F(x,u) (V,F(x,u) = (fi(x,u), f>(x,u))) being
a homogenous function using the variational approach. In [1], the author continued the
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work of [2] and extended the result in [12] to system (1) in which the nonlinearities are
more general than those in the result of [2] and obtained a nontrivial solution by the
mountain pass theorem. The result is the following theorem.

THEOREM A (see [1]). Let V,F(x,u) = f(x,u) = (fi(x,u), f2(x,u))). Suppose
that F(x,u) satisfies the following assumptions:

(F) f:QxR?*—R? is a Caratheodory function and there exist p such that
2<p<2"=2N/(N-2)
and constant C > 0 such that for all u= (y,z) € R? and almost every x € Q,
A G| + 2o u)] < COL+ a7
(F) there exist € (0,%) and M > 0 such that

0 < F(x,u) < Ou-V,F(x,u) foralmosteveryx e Q, if lu| > M;

(F3) ll}mo Fl(;l’zu) =0 uniformly for a.e. x € Q.
Let Ay be the first eigenvalue of (—A,H} (Q)) and A =min{A1,A{}. Assume that
k> —A/2. Then system (1) has at least one nontrivial solution.

It should be noted that condition (F,) is the well-known Ambrosetti-Rabinowitz
condition. It usually plays a very important role in verifying that the corresponding
functional has a Mountain-Pass geometry and showing a related (PS). sequence is
bounded. In this paper, motivated by [1] and [6], we consider system (1) under the
nonquadraticity condition which was introduced by D. G. Costa and C. A. Magalhaes
in [6]. Using the linking theorem, we obtain two existence results of nontrivial solutions
for system (1).

Let Q C RY(N > 3) be a bounded smooth domain. By H and V we denote the
spaces of L*(Q) x L?(Q) and (H?*(Q)NHj(Q)) x H}(Q), respectively. For u = (y,z),
we denote by

2 2 2 2 2 2
ullg = + 1|z and |lu :/ A dx+/ Vz|“dx,
iz = [1¥l172(0) + 12l 720 lully = /18] V4

the norms on H and V, respectively. By ||u||, we denote the norm of u = (y,z) €
L"(Q) x L"(Q). The embedding from V into H is continuous, and moreover it is
actually compact.

Let A; be the first eigenvalue, which is positive, of the eigenvalue problem

—Au=Au inQ, u=0 ondQ,

and @ is the eigenfunction corresponding to A; , with ¢;(x) > 0 for all x € Q. We can
easily know that /112 is the first eigenvalue of the eigenvalue problem

Au=2Au inQ, Au=u=0 ondQ.
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Let _
A =min{A;,A?}, A =max{A;,A}}.

Then A >0, A > 0. It follows from the Poincaré inequality that
ull = Aull

forallucV.

Now we state the assumptions imposed on F in this paper, where V,F(x,u) =
f(x7u) = (fl (xau)7f2(x7u)) .

(Hy) f:Q x R? — R? is a Caratheodory function, that is, f(x,u) is measurable
in x for each u = (y,z) € R? and continuous in u = (y,z) € R? for almost every x € Q,
and there exist 2 < p < 2* =2N/(N —2), ag, by >0 such that for all u = (y,z) € R?
and almost every x € Q,

|f1 ()| + [ o3, u)| < aolul”~" +bo.

(Hz) There exist g > 2 and a; > 0 such that

F
limsup (x,)

|u|—eo ‘u|

< aj < e uniformly for a.e. x € Q.

(H3) There exist %V(q —2) < u < qand by > 0 such that

liminff(x’u)u —2F (x,u)
jul—ee Juf

> by > 0 uniformly for a.e. x € Q.

The main results in this paper are the following theorems.

THEOREM 1. Supposethat —3A <k <0 and (H,)-(H3) hold. Assume that there
exist ap, by > 0 such that

2F 2F
% <ap <A+2k and l‘ir‘ninf (T;u)
u Uu|—oo u

limsup >by> A (3

|u]—0

uniformly for a.e.x € Q. Then there exists at least one nontrivial solution of system (1).

