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EXISTENCE OF SOLUTIONS OF BOUNDARY VALUE

PROBLEMS FOR A NONLINEAR THIRD–ORDER

IMPULSIVE DYNAMIC SYSTEM ON TIME SCALES

YAQIN LI AND YONGKUN LI

(Communicated by J. Henderson)

Abstract. In this paper, a nonlinear third-order impulsive dynamic system with boundary value
conditions is studied on time scales. Some sufficient conditions for the existence of solutions are
obtained by using Schauder’s fixed point theorem.

1. Introduction

In recent years, much work has been done on the existence and uniqueness of solu-
tions to boundary value problems for differential equations (see [12, 14, 21, 25]). Some
theory and methods of nonlinear functional analysis, for example, the upper and lower
solutions method and monotone iterative technique, fixed point theorem, the continu-
ation method of topological degree, variational method and critical point theory, have
been applied to those problems. At the same time, boundary value problems for im-
pulsive differential equations and impulsive difference equations have received much
attention [3-7, 9, 10, 15-19, 23] due to the potential applications in many fields such as
physics, biology, engineering. Most boundary value problems for impulsive differential
equations studied and used can be classified as either continuous or discrete. In order
to unify the study of differential and difference equations, the theory of time scales
was first introduced by Stefan Hilger [11] in 1990. Since then the theory of dynamic
equations on time scales has become a new important branch (see, for example, [1, 2,
8, 20, 22, 24, 26]). In fact, both continuous and discrete systems are very important in
implementing applications. Therefore, it is meaningful to study dynamic systems on
time scales which can unify differential and difference systems.

In this paper, we will study the existence of solutions for the following boundary
value problem for the nonlinear third-order impulsive dynamic system on time scales:⎧⎪⎨

⎪⎩
−uΔ

3
(t) = f (t,u(t),uΔ(t),uΔ

2
(t)), t ∈ [0,T ]T\Ω,

Δu(tk) = Ik, ΔuΔ(tk) = Jk, ΔuΔ
2
(tk) = Lk, k = 1,2, . . . ,m,

u(0) = λu(σ(T )), uΔ(0) = λuΔ(σ(T )), uΔ
2
(0) = λuΔ

2
(σ(T )),

(1.1)
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where λ ∈ R , λ �= 1, Ω= {t1,t2, . . . ,tm} , and

Δu(t) = u(t+)−u(t),

ΔuΔ(t) = uΔ(t+)−uΔ(t),

ΔuΔ
2
(t) = uΔ

2
(t+)−uΔ

2
(t),

Ik = Ik(u(t)), Jk = Jk(u(t),uΔ(t)), Lk = Lk(u(t),uΔ(t),uΔ
2
(t)),

k = 1,2, . . . ,m.

Throughout this paper, we assume that:

(H1) the function f : [0,T ]T ×R
n×R

n → R
n is continuous and the functions

Ik : R
n → R

n, Jk : R
n ×R

n → R
n and Lk : R

n×R
n×R

n → R
n, k = 1,2, . . . ,m

are also continuous;

(H2) f (t+k ,u,v,w) := lim
t→t+k

f (t,u,v,w) for any u,v,w ∈ R
n , k = 1,2, · · · ,m ;

(H3) there exist nonnegative constants α , βk , ηk and δk such that

α = limsup
‖u‖+‖v‖+‖w‖→∞

(
max

t∈[0,T ]T

‖ f (t,u,v,w)‖
‖u‖+‖v‖+‖w‖

)
,

βk = limsup
‖u‖→∞

(
max

t∈[0,T ]T

‖Ik(u)‖
‖u‖

)
,

γk = limsup
‖u‖+‖v‖→∞

(
max

t∈[0,T ]T

‖Jk(u,v)‖
‖u‖+‖v‖

)
,

δk = limsup
‖u‖+‖v‖+‖w‖→∞

(
max

t∈[0,T ]T

‖Lk(u,v,w)‖
‖u‖+‖v‖+‖w‖

)
,

for any u,v,w ∈ R
n,k = 1,2, · · · ,m .

