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SOME NEW OSCILLATION CRITERIA FOR HIGHER–ORDER

QUASI–LINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS
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Abstract. Oscillation criteria for the higher order quasi-linear neutral delay differential equations
of the form

[r(t)ψ(u(t))|z(n−1)(t)|α−1z(n−1)(t)]′ +
m

∑
i=1

qi(t) fi(|u(τi(t))|αi−1u(τi(t))) = 0,

t � t0, z(t) = u(t) + p(t)u(t −σ),α > 0,αi > 0 (i = 1,2,3, ...,m) , are established under the
condition: ∫ ∞

t0
r−

1
α (s)ds = ∞ or

∫ ∞

t0
r−

1
α (s)ds < ∞ respectively,

where n is even. The obtained results improve and extend some known results in literature.

1. Introduction

In this paper, we are here concerned with the oscillation behavior of solution of
higher order quasi-linear neutral delay differential equation of the form

[r(t)ψ(u(t))|z(n−1)(t)|α−1z(n−1)(t)]′ +
m

∑
i=1

qi(t) fi(|u(τi(t))|αi−1u(τi(t))) = 0, (1.1)

where t � t0, z(t) = u(t)+ p(t)u(t−σ) , α > 0, αi > 0 (i = 1,2,3, ...,m) , σ � 0 are
constants and n is even.

In this paper, we assume that

(B1) p(t) ∈ C([t0,∞), [0,1]), qi(t) ∈ C([t0,∞), [0,∞))(i = 1,2,3, ...,m) , where p(t)
and qi(t) do not identify zero on (a,b) ⊂ [0,1],a < b ;

(B2) r(t) ∈C1([t0,∞),(0,∞)), R(t) =
∫ t
t0

r−
1
α (s)ds;

(B3) ψ(u), fi(u)∈C1(R,R), ψ(u) > 0, u fi(u) > 0 for u �= 0, i = 1,2,3, ...,m , there
exists constants L > 0 and βi > 0(i = 1,2,3, ...,m), such that ψ(u) � L−1 and

fi(uαi(τi(t)))
|u(τi(t))|α−1u(τi(t))

� βi > 0 for u(τi(t)) �= 0;
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(B4) τ(t) ∈ C1([t0,∞), [0,∞)), τ(t) � τi(t), τ(t) � t, lim
t→∞

τ(t) = ∞, τ ′(t) > 0 for

t ∈ [t0,∞) .

In what follows, we shall consider only the nonconstant solutions of (1.1) which
are defined for all large t. The solutions of (1.1) mean a function u∈C1([Tu,∞),R),Tu �
t0 such that u and r(t)ψ(u(t))|z(n−1)(t)|α−1z(n−1)(t) are continuously differentiable
and satisfy Eq.(1.1). A solution of (1.1) is called oscillatory if it has arbitrarily large
zeros. Otherwise, it is called nonoscillatory. Eq.(1.1) is called oscillatory if all of its
solutions are oscillatory.

In the last decades, there has been an increasing interest in obtaining sufficient
conditions for the oscillation and nonoscillation of solutions for various classes of sec-
ond order differential equations, e.g., see [1-6], [8-14], [16] and the references therein.
Xu et al. [21] extended the results of Dzurina et al. [3] and Sun et al. [16] to the neutral
delay differential equation

[r(t)|y′(t)|α−1y′(t)]′ +q(t) f (x(σ(t))) = 0, t � t0, (1.2)

where y(t) = x(t)+ p(t)x(t− τ) . More precisely, they proved that if

lim
t→∞

R(t) = lim
t→∞

∫ t

t0

ds

r
1
α (s)

= ∞ (1.3)

and

∫ ∞
[
kq(t)(1− p(σ(t)))Rα(σ(t))− (

α
α+1

)α+1 σ ′(t)

R(σ(t))r
1
α (σ(t))

]
dt = ∞,

then (1.3) is oscillatory.
Very recently, the oscillatory behavior of solutions of higher order neutral differ-

ential equations are of both theoretical and practical interest. There have been some
results on the oscillatory and asymptotic behavior of even order neutral equations. we
mention here [7], [17-19].