THEOREM 2. Suppose that k > 0 and (H))-(H3) hold. Assume that there exist
as, by > 0 such that

2F 2F
|(x;u) <az <A and lliIPinf (T;u)
u u|—oo u

limsup > by > A+2k 4)

|u]—0

uniformly for a.e.x € Q. Then there exists at least one nontrivial solution of system (1).

COROLLARY 1. Suppose that k > —1A and (H,)-(Hs) hold. Assume that

2F
4 0 and timint 2GS _
Jul jul—ee [ul

limsup
|| —0

uniformly for a.e. x € Q. Then system (1) has at least one nontrivial solution.
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REMARK 1. There are functions F(x,u) satisfying our corollary and not satisfy-
ing condition (F>) in Theorem A. For example, let F (x,u) = |u|*In(1 + |u|?). Ttis easy
to see that F(x,u) satisfies our corollary, but doesn’t satisfy (F>) of Theorem A.

2. Proof of theorems

We shall find weak solutions of problem (1) in space V. We have known that
the weak solutions u = (y,z) of problem (1) are the critical points of the following
functional defined in space V:

J(u) = %/Q(|Ay\2+\Vz\2+k((y—z)+)2> d)c—/QF()@u)dx7

where u = (y,z) € V and V,F(x,u) = f(x,u) = (fi(x,u), f2(x,u)). Itis easy to know
that the functional J is well defined and J € C!(V,R) under condition (H,), and more-
over,

V@) = [ (AAE+ VN k-2 TE k-2
~filx.u)& ~ falxom ) dx

forall u= (y,2), v=(§, n) € V.

For convenience, we state the definition of condition (C), introduced by Cerami
in [7] (see also [5]), abstract linking concept and theorem (see [5]).

A functional J € C!(E,R) is said to satisfy condition (C)., ¢ € R, if, whenever
{un} C E is such that J(u,) — ¢ and (1 + ||u,]|)||J'(un)|| — O, then {u,} possesses a
convergent subsequence.

DEFINITION 1. (see [5]) Let S be a closed subset of a real Hilbert space X. Let
Q be a Hilbert manifold with relative boundary dQ. We shall say that S and dQ link
if:
(I°)SNdQ =0;
(2°) for any map ¢ € C°(X,X) such that ¢|yo = id there holds

9(0) NS #0.

The following remark give a type of linking geometry structure which is a special case
of Proposition 2.2 in [5].

REMARK 2. Let X be a Hilbert space, xo € X with ||xo|| =1. Let 7o > p >0, and
S={xeX||x|l=p}, Q= {txo |0 <t <1y} with relative boundary dQ = {0, foxo} .
Then S and JQ link.
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THEOREM B (see [5, Theorem 2.3]). Let X be a real Hilbert space. Suppose
that J € C'(X,R) and satisfies condition (C). for all ¢ > 0. There exists a closed
subset S C X and a Hilbert manifold Q C X with boundary dQ verifying the following
conditions:

(i) sup J(u) < o < B < infJ(u) for some0< a < f;
uedQ ues

(ii) S and JQ link;
(iii) supJ(u) < H-oo.
ueQ
Then J possesses a critical value ¢ > 3.

LEMMA 1. Assume that k > —%& and (Hy)-(Hs) hold. Then J satisfies condi-
tion (C). for every ¢ € R.

Proof. From the Sobolev embedding theorem, we can easily know that the embed-

ding of V — LP(Q) x LP(Q) is compact, forany p <2* =2N/(N —2). And combining
with condition (H;), we see that the map K : V — V* given by

K(u) = (k(y—z)+,—k(y—z)+) - (fl (x7u)7f2(x7u))

is compact.
Now let ¢ € R and {#,} C V being such that

Juy) = ¢ and (14 [l )/ ()] — 0. 5)

It suffices to show that {||u,]|v } is bounded.
From (5) we obtain that there exists M > 0 such that

()] <M and (1 [Jun]) ' () | < M. 6)
Using (H3), for some M; > 0, when |u| > M; we have

—2F 1
f('x’u)u (x?u) 2 _bl > 0’ i.e.