In order to define the solutions of system (1.1) , we introduce and denote the Ba-
nach space PC([0,T ]T,Rn) by

PC([0,T ]T,Rn) =
{
u(t) ∈C([0,T ]T\Ω,Rn) : the limits u(t−k ), u(t+k )

exist with u(t−k ) = u(tk), k = 1,2, . . . ,m
}

with the norm ‖u‖0 = sup
t∈[0,T ]T

‖u(t)‖ , where ‖ · ‖ is the usual Euclidean norm.

In a similar fashion to the above, we define

PC1([0,T ]T,Rn) =
{
u(t) ∈ PC([0,T ]T,Rn) : uΔ(t) ∈C([0,T ]T\Ω,Rn),

the limits uΔ(t−k ), uΔ(t+k ) exist with

uΔ(t−k ) = uΔ(tk), k = 1,2, . . . ,m
}
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with the norm ‖u‖1 = max{‖u‖0,‖uΔ‖0} , and

PC2([0,T ]T,Rn) =
{
u(t) ∈ PC1([0,T ]T,Rn) : uΔ

2
(t) ∈C([0,T ]T\Ω,Rn),

the limits uΔ
2
(t−k ), uΔ

2
(t+k ) exist with

uΔ
2
(t−k ) = uΔ

2
(tk), k = 1,2, . . . ,m

}
with the norm ‖u‖2 = max{‖u‖1,‖uΔ2‖0} . PC1([0,T ]T,Rn),PC2([0,T ]T,Rn) are Ba-
nach spaces with the norm ‖u‖1,‖u‖2 , respectively.

Our purpose of this paper is by employing Schauder’s fixed point theorem to obtain
some sufficient conditions for the existence of solutions of system (1.1) on time scales.

The organization of this paper is as follows. In Section 2, we introduce some
notations and definitions and state some preliminary results needed in later sections. In
Section 3, We establish our main results for the existence of solutions of system (1.1).
In Section 4, an example is given to illustrate that our results are feasible and more
general.

2. Preliminaries

In this section, we shall recall some definitions and lemmas which are used in what
follows.

DEFINITION 2.1. ([1]) A time scale T is an arbitrary nonempty closed subset
of the real set R with the topology and ordering inherited from R . The forward and
backward jump operators σ , ρ : T → T and the graininess μ : T → R

+ are defined,
respectively, by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, μ(t) := σ(t)− t.

The point t ∈ T is called left-dense, left-scattered, right-dense or right-scattered if
ρ(t) = t , ρ(t) < t , σ(t) = t or σ(t) > t , respectively. Points that are right-dense
and left-dense at the same time are called dense. If T has a left-scattered maximum m ,
defined T

k = T−{m} ; otherwise, set T
k = T . For the notations [a,b]T, [a,b)T and so

on, we will denote time scale intervals

[a,b]T = {t ∈ T : a � t � b},
where a,b ∈ T with a < ρ(b) .

DEFINITION 2.2. ([1]) The function f : T → R is called rd-continuous provided
that it is continuous at each right-dense point and has a left-sided limit at each point,
write f ∈Crd(T) = Crd(T,R) .

DEFINITION 2.3. ([1]) For f : T → R and t ∈ T
k , the delta derivative of f at t ,

denoted by f Δ(t) , is the number (provided it exists) with the property that given any
ε > 0, there is a neighborhood U ⊂ T of t such that

| f (σ(t))− f (s)− f Δ(t)[σ(t)− t]|� ε|σ(t)− s|, ∀s ∈U.



312 YAQIN LI AND YONGKUN LI

DEFINITION 2.4. (see [1]) If FΔ(t) = f (t) , then we define the delta integral by

∫ t

a
f (s)Δs = F(t)−F(a).

LEMMA 2.1. (see [1]) Assume that f ,g : T → R are differentiable at t ∈ T
k,α,β

be two constants, we have:

(i) if α f +βg : T → R is differentiable at t , then (α f +βg)Δ(t) = α f Δ(t)+βgΔ(t);
(ii) if f Δ exists, then f is continuous at t .