In [20], by using Riccati technique and averaging functions method, wang estab-
lished some general oscillation criteria for even order neutral delay differential equation

[r(t)+ c(t)x(t− τ)](n) +
∫ b

a
p(t,ξ )x[g(t,ξ )]dσ(ξ ) = 0, t > t0.

In this paper, we shall continue in this direction to study the oscillatory properties
of (1.1). Motivated by [19], by using the Riccati technique and the integral averaging
technique, under the condition:

∫ ∞
t0

r−
1
α (s)ds = ∞ or

∫ ∞
t0

r−
1
α (s)ds < ∞ , we establish

the oscillation criteria for (1.1), which extend and improve the main results in [3, 16,
21].

In order to prove our theorems, we will use the following lemmas.

LEMMA 1.1. (Kiguradze [8]) Let x(t) be a positive and n times differentiable
function on R. If x(n)(t) is of constant sign and not identically zero on any ray [t1,+∞)
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for (t1 > 0) , then there exists a tx > t1 and an integer l(0 � l � n) , with n+ l even for
x(t)x(n)(t) � 0 or n+ l odd for x(t)x(n)(t) � 0 ; and for t � tx ,

x(t)x(k)(t) > 0, 0 � k � l; (−1)k−lx(t)x(k)(t) > 0, l � k � n.

LEMMA 1.2. (Philos [15]) Suppose that the condition of Lemma 1.1 is satisfied,
and

x(n−1)(t)x(n)(t) � 0, t � tx,

then there exists a constant θ in (0,1) such that for sufficiently large t , satisfying

|x′(t/2)| � Mθ t
n−2|x(n−1)(t)|,

where Mθ = θ
(n−2)! and n is even.

We define the following notations to be used through this paper

R(t) =
∫ t

t0

ds

r
1
α (s)

, Q(t) =
m

∑
i=1

qi(t)βi(1− p(τi(t)))α , ξ =
( 2

M

)α( α
α +1

)α+1
. (1.4)

2. Main results

We first consider the oscillatory property of (1.1) under the condition

lim
t→∞

R(t) = lim
t→∞

∫ t

t0

ds

r
1
α (s)

= ∞. (2.1)

THEOREM 2.1. Assume that (2.1) holds and

∫ ∞(
Rα [τ(t)]Q(t)− ξτ ′(t)

LR[τ(t)]r
1
α (τ(t))((τ(t))n−2)α

)
dt = ∞, (2.2)

then Eq.(1.1) is oscillatory.

Proof. Suppose to the contrary that Eq.(1.1) has a nonoscillatory solution u(t) .
Without loss of generally, we assume that

u(t) > 0,u(τi(t)) > 0,u(t− τ) > 0, t � t1 � t0.

Since the case u(t) < 0 can be treated similarly.
From (1.1) and (B3) , we can get

[r(t)ψ(u(t))|z(n−1)(t)|α−1z(n−1)(t)]′ � 0, z(t) � u(t). (2.3)

Therefore r(t)ψ(u(t))|z(n−1)(t)|α−1z(n−1)(t) is a decreasing function. We claim that

z(n−1)(t) > 0, t � t1.
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Otherwise, if there exist t2 � t1 , such that z(n−1)(t) � 0 for all t � t2 , from (2.3) we
have

r(t)ψ(u(t))|z(n−1)(t)|α−1z(n−1)(t)

� r(t2)ψ(u(t2))|z(n−1)(t2)|α−1z(n−1)(t2) = −β (β > 0), t � t2,

which implies that

z(n−1)(t) � −
(

β
ψ(u(t))

) 1
α 1

r
1
α (t)

� −(βL)
1
α

1

r
1
α (t)

.

Integrating the above inequality from t2 to t , we have

z(n−2)(t) � z(n−2)(t2)− (βL)
1
α

∫ t

t2

ds

r
1
α (s)

.