Ju| # 2
Sl uw)u—2F (x,u) > %bl\uw. @)

When |u| < M, using the subcritical growth condition (H;) one has
S0y = 2F (ey)| < [ a0) -l +2/F ()|
< (‘fl(-xau)| + ’f2(x7u)’) . |M‘

—|—2’/01(VMF(x,su),u)ds

1
< (a4 bo)-u +2 [/ (.s) - uds
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1
< (a0|u\p+b0\u|)+2/0 (ao|sulP~" + bo) - |u| ds

(aolul? + bolul) +2(aolu|?~" + bo) - |u|

<
<G ®)

for some Cy > 0. Then from (7) and (8) there exists C; > 0 such that
Fle,u)u—2F(x,u) > %bl\uw —C
forall u € R? and a.e. x € Q. So one has
3M = 2J (un) — (J' (un), un)
:/Q(|Ayn\2+|Vzn|2+k((yn—zn)+)2> dx—Z/QF(x,u,,)dx
— [ (18 + 192+ K = 20) O = ) = )i s

— /Q (f(x,u,,)un — 2F(x,u,,)> dx

1
2/ (—b1|un\“—C1>dx
o \2

1
= _bl/ |un|* dx — Cymeas(Q)
2 " Je

by (6). Hence { Jo lun* dx} is a bounded sequence, that is, there exists C; > 0 such
that

/Q|un\“dx<cz )

for all n. Using (H,), for some M, > 0, when |u| > M, we obtain
F(x,u)

uld
F(x,u) < 2ay|ul?.

< 26117 i.e.

When |u| < M3, as before, there exists C3 > 0 such that F(x,u) < C3. So we have
F(x,u) < 2a|ul?+C3 (10)
for all u € R? and a.e. x € Q. On one hand, from (6) and (10) we obtain
J(un) + /QF()@un)dx < M—l—/Q (2ay|un|? + C3) dx
=M + 2a;[Juy ||+ Csmeas(Q)

A
= 2ay |jug||9+ Cs. (1)
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On the other hand, when — %& < k <0 one has

1
Ho)+ [ Foxaudx=3 [ (1P + Vaf+k(0a—2))) dx
Q 2Je
1 1 2
= Sl + 3k [ (n=2")

1 2 k 2
> EH”nHV"’ Z””n”V

1 &k
= (3+5)lml}
> 1unl [ (12)

forsomeO<l<%+%<%.Ifk>0wehave

1

J(un)—f—/QF(x,u,,)dx: E/Q<\Ay,,|2+|Vzn\2+k((yn—zn)+)2> dx

1
> EHunH%
> 1|3 (13)
Thus from (11), (12) and (13), when k > —11 we obtain
Uunlly < 2ar|uen|§+ Ca. (14)

Therefore, use the Holder inequality together with (9) and the Sobolev inequality
||lull2« < C|lu||v in the above estimate (14) to obtain

l””n”%/ < 2a1HunHZ+C4

<2a1(/ (|un‘ PR )2*—:1 dx> </ (|un| A )q*M dx) o
Q Q

2% —

5 2(g-u)
=2qa, (/Q|un|“dx) Nunllr F +Ca

2*2(;1*;4)
< GCsllupll,s ™ +Cy
2*(q—1)

< Gollunlly™ ™ +Cy (15)

for some Cs > 0, Cg > 0. Finally, since we are taking %(q —2) < u < gq, it follows that

22&?—;’” < 2, and hence, (15) implies that {||uy||y} is bounded. Thus the functional J
satisfies condition (C). for every ¢ € R.