LEMMA 2.2. ([1]) If a,b,c ∈ T , α ∈ R , and f ,g ∈Crd , then:

(i)
∫ b
a [ f (t)+g(t)]Δt =

∫ b
a f (t)Δt +

∫ b
a g(t)Δt ;

(ii)
∫ b
a α f (t)Δt = α

∫ b
a f (t)Δt ;

(iii)
∫ b
a f (t)Δt = −∫ a

b f (t)Δt ;

(iv)
∫ b
a f (t)Δt =

∫ c
a f (t)Δt +

∫ b
c f (t)Δt ;

(v)
∫ a
a f (t)Δt = 0 .

A solution to system (1.1) is a function u ∈ PC2([0,T ]T,Rn) that satisfies (1.1)
for each t ∈ [0,T ]T .

Consider the following impulsive BVP on time scales:⎧⎪⎨
⎪⎩
−uΔ

3
(t) = h(t), t ∈ [0,T ]T\Ω,

Δu(tk) = Ik, ΔuΔ(tk) = Jk, ΔuΔ
2
(tk) = Lk, k = 1,2, . . . ,m,

u(0) = λu(σ(T )), uΔ(0) = λuΔ(σ(T )), uΔ
2
(0) = λuΔ

2
(σ(T )),

(2.1)

where λ ∈ R and λ �= 1.

LEMMA 2.3. Let

p(t) =
∫ t

0
sΔs and q(t,s) = p(t)− p(s)− ts+ s2.

If h(t) ∈ PC([0,T ]T,Rn) , then u is the unique solution of the BVP(2.1) if and only if

u(t) =
∫ σ(T)

0
G1(t,σ(s))h(s)Δs+

m

∑
k=1

G2(t,tk)Ik(u(tk))

+
m

∑
k=1

G3(t,tk)Jk(u(tk),uΔ(tk))

−
m

∑
k=1

G1(t,tk)Lk(u(tk),uΔ(tk),uΔ
2
(tk)), ∀t ∈ [0,σ3(T )]T,

where for 0 � s � t � σ3(T ) ,
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G1(t,s) =
λ

(1−λ )3

[
−λ (σ(T ))2 −λ (1−λ )σ(T)(σ(T )− s)−λ (1−λ )pσ(T )

− (1−λ )2q(σ(T ),s)−λ (1−λ )σ(T)t − (1−λ )2t(σ(T )− s)

− (1−λ )2p(t)−λ−1(1−λ )3q(t,s)
]

and for 0 � t < s � σ(T ) ,

G1(t,s) =
λ

(1−λ )3

[
−λ (σ(T ))2 −λ (1−λ )σ(T)(σ(T )− s)

−λ (1−λ )pσ(T )− (1−λ )2q(σ(T ),s)−λ (1−λ )σ(T)t

− (1−λ )2t(σ(T )− s)− (1−λ )2p(t)
]
;

G2(t,s) =

{
1

1−λ , 0 � s � t � σ3(T ),
λ

1−λ , 0 � t < s � σ(T );

for 0 � s � t � σ3(T ) ,

G3(t,s) =
1

(1−λ )3

[
λ (1−λ )σ(T)− (1−λ )2(σ(T )− tk)

+ (1−λ )2t +λ−1(1−λ )3(t− tk
)]

,

and for 0 � t < s � σ(T ) ,

G3(t,s) =
1

(1−λ )3

[
λ (1−λ )σ(T)− (1−λ )2(σ(T )− tk)+ (1−λ )2t

]
.