Letting t → ∞ , from (2.1) we get limt→∞ z(n−2)(t) = −∞ , which implies limt→∞ z(t) =
−∞ . This get a contradiction with z(t) > 0.

If there exists t3 > t1 , such that z(n−1)(t3) = 0, since the function

r(t)ψ(u(t))|z(n−1)(t)|α−1z(n−1)(t)

is decreasing, we can obtain that there exists t4 � t3 , such that z(n−1)(t4) < 0, get the
some contradiction as above.

If there exists t6 > t5 > t1 , such that z(n−1)(t5) = z(n−1)(t6) = 0, integrating (1.1)
from t5 to t6 , we have

∫ t6

t5

m

∑
i=1

qi(t) fi(|u(τi(t))|αi−1u(τi(t))) = 0,

which arrive a contradiction with main assumption of the paper. Hence z(n−1)(t) > 0
for t � t1 . From (2.3), we can get

[r(t)ψ(u(t))(z(n−1)(t))α ]′

= [r(t)ψ(u(t))]′(z(n−1)(t))α +αr(t)ψ(u(t))(z(n−1)(t))α−1z(n)(t) � 0,

then

z(n)(t) � −[r(t)ψ(u(t))]′z(n−1)(t)
αr(t)ψ(u(t))

� 0.

From Lemma 1.1 and Lemma 1.2, we have

z(n−1)(t) > 0, z(n)(t) � 0, z′(t) > 0, t > t1,

z′
(
τ(t)
2

)
� M(τ(t))n−2z(n−1)(τ(t)). (2.4)
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Since u(t) � z(t) ,

u(t) = z(t)− p(t)u(t−σ) � z(t)− p(t)z(t−σ)
� z(t)− p(t)z(t) = (1− p(t))z(t). (2.5)

Therefore, we have

r(t)ψ(u(t))(z(n−1)(t))α � r(τ(t))ψ(u(τ(t)))(z(n−1)(τ(t)))α .

It follows that
z(n−1)(τ(t))
z(n−1)(t)

�
(

r(t)ψ(u(t))
r(τ(t))ψ(u(τ(t)))

) 1
α

. (2.6)

Following (B3) and (2.5), we get

[r(t)ψ(u(t))(z(n−1)(t))α ]′ +
m

∑
i=1

qi(t)βi(1− p(τi(t)))α zα(τi(t)) � 0,

then Eq.(1.1) will become

[r(t)ψ(u(t))(z(n−1)(t))α ]′ +Q(t)zα(τ(t)) � 0. (2.7)

Define

w(t) = Rα [τ(t)]
r(t)ψ(u(t))(z(n−1)(t))α

zα
(
τ(t)
2

) , t � t1. (2.8)

Then w(t) � 0. From (2.4), (2.6), (2.7) and (2.8), we get

w′(t) � ατ ′(t)Rα−1[τ(t)]
r

1
α [τ(t)]

r(t)ψ(u(t))(z(n−1)(t))α

zα
(
τ(t)
2

) − Rα [τ(t)]

zα
(
τ(t)
2

)(Q(t)zα (τ(t)))

−Rα [τ(t)][r(t)ψ(u(t))(z(n−1)(t))α ]
αz′( τ(t)2 ) 1

2τ
′(t)

zα+1( τ(t)2 )

� ατ ′(t)
R[τ(t)]r

1
α [τ(t)]

w(t)−Rα [τ(t)]Q(t)

− ατ ′(t)
2

Rα [τ(t)][r(t)ψ(u(t))(z(n−1)(t))α ]M(τ(t))n−2z(n−1)(τ(t))

zα+1
(
τ(t)
2

)
� ατ ′(t)

R[τ(t)]r
1
α [τ(t)]

w(t)−Rα [τ(t)]Q(t)

− Mατ ′(t)Rα [τ(t)][r(t)ψ(u(t))(z(n−1)(t))α+1](τ(t))n−2

2zα+1
(
τ(t)
2

) z(n−1)(τ(t))
z(n−1)(t)