PROOF OF THEOREM 1. First, from Lemma 1 we know that J satisfies condition
(C). forevery c € R.
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Second, assume that (3) holds, then there exist p, y > 0 such that J(u) >y > 0 if
||lullv = p. Moreover, there exists uy € V such that J(tug) — —oo as t — oo.
In view of (3) and condition (H;), choosing

. {&+2k—a2 bz—X}
80:m1n ) )
2 2
then ay + & < A + 2k, by — & > A. For g > 0 there exist A > 0 and B > 0 such that

1
§(b2 — 80)|u\2 —B< F(x,u) < =(az +€0)\u|2+A\u|p (16)

N =

for all u € R? and a.e. x € Q. Then we have

1

= 5/ ‘Ay|2+|Vz|2+k((y—z)+)2> dx—/QF()@u)dx

1
_ + d <_ 2 A p)d
Sl +3 [ (o x— [ (Flaz+eo)luf +All”)ax
a + &

25\\MHV+(/<— Yl = Al
1 ar+ &0 1

> Sl (k= =52 5 el — Al

1 2k — (az+ &)
(14 =25 Il = Gollull

=
2

for some C7 > 0.
Therefore, since p > 2, we obtain the estimate

1 2k — (ar + &
J(u) > —(H%)&EDO, Vlully =p

1

with p = {ﬁ(l + W)}m > 0. By (16), one has

J(u 2/ \Ay|2+|Vz|2+k(( —2)* dx /qu

< ul2— | (= — 2
<l = [ (32— eolu B)dx
— 2 (lull} — (b2 2) + Bmeas(Q
=5 l|lully — (b2 — &)||u||z ) + Bmeas(Q),
so we get
I
Jouy < 522 (Nl = (b2 = £0) uly ) + Bmeas(2). a7

Let up = (@1,¢1), @1 is the eigenfunction corresponding to A; , with ¢; (x) > 0 for all
x € Q. Then we obtain

ol = [ 161 Pdx+ [ [VoiPax
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= lIZHQDIHI%Z(Q) "‘/llHQDIHiZ(Q)

<Z (01120 + 91120
= T ol
< (b — &) ol (18)

From (17) and (18), one has
1
T(euo) < 37 (1ol — (b2 — e0)juol[fy ) + Bmeas(@) — —oo

when 1 — oo,

At last, taking S = {u| |jullv = p} and Q = {rup| 0 <t < 1o} with # > p being
such that J(zoup) < 0, then J has a critical value ¢ > ¥ > 0 via Remark 2 by Theorem
B. Hence system (1) has a nontrivial solution # = (y,z) € V, which completes our
proof. [

PROOF OF THEOREM 2. First, we also obtain that the functional J satisfies con-
dition (C). for every ¢ € R from Lemma 1.

In view of (4) and condition (H;), choosing & = min {&_T%, w} , then
a3+ €& <A, b3 —€ > A+2k. For g > 0, there exist D > 0 and E > 0 such that

1
E(b3 —&)|ul> —E < F(x,u) < = (a3 + &) |u> + D|u|? (19)

N =

forall u € R? and a.e. x € Q. Then we have
1
J(u):E/Q<\Ay|2+|Vz|2+k((y—z)+)2> dx—/QF()@u)dx

1 1
> Sl = [ (3laa+elu+Dlul”) dx

11 I
> EH"‘HV_ §(a3+81)z||u||v—C8HMHI\;

1 az+ €
=5 (1= = )l — il

for some Cg > 0.
Since “31‘9' <1, p > 2, we obtain the estimate

J(u>>1(1—T)5 =50, Y|uly =8

1
with § = (ﬁ(l - ‘”/Xi)> "> 0. By (19), one has

J(u) = %/Q (\Ay|2+|Vz|2+k((y—z)+)2> dx—/QF(x,u)dx
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LT 2, 2 / 1 2
< = _ il _ _
<l +k [ 02+ x| (52 —e)lu ~E) ax

1
= 5(““\\\2/— ((b3—e1) —Zk)\\u\@) + Emeas Q,

so we have

1
70wy < 322 (1l = (b3 &1) — 20) ;) + Emeas(©). 0)

Let up = (¢1,¢1), then one has

ol = [ 1aPax+ [ Vo ax
Q Q
= l12||(P1 Hi%g) + A1l o1 Hi%g)
< T (91 Bagy + 9112(gy)

< ((bs — &1) = 24)[|uol|3;- Q1)

From (20) and (21), we obtain

1
J(l‘uo) < 51‘2(”140”% — ((b3 — 81) —2k)||u0||%.1> +Emeas(£2) — —o0

when ¢ — oo,

At last, taking S = {u/| |jully =0} and Q = {rup| 0 <t < 1o} with #p > & being

such that J(#oup) < 0, then J has a critical value d > { > 0 via Remark 2 by Theorem
B. Hence system (1) has a nontrivial solution u = (y,z) € V, which completes our
proof. [

Acknowledgements. The authors would like to thank the referee for valuable sug-

gestions.