Proof. Assume that u(t) is a solution of (2.1) , then by integrating

uΔ
3
(t) = −h(t), t �= tk,q (k = 1,2, . . . ,m)

step by step from 0 to t , we have

uΔ
2
(t) = uΔ

2
(0)−

∫ t

0
h(s)Δs+ ∑

0<tk<t

[uΔ
2
(t+k )−uΔ

2
(tk)], ∀t ∈ [0,σ(T )]T. (2.2)

Similarly, we integrate uΔ
2
(t) and uΔ(t) , t �= tk , (k = 1,2, . . . ,m) from 0 to t step by

step to get

uΔ(t) = uΔ(0)+
∫ t

0
uΔ

2
(s)Δs+ ∑

0<tk<t

[uΔ(t+k )−uΔ(tk)], ∀t ∈ [0,σ2(T )]T (2.3)

and

u(t) = u(0)+
∫ t

0
uΔ(s)Δs+ ∑

0<tk<t

[u(t+k )−u(tk)], ∀t ∈ [0,σ3(T )]T. (2.4)
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Substituting (2.2) into (2.3) , we obtain

uΔ(t) = uΔ(0)+uΔ
2
(0)t−

∫ t

0
(t −σ(s))h(s)Δs+ ∑

0<tk<t

[uΔ(t+k )−uΔ(tk)]

+ ∑
0<tk<t

[uΔ
2
(t+k )−uΔ

2
(tk)](t − tk), ∀t ∈ [0,σ2(T )]T. (2.5)

And substituting (2.5) into (2.4) to get

u(t) = u(0)+uΔ(0)t +uΔ
2
(0)p(t)−

∫ t

0
q(t,σ(s))h(s)Δs

+ ∑
0<tk<t

[u(t+k )−u(tk)]+ ∑
0<tk<t

[uΔ(t+k )−uΔ(tk)](t − tk)

+ ∑
0<tk<t

[uΔ
2
(t+k )−uΔ

2
(tk)]

∫ t

tk
(s− tk)Δs, ∀t ∈ [0,σ3(T )]T. (2.6)

By uΔ
2
(0) = λuΔ

2
(σ(T )) and ΔuΔ

2
(tk) = Lk

(
u(tk),uΔ(tk),uΔ

2
(tk)

)
(k = 1,2, . . . ,m) , we

have from (2.2) that

uΔ
2
(0) = − λ

1−λ

(∫ σ(T)

0
h(s)Δs−

m

∑
k=1

Lk

)
. (2.7)

By uΔ(0) = λuΔ(σ(T )) , ΔuΔ(tk) = Jk(u(tk),uΔ(tk))(k = 1,2, . . . ,m) and (2.7) , from
(2.5) it follows that

uΔ(0) =
λ

1−λ

[
uΔ

2
(0)σ(T )−

∫ σ(T )

0
(σ(T )−σ(s))h(s)Δs

+
m

∑
k=1

Lk(σ(T )− tk)+
m

∑
k=1

Jk

]

= − λ 2σ(T )
(1−λ )2

(∫ σ(T)

0
h(s)Δs−

m

∑
k=1

Lk

)

+
λ

1−λ

[
−

∫ σ(T )

0
(σ(T )−σ(s))h(s)Δs

+
m

∑
k=1

Lk(σ(T )− tk)+
m

∑
k=1

Jk

]
. (2.8)

Note that u(0) = λu(σ(T )) , Δu(tk) = Ik(u(tk))(k = 1,2, . . . ,m) , (2.7) and (2.8) , so
we have from (2.6) that

u(0) =
λ

1−λ

[
uΔ(0)σ(T )+uΔ

2
(0)p(σ(T ))−

∫ σ(T)

0
q(σ(T ),σ(s))h(s)Δs+

m

∑
k=1

Ik

+
m

∑
k=1

Jk(σ(T )− tk)+
m

∑
k=1

Lk

∫ σ(T)

tk
(s− tk)Δs

]
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=
λ

(1−λ )3

{∫ σ(T)

0

[
−λ (σ(T ))2 −λ (1−λ )σ(T)(σ(T )−σ(s))

−λ (1−λ )pσ(T )
]
h(s)Δs

−
∫ σ(T )

0
(1−λ )2q(σ(T ),σ(s))h(s)Δs

+
m

∑
k=1

[
(λσ(T ))2 +λ (1−λ )(σ(T))2(σ(T )− tk)

−λ (1−λ )pσ(T )+ (1−λ )2
∫ σ(T )

tk
(s− tk)Δs

]
Lk

+
m

∑
k=1

[
λ (1−λ )σ(T)− (1−λ )2(σ(T )− tk)