� ατ ′(t)
R[τ(t)]r

1
α [τ(t)]

w(t)−Rα [τ(t)]Q(t)
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− Mατ ′(t)Rα [τ(t)][r(t)ψ(u(t))(z(n−1)(t))α+1](τ(t))n−2

2zα+1
( τ(t)

2

) ( r(t)ψ(u(t))
r(τ(t))ψ(u(τ(t)))

) 1
α

� ατ ′(t)
R[τ(t)]r

1
α [τ(t)]

w(t)−Rα [τ(t)]Q(t)− MαL
1
α τ ′(t)(τ(t))n−2

2R[τ(t)]r
1
α (τ(t))

w
α+1
α (t). (2.9)

Set

F(υ) =
ατ ′(t)

R[τ(t)]r
1
α [τ(t)]

υ− MαL
1
α τ ′(t)(τ(t))n−2

2R[τ(t)]r
1
α (τ(t))

υ
α+1
α , υ > 0.

By calculating, we have that when

υ =
(2α)α

L(M(α +1)(τ(t))n−2)α
,

F(υ) obtain its maximum. So

F(υ) � Fmax =
ξτ ′(t)

LR[τ(t)]r
1
α (τ(t))((τ(t))n−2)α

.

Therefore,

w′(t) � −Rα [τ(t)]Q(t)+
ξτ ′(t)

LR[τ(t)]r
1
α (τ(t))((τ(t))n−2)α

.

Integrating the above inequality from T0(T0 � t1) to t , we have

0 < w(t)

< w(T0)−
∫ t

T0

[
Rα [τ(s)]Q(s)− ξτ ′(s)

LR[τ(s)]r
1
α (τ(s))((τ(s))n−2)α

]
ds. (2.10)

Letting t →∞ in (2.10), from (2.2) we get a contradiction. This completes the proof of
Theorem 2.1.

COROLLARY 2.1. Assume that (2.1) holds and for some T � t0 ,

liminf
t→∞

1
lnR[τ(t)]

∫ t

T
Rα [τ(s)]Q(s)ds >

ξ
L

, (2.11)

then Eq (1.1) is oscillatory.

Proof. Suppose to the contrary that Eq.(1.1) has a nonoscillatory solution u(t) .
Without of loss generally, we assume that u(t) > 0, u(τi(t)) > 0, u(t − τ) > 0 for
t � t1 � t0 . Since the case u(t) < 0 can be treated similarly.
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It is easily prove that there exist T � t0 , such that (τ(t))n−2 > 1. From (2.11), we
can get that yields the existence ε > 0, such that for all large t,

1
lnR[τ(t)]

∫ t

T
Rα [τ(s)]Q(s)ds � ξ

L
+ ε,

which follows that

∫ t

T

[
Rα [τ(s)]Q(s)− ξτ ′(s)

LR[τ(s)]r
1
α (τ(s))((τ(s))n−2)α

]
ds

>

∫ t

T

[
Rα [τ(s)]Q(s)− ξτ ′(s)

LR[τ(s)]r
1
α (τ(s))

]
ds

=
∫ t

T
Rα [τ(s)]Q(s)ds− ξ

L
[lnR(τ(t))− lnR(τ(T ))]

>

(
ξ
L

+ ε
)

lnR(τ(t))− ξ
L

[lnR(τ(t))− lnR(τ(T ))]

= ε lnR(τ(t))+
ξ
L

lnR(τ(T )). (2.12)

Now, it is obvious that (2.12) implies (2.2) and the assertion of corollary 2.1 fol-
lows from Theorem 2.1.

COROLLARY 2.2. Assume that (2.1) holds, and

liminf
t→∞

r
1
α [τ(t)]Rα+1[τ(t)]Q(t)

τ ′(t)
>

ξ
L

, (2.13)

then Eq.(1.1) is oscillatory.

Proof. Suppose to the contrary that Eq.(1.1) has a nonoscillatory solution u(t) .
Without of loss generally, we assume that u(t) > 0, u(τi(t)) > 0, u(t − τ) > 0 for
t � t1 � t0 . Since the case u(t) < 0 can be treated similarly.