[1]
[2]
[3]
[4]
[5]
[6]
[7]

REFERENCES

Y. K. AN, Mountain pass solutions for the coupled systems of second and fourth order elliptic equa-
tions, Nonlinear Anal., 63 (2005), 1034—-1041.

Y. K. AN, X. L. FAN, On the coupled system of second and fourth order elliptic equations, Appl.
Math. Comput., 140, (2-3) (2003), 341-351.

Y. K. AN, Nonlinear perturbations of a coupled system of steady state suspension bridge equations,
Nonlinear Anal., 51, 7 (2002), 1285-1292.

N. U. AHMED, H. HARBI, Mathematical analysis of dynamic models of suspension bridges, SIAM J.
Appl. Math., 58, 3 (1998), 853-874.

P. BARTOLO, V. BENCI, D. FORTUNATO, Abstract critical point theorems and applications to some
nonlinear problems with ”strong” resonance at infinity, Nonlinear Anal., 7,9 (1983), 981-1012.

D. G. CoSTA, C. A. MAGALHAES, Variational elliptic problems which are nonquadratic at infinity,
Nonlinear Anal., 23, 11 (1994), 1401-1412.

G. CERAMLI, Un criterio de esistenza per i punti critici su varieta ilimitate, Rc. Ist. Lomb. Sci. Lett.,
112 (1978), 332-336.



THE COUPLED SYSTEMS OF SECOND AND FOURTH ORDER ELLIPTIC EQUATIONS 277

[8] Q. H. CHOI, T. JUNG, A nonlinear suspension bridge equation with nonconstant load, Nonlinear
Anal., 35, 6 (1999), 649-668.
[91 Q. H. CHoI, T. JUNG, P. J. MCKENNA, The study of a nonlinear suspension bridge equation by a

variational reduction method, Appl. Anal., 50, 1-2 (1993), 73-92.

[10] P. DRABEK, H. LEINFELDER, G. TAJCOVA, Coupled string-beam equations as a model of suspension
bridges, Appl. Math., 44, 2 (1999), 97-142.

[11] Z.DING, Nonlinear periodic oscillations in a suspension system under periodic external aerodynamic
forces, Nonlinear Anal., 49 (2002), 1079-1097.

[12] S.HILL, L. D. HUMPHREYS, Mountain pass solutions for a system of partial differentional equations:
an existence theorem with computational results, Nonlinear Anal., 39 (2000), 731-743.

[13] A.C.LAZER,P.J. MCKENNA, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl.,
181, 3 (1994), 648-655.

[14] A. C. LAZER, P. J. MCKENNA, Large-amplitude periodic oscillations in suspension bridges: some
new connections with nonlinear analysis, SIAM Rev., 32, 4 (1990), 537-578.

[15] P.J. MCKENNA, W. WALTER, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech.
Anal., 98, 2 (1987), 167-177.

[16] A.M. MICHELETTI, A. PISTOIA, Nontrivial solutions for some fourth order semilinear elliptic prob-
lems, Nonlinear Anal., 34, 4 (1998), 509-523.

[17] A. M. MICHELETTI, A. PISTOIA, Multiplicity results for a fourth-order semilinear elliptic problem,
Nonlinear Anal., 31, 7 (1998), 895-908.

(Received October 14, 2010) Lei Ji and Chun-Lei Tang
(Revised December 21, 2010) School of Mathematics and Statistics
Southwest University

Chongqing 400715

People’s Republic of China

e-mail: tangcl@swu.edu.cn

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com