]
Jk

+
m

∑
k=1

(1−λ )2Ik

}
. (2.9)

Then we substitute (2.7) , (2.8) and (2.9) into (2.6) to obtain

u(t) =
λ

(1−λ )3

∫ σ(T)

0

[
−λ (σ(T ))2−λ (1−λ )σ(T)(σ(T )−σ(s))

−λ (1−λ )pσ(T )− (1−λ )2q(σ(T ),σ(s))−λ (1−λ )σ(T)t

− (1−λ )2t(σ(T )−σ(s))− (1−λ )2p(t)
]
h(s)Δs

−
∫ t

0
q(t,σ(s))h(s)Δs

+
m

∑
k=1

λ
(1−λ )3

[
(λσ(T ))2 +λ (1−λ )(σ(T))2(σ(T )− tk)−λ (1−λ )pσ(T )

+ (1−λ )2
∫ σ(T )

tk
(s− tk)Δs+λ (1−λ )σ(T)t

+(1−λ )2t(σ(T )− tk)+ (1−λ )2p(t)
]
Lk

+ ∑
0<tk<t

Lk

∫ t

tk
(s− tk)Δs

+
m

∑
k=1

λ
(1−λ )3

[
λ (1−λ )σ(T)− (1−λ )2(σ(T )− tk)+ (1−λ )2t

]
Jk

+ ∑
0<tk<t

Jk

(
t− tk

)
+

m

∑
k=1

λ
(1−λ )

Ik + ∑
0<tk<t

Ik

=
∫ σ(T )

0
G1(t,σ(s))h(s)Δs+

m

∑
k=1

G2(t,tk)Ik +
m

∑
k=1

G3(t, tk)Jk −
m

∑
k=1

G1(t, tk)Lk.

The proof of this lemma is complete. �
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Recall that a mapping between Banach Spaces is compact if it is continuous and
carries bounded sets into relatively compact sets.

We now introduce a mapping Φ : PC2([0,σ3(T )]T,Rn) → PC2([0,σ3(T )]T,Rn)
defined by

Φu(t) =
∫ σ(T )

0
G1(t,σ(s)) f (s,u(s),uΔ(s),uΔ

2
(s))Δs

+
m

∑
k=1

G2(t,tk)Ik(u(tk))+
m

∑
k=1

G3(t,tk)Jk(u(tk),uΔ(tk))

−
m

∑
k=1

G1(t,tk)Lk(u(tk),uΔ(tk),uΔ
2
(tk)), (2.10)

where t ∈ [0,σ3(T )]T,G1(t,s),G2(t,s),G3(t,s) are defined the same as those in Lemma
2.3.

LEMMA 2.4. Φ : PC2([0,σ3(T )]T,Rn)→PC2([0,σ3(T )]T,Rn) is a compact map.

Proof. From (2.10) we know that

(Φu)Δ(t) =
∫ σ(T)

0
GΔ

1 (t,σ(s)) fΔs+
m

∑
k=1

GΔ
2 (t,tk)Ik

+
m

∑
k=1

GΔ
3 (t,tk)Jk −

m

∑
k=1

GΔ
1 (t,tk)Lk (2.11)

and

(Φu)Δ
2
(t) =

∫ σ(T)

0
GΔ2

1 (t,σ(s)) fΔs+
m

∑
k=1

GΔ2

2 (t,tk)Ik

+
m

∑
k=1

GΔ2

3 (t,tk)Jk −
m

∑
k=1

GΔ2

1 (t, tk)Lk. (2.12)

Then the continuality of f , Ik,Jk and Lk imply that Φ is a continuous map. On the other
hand, for any bounded subset A ⊂ PC2([0,σ3(T )]T,Rn) , (2.11) implies {(Φu)Δ(t) :
u(t) ∈ A} is bounded subset of PC2([0,σ3(T )]T,Rn) . By (2.12), we also hava that
{(Φu)Δ

2
(t) : u(t) ∈ A} is bounded. It follows from Lemma 2.4 in [24] that Φ is a

compact map. The proof of this lemma is complete. �

From Lemma 2.3, we can easily derive the following lemma.