It is easily prove that there exist T > t0 , such that (τ(t))n−2 > 1. From (2.12), we
can get that yields the existence ε > 0, such that for all large t,

r
1
α [τ(t)]Rα+1[τ(t)]Q(t)

τ ′(t)
� ξ

L
+ ε, (2.14)

multiplying τ ′(t)
r

1
α [τ(t)]R[τ(t)]

on both sides of (2.14), we obtain that

Rα [τ(t)]Q(t)− ξ
L

τ ′(t)
r

1
α [τ(t)]R[τ(t)]

� ε
τ ′(t)

r
1
α [τ(t)]R[τ(t)]

.
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Therefore, we have

∫ t

T

(
Rα [τ(s)]Q(s)− ξ

L
τ ′(s)

r
1
α [τ(s)]R[τ(s)]

)
ds

� ε
∫ t

T

τ ′(s)
r

1
α [τ(s)]R[τ(s)]

ds

= ε(lnR(τ(t))− lnR(τ(T ))).

Then

∫ t

T

[
Rα [τ(s)]Q(s)− ξτ ′(s)

LR[τ(s)]r
1
α (τ(s))((τ(s))n−2)α

]
ds

>

∫ t

T

[
Rα [τ(s)]Q(s)− ξ

L
τ ′(s)

R[τ(s)]r
1
α (τ(s))

]
ds

> ε(lnR(τ(t))− lnR(τ(T ))). (2.15)

It is obvious that (2.15) implies (2.2) and Corollary 2.2 is evident by Theorem 2.1.
If p(t) = 0, from Theorem 2.1 we obtain the following conclusions.

COROLLARY 2.3. Assume that (2.1) holds and

∫ ∞
(

Rα [τ(t)]
m

∑
i=1

qi(t)βi− ξτ ′(t)
Lr

1
α [τ(t)]R[τ(t)]((τ(t))n−2)α

)
dt = ∞, (2.16)

then Eq.(1.1) with p(t) = 0 is oscillatory.

COROLLARY 2.4. Assume that (2.1) holds and for some t1 > t0 ,

liminf
t→∞

1
lnR[τ(t)]

∫ t

t1
Rα [τ(s)]

m

∑
i=1

qi(s)βids >
ξ
L

, (2.17)

then Eq (1.1) with p(t) = 0 is oscillatory.

COROLLARY 2.5. Assume that (2.1) holds, and

liminf
t→∞

m

∑
i=1

qi(t)βi
r

1
α [τ(t)]Rα+1[τ(t)]

τ ′(t)
>

ξ
L

, (2.18)

then Eq.(1.1) is oscillatory.

THEOREM 2.2. Let (2.1) holds. If there exists a function h ∈ C1([t0,∞),R+)
such that
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∫ ∞(
Q(t)− ML

1
α τ ′(t)(τ(t))n−2hα+1(t)

2r
1
α (τ(t))

)

exp

(
(α +1)ML

1
α

2

∫ t τ ′(s)(τ(s))n−2h(s)

r
1
α (τ(s))

ds

)
dt = ∞, (2.19)

then (1.1) is oscillatory.

Proof. Let u(t) be a nonoscillatory solution of (1.1). Without loss of generality,
as in the proof of Theorem 2.1, we may assume that there exists a number t1 � t0 such
that u(t) > 0, u(τi(t)) > 0, u(t − τ) > 0 for t � t1 . Since the case u(t) < 0 can be
treated similarly.