LEMMA 2.5. It holds true: u∈ PC2([0,T ]T,Rn) is a solution of (1.1) if and only
if u ∈ PC2([0,T ]T,Rn) is a fixed point of Φ .

THEOREM 2.1. (Schauder’s Fixed Point Theorem). Let E be a Banach space,
C ⊂ E be a nonempty bounded closed convex subset and T : C → C be a continuous
compact mapping. Then T has a fixed point in C.
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3. Main results

In this section we state and prove our main result. For convenience, we introduce
the following notations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
(t,s)∈[0,σ3(T )]T×[0,σ(T)]T

|G1(t,σ(s))| = G0,

max
(t,s)∈[0,σ3(T )]T×[0,σ(T)]T

|G2(t,s)| = Q0,

max
(t,s)∈[0,σ3(T )]T×[0,σ(T)]T

|G3(t,s)| � P0,

max
(t,s)∈[0,σ3(T )]T×[0,σ(T)]T

|GΔ
1 (t,σ(s))| = P0,

max
(t,s)∈[0,σ3(T )]T×[0,σ(T)]T

|GΔ
3 (t,s)| = Q0,

max
(t,s)∈[0,σ3(T )]T×[0,σ(T)]T

|GΔ2

1 (t,s)| = Q0.

(3.1)

THEOREM 3.1. Under the assumptions (H1)-(H3) , system (1.1) has at least one
solution in PC2([0,T ]T,Rn) , if the following condition holds

η = max{η1,η2,η3} < 1, (3.2)

where

η1 = 3G0ασ(T )+Q0

m

∑
k=1

βk +2P0

m

∑
k=1

γk +3G0

m

∑
k=1

δk,

η2 = 3P0ασ(T )+2Q0

m

∑
k=1

γk +3P0

m

∑
k=1

δk, (3.3)

η3 = 3Q0ασ(T )+3Q0

m

∑
k=1

δk.

Proof. By Lemma 2.4 it is sufficient to show that Φ has at least one fixed point
in PC2([0,T ]T,Rn) . First, by (3.2) and (3.3) , we can choose α ′ > α,β ′

k > βk,γ ′k >
γk,δ ′

k > δk such that

η ′
1 = 3G0α ′σ(T )+Q0

m

∑
k=1

β ′
k +2P0

m

∑
k=1

γ ′k +3G0

m

∑
k=1

δ ′
k < 1, (3.4)

η ′
2 = 3P0α ′σ(T )+2Q0

m

∑
k=1

γ ′k +3P0

m

∑
k=1

δ ′
k < 1, (3.5)

η ′
3 = 3Q0α ′σ(T )+3Q0

m

∑
k=1

δ ′
k < 1. (3.6)

By (H3) we can choose a positive number N such that

‖ f (t,u,v,w)‖ < α ′(‖u‖+‖v‖+‖w‖), ∀t ∈ [0,σ3(T )]T,‖u‖+‖v‖+‖w‖� N.



318 YAQIN LI AND YONGKUN LI

Then

‖ f (t,u,v,w)‖ < α ′(‖u‖+‖v‖+‖w‖)+M, ∀t ∈ [0,σ3(T )]T,∀u,v,w ∈ R
n, (3.7)

where

M = max
t∈[0,σ3(T )]T,‖u‖+‖v‖+‖w‖<N

‖ f (t,u,v,w)‖ < ∞.

Similarly, there exist positive constants Ek,Fk and Hk,(k = 1,2, · · · ,m) such that

‖Ik(u)‖ < β ′
k‖u‖+Ek, ∀u ∈ R

n, (3.8)

‖Jk(u,v)‖ < γ ′k(‖u‖+‖v‖)+Fk, ∀u,v ∈ R
n (3.9)

and

‖Lk(u,v,w)‖ < δ ′
k(‖u‖+‖v‖+‖w‖)+Hk, ∀u,v,w ∈ R

n. (3.10)

Then, by (2.10) , (3.1) , and (3.7)-(3.10) , we have

‖(Φu)(t)‖0 =
∥∥∥∥

∫ σ(T)

0
G1(t,σ(s)) fΔs+

m

∑
k=1

G2(t, tk)Ik

+
m

∑
k=1

G3(t,tk)Jk −
m

∑
k=1

G1(t,tk)Lk

∥∥∥∥
0

� σ(T )G0

[
α ′

(
‖u(t)‖0 +‖uΔ(t)‖0 +‖uΔ2

(t)‖0

)
+M

]
(3.11)

+Q0

m

∑
k=1

(
β ′

k‖u(t)‖0 +Ek

)

+P0

m

∑
k=1

[
γ ′k

(
‖u(t)‖0 +‖uΔ(t)‖0

)
+Fk

]

+G0

m

∑
k=1

[
δ ′

k

(
‖u(t‖0 +‖uΔ(t)‖0 +‖uΔ2

(t)‖0

)
+Hk

]

�
[
3G0α ′σ(T )+Q0

m

∑
k=1

β ′
k +2P0

m

∑
k=1

γ ′k +3G0

m

∑
k=1

δ ′
k

]
‖u(t)‖2

+G0α ′σ(T )M +Q0

m

∑
k=1

β ′
kEk

+P0

m

∑
k=1

γ ′kFk +G0

m

∑
k=1

δ ′
kHk

= η ′
1‖u(t)‖2 +M(1), (3.12)

where M(1) = G0α ′σ(T )M +Q0

m
∑

k=1
β ′

kEk +P0

m
∑

k=1
γ ′kFk +G0

m
∑

k=1
δ ′

kHk is a constant.
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Similarly, differentiating both sides of (2.10) , we can easily get

‖(Φu)Δ(t)‖0 =
∥∥∥∥

∫ σ(T)

0
GΔ

1 (t,σ(s)) fΔs+
m

∑
k=1

GΔ
2 (t, tk)Ik

+
m

∑
k=1

GΔ
3 (t,tk)Jk −

m

∑
k=1

GΔ
1 (t,tk)Lk

∥∥∥∥
0

� P0σ(T )
[
α ′

(
‖u(t)‖0 +‖uΔ(t)‖0 +‖uΔ2

(t)‖0

)
+M

]
+Q0

m

∑
k=1

[
γ ′k

(
‖u(t)‖0 +‖uΔ(t)‖0

)
+Fk

]

+P0

m

∑
k=1

[
δ ′

k

(
‖u(t‖0 +‖uΔ(t)‖0 +‖uΔ2

(t)‖0

)
+Hk

]

�
[
3P0α ′σ(T )+2Q0

m

∑
k=1

γ ′k +3P0

m

∑
k=1

δ ′
k

]
‖u(t)‖2 +P0α ′σ(T )M

+Q0

m

∑
k=1

γ ′kFk +P0

m

∑
k=1

δ ′
kHk

= η ′
2‖u(t)‖2 +M(2) (3.13)

and

‖(Φu)Δ
2
(t)‖0 =

∥∥∥∥
∫ σ(T)

0
GΔ2

1 (t,σ(s)) fΔs+
m

∑
k=1

GΔ2

2 (t, tk)Ik

+
m

∑
k=1

GΔ2

3 (t,tk)Jk −
m

∑
k=1

GΔ2

1 (t,tk)Lk

∥∥∥∥
0

� Q0σ(T )
[
α ′

(
‖u(t)‖0 +‖uΔ(t)‖0 +‖uΔ2

(t)‖0

)
+M

]
+Q0

m

∑
k=1

[
δ ′

k

(
‖u(t‖0 +‖uΔ(t)‖0 +‖uΔ2

(t)‖0

)
+Hk

]

�
[
3Q0α ′σ(T )+3Q0

m

∑
k=1

δ ′
k

]
‖u(t)‖2 +Q0α ′σ(T )M +Q0

m

∑
k=1

δ ′
kHk

= η ′
3‖u(t)‖2 +M(3), (3.14)

where

M(2) = P0α ′σ(T )M +Q0

m

∑
k=1

γ ′kFk +P0

m

∑
k=1

δ ′
kHk,

M(3) = Q0α ′σ(T )M +Q0

m

∑
k=1

δ ′
kHk,

are two constants. Consequently, by (3.11)-(3.13) we have

‖(Φu)(t)‖2 = max{‖(Φu)(t)‖0,‖(Φu)Δ(t)‖0,‖(Φu)Δ
2
(t)‖0} � η ′‖u(t)‖2 +M′,
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where

η ′ = max{η ′
1,η

′
2,η

′
3} < 1, M′ = max{M(1),M(2),M(3)}.