From the proof of Theorem 2.1, we get that z(n−1)(t) > 0 holds for t � t1 . Fur-
thermore, (2.6) and (2.7) hold. Define

w(t) =
r(t)ψ(u(t))(z(n−1)(t))α

zα
(
τ(t)
2

) , t � t1. (2.20)

Obviously, w(t) > 0. Differentiating (2.20), in view of (2.6) and (2.7), we have

w′(t) =
[r(t)ψ(u(t))(z(n−1)(t))α ]′

zα
(
τ(t)
2

) − [r(t)ψ(u(t))(z(n−1)(t))α ]
αz′( τ(t)2 ) 1

2τ
′(t)

zα+1( τ(t)2 )

� −Q(t)zα(τ(t))

zα
(
τ(t)
2

) − ατ ′(t)
2

[r(t)ψ(u(t))(z(n−1)(t))α ]M(τ(t))n−2z(n−1)(τ(t))

zα+1
(
τ(t)
2

)

� −Q(t)− Mατ ′(t)[r(t)ψ(u(t))(z(n−1)(t))α ](τ(t))n−2

2zα+1
(
τ(t)
2

) (
r(t)ψ(u(t))

r(τ(t))ψ(u(τ(t)))

) 1
α

� −Q(t)− MαL
1
α τ ′(t)(τ(t))n−2

2r
1
α (τ(t))

w
α+1
α (t)

= −
[
Q(t)− ML

1
α τ ′(t)(τ(t))n−2

2r
1
α (τ(t))

hα+1(t)

]

− ML
1
α τ ′(t)(τ(t))n−2

2r
1
α (τ(t))

[
αw

α+1
α (t)+hα+1(t)

]
.

By Holder’s inequality, αw
α+1
α (t)+hα+1(t) � (α +1)h(t)w(t). Thus,

w′(t) � −
[
Q(t)− ML

1
α τ ′(t)(τ(t))n−2

2r
1
α (τ(t))

hα+1(t)

]

− (α +1)ML
1
α τ ′(t)(τ(t))n−2h(t)w(t)

2r
1
α (τ(t))

,
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which follows that[
exp

(
(α +1)ML

1
α

2

∫ t

T

τ ′(s)(τ(s))n−2h(s)

r
1
α (τ(s))

ds

)
w(t)

]′

� −
[
Q(t)− ML

1
α τ ′(t)(τ(t))n−2

2r
1
α (τ(t))

hα+1(t)
]
×

exp

(
(α +1)ML

1
α

2

∫ t

T

τ ′(s)(τ(s))n−2h(s)

r
1
α (τ(s))

ds

)
. (2.21)

Integrating (2.21) from T (T � t1) to t , we have

0 < exp

(
(α +1)ML

1
α

2

∫ t

T

τ ′(s)(τ(s))n−2h(s)

r
1
α (τ(s))

ds

)
w(t)

� w(T )−
∫ t

T

[
Q(s)− ML

1
α τ ′(s)(τ(s))n−2

2r
1
α (τ(s))

hα+1(s)
]

exp

(
(α +1)ML

1
α

2

∫ s

T

τ ′(u)(τ(u))n−2h(u)

r
1
α (τ(u))

du

)
ds.

Let t → ∞ in the above inequality, which contradicts(2.19). This completes the proof
of Theorem 2.3.

Now, let us consider the case when

lim
t→∞

R(t) = lim
t→∞

∫ t

t0

ds

r
1
α (s)

< ∞. (2.22)

THEOREM 2.3. Assume that (2.2) and (2.22) hold. Suppose that there exist a
continuously differentiable ϕ(t) , such that ϕ(t) > 0,ϕ ′(t) > 0.p′(t) � 0 for t � t0 ,
limt→∞ p(t) = A, if

∫ ∞
(

L
ϕ(t)r(t)

∫ t
(

m

∑
i=1

qi(s)βiϕ(s)

)
ds

) 1
α

dt = ∞, (2.23)

then every solution u(t) of (1.1) oscillates or limt→∞ u(t) = 0 .

Proof. Suppose to the contrary that u(t) is an eventually positive solution of (1.1),
without loss of generally , we assume that u(t) > 0, t > t1 , then z(t) > 0.

It is easy to conclude that r(t)ψ(u(t))|z(n−1)(t)|α−1z(n−1)(t) is a decreasing func-
tion. There exist two possible case of the sign of z(n−1)(t) , z(n−1)(t) > 0 or z(n−1)(t) <
0.