Let r = M′
1−η ′ , Br = {u ∈ PC2([0,σ3(T )],Rn)|‖u‖2 � r} . For ∀u ∈ Br , we have

‖(Φu)(t)‖2 � η ′‖u(t)‖2 +M′ � η ′r+M′ = r.

So, we can easily get Φ(Br) ⊂ Br . From Lemma 2.4, Φ is a complete continuous
operator. By Theorem 2.1(Schauder’s Fixed Point Theorem), Φ has at least one fixed
point in Br . By Lemma 2.5, system (1.1) has at least one solution in PC2([0,T ]T,Rn) .
We complete the proof. �

REMARK 3.1. If the following conditions hold:

‖ f (t,u,v,w)‖
‖u‖+‖v‖+‖w‖ → 0 and

‖Lk(u,v,w)‖
‖u‖+‖v‖+‖w‖ → 0 as ‖u‖+‖v‖+‖w‖→ ∞ ,

‖Jk(u,v)‖
‖u‖+‖v‖ → 0 as ‖u‖+‖v‖→ ∞,

‖Ik(u)‖
‖u‖ → 0 as ‖u‖→ ∞,

then (3.2) holds.

REMARK 3.2. If λ = −1, then system (1.1) is reduced into the following sys-
tem: ⎧⎪⎨

⎪⎩
−uΔ

3
(t) = f (t,u(t),uΔ(t),uΔ

2
(t)), t ∈ [0,T ]T\Ω,

Δu(tk) = Ik, ΔuΔ(tk) = Jk, ΔuΔ
2
(tk) = Lk, k = 1,2, . . . ,m,

u(0) = −u(σ(T )), uΔ(0) = −uΔ(σ(T )), uΔ
2
(0) = −uΔ

2
(σ(T )),

(3.15)

where

Δu(t) = u(t+)−u(t),

ΔuΔ(t) = uΔ(t+)−uΔ(t),

ΔuΔ
2
(t) = uΔ

2
(t+)−uΔ

2
(t),

Ik = Ik(u(t)), Jk = Jk(u(t),xΔ(t)), Lk = Lk(u(t),uΔ(t),uΔ
2
(t)),

Ω= {t1, t2, . . . ,tm}, k = 1,2, . . . ,m.

Then (3.14) is an anti-periodic boundary value problem. It is only a special case of
system (1.1) . Hence, our presented result is also valid to system (3.14) .
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4. Examples

In this section, we give an example to demonstrate the efficiencies of our result.

EXAMPLE 4.1. Consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

u′′′(t) = f (t,u,v,w), t ∈ [0,1]T\
{1

2

}
,

Δu( 1
2) = 1

102 u( 1
2), Δu′( 1

2 ) = 1
102 u′( 1

2 ), Δx′′( 1
2 ) = 1

102 x′′( 1
2),

x(0) = −2u(1), u′(0) = −2u′(1), u′′(0) = −2u′′(1),

(4.1)

where T = R and

f (t,u,v,w) =
1

102 t cos2 u(t)+
1

102 sin
√

5u′(t)+
1

102 sin
√

3u′′(t)

for all (t,u,v,w) ∈ Θ = ([0,σ3(T )]T,Rn,Rn,Rn) . Obviously,

G0 � 238
27

,Q0 � 2
3
,P0 � 14

9
.

Thus, we obtain

η � 3× 238
27

× 1
102 +

2
3
× 1

102 +2× 14
9

× 1
102 +3× 238

27
× 1

102 ≈ 0.57 < 1.

It follows from Theorem 3.1 that the system (4.1) has at least a solution.
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