CASE (1). Suppose z(n−1)(t) > 0 for sufficiently large t , then we are back to the
case of Theorem 2.1. Thus the proof of Theorem 2.1 goes through, and we may get
contradition by (2.2).
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CASE (2). Suppose z(n−1)(t) < 0 for sufficiently large t , from Lemma 1.1 and
Lemma 1.2 we can easily get that z′(t) < 0, since p′(t) � 0, z′(t) = u′(t)+ p′(t)u(t −
σ)+ p(t)u′(t −σ) , then u′(t) � 0. It follows that limt→∞ z(t) = a � 0, now we claim
that a = 0. Otherwise, limt→∞ z(t) = a > 0, so limt→∞ u(t) = a

1+A > 0, there exist
constants Mi > 0 (i = 1,2,3, ...,m) and M > 0 such that uα(τi(t)) � Mi and Mi � M
for all t � t1 � t0 . From (1.1) we get

[r(t)ψ(u(t))|z(n−1)(t)|α−1z(n−1)(t)]′ +
m

∑
i=1

qi(t) fi(uαi(τi(t))) = 0.

Then

[r(t)ψ(u(t))(−z(n−1)(t))α ]′ =
m

∑
i=1

qi(t) fi(uαi(τi(t)))

�
m

∑
i=1

qi(t)βiu
α(τi(t))

�
m

∑
i=1

qi(t)βiMi � M
m

∑
i=1

qi(t)βi

for t � t1 . Define v(t) = ϕ(t)r(t)ψ(u(t))(−z(n−1)(t))α , then v(t) � 0,

v′(t) = ϕ(t)[r(t)ψ(u(t))(−z(n−1)(t))α ]′ +ϕ ′(t)[r(t)ψ(u(t))(−z(n−1)(t))α ]

� ϕ(t)[r(t)ψ(u(t))(−z(n−1)(t))α ]′

� Mϕ(t)
m

∑
i=1

qi(t)βi. (2.24)

Integrating (2.24) from t1 to t, we have

v(t) � v(t1)+M
∫ t

t1

( m

∑
i=1

qi(s)βiϕ(s)
)

ds � M
∫ t

t1

( m

∑
i=1

qi(s)βiϕ(s)
)

ds,

that is

ϕ(t)r(t)ψ(u(t))(−z′(t))α � M
∫ t

t1

( m

∑
i=1

qi(s)βiϕ(s)
)

ds,

so that

(−z′(t)) � M
1
α

(
L

ϕ(t)r(t)

∫ t

t1

( m

∑
i=1

qi(s)βiϕ(s)
)

ds

) 1
α
.

Integrating the above inequality form t1 to t, we obtain

z(t) � z(t1)−M
1
α

∫ t

t1

(
L

ϕ(s)r(s)

∫ s

t1

( m

∑
i=1

qi(ξ )βiϕ(ξ )
)

dξ
) 1

α
ds.

We can easily obtain a contradiction. So that limt→∞ z(t) = 0, then limt→∞ u(t) =
0. This completes the proof of Theorem 2.4.
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3. Example

Consider the following high-order differential equation(
1

tα(1+u2(t))
|z(n−1)(t)|α−1z(n−1)(t)

)′
+ t|u(t)|α−1u(t) = 0, t � 1, (3.1)

where

p(t) =
1
2
, r(t) = t−α , σ(t) = t −1,

ψ(u) =
1

1+u2 , q(t) = t, f (u) = u, τ(t) = t.

If we take β = L = 1, then

R(τ(t)) =
∫ t

1
sds =

1
2
(t2−1).

For any constant T > t0 , we have

liminf
t→∞

1
lnR(τ(t))

∫ t

1
Rα(τ(s))Q(s)ds

= liminf
t→∞

1

ln( 1
2 (t2−1))

∫ t

1

1
4α

(s2 −1)αsds

=
1

22α+1 liminf
t→∞

(t2−1)α+1 = ∞,

from Corollary 2.1, we can see that Eq.(3.1) is oscillatory.
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