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EXISTENCE OF SOLUTIONS TO BOUNDARY
VALUE PROBLEMS AT FULL RESONANCE

KRISTEN KOBYLUS ABERNATHY AND JESUS RODRIGUEZ

(Communicated by C. Tisdell)

Abstract. The focus of this paper is the study of nonlinear differential equations of the form
Xi(1) = ai(t)xi(t) + fi(e,t,.x1 (1), -+, x0(2)), i=1,2,--,n,
subject to two-point boundary conditions
bixi(0) +dix;(1) =0, i=1,2,--,n.

We formulate sufficient conditions for the existence of solutions based on the dimension of the
solution space of the corresponding linear, homogeneous equation and the properties of the non-
linear term when € = 0. We focus on the case when the solution space of the corresponding
linear, homogeneous equation is n-dimensional; that is, when the system is at full resonance.
The argument we use relies on the Lyapunov-Schmidt procedure and the Schauder fixed point
theorem.

1. Introduction

In this paper, we establish criteria for the existence of solutions to the parameter
dependent vector equation

Xi(t) = ai(t)xi (1) + fi(e,t,x1(7),-- -, xn(2)), i=1,2,---,m, (D)
subject to the boundary conditions
bixi(0)+dix;(1)=0, i=1,2,---,n. 2)

We focus on the case where the solution space of the corresponding linear, homo-
geneous vector equation

x',-(t)—a,-(t)x,-(t):O, i:1,2,"',l’l, (3)
subject to boundary conditions (2) is n-dimensional. We will provide sufficient con-
ditions for existence of solutions to (1), (2). The asymptotic behavior of the function
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Si(0,2,x1(¢), -+ ,xn(¢)) and the solution space of the linear, homogeneous boundary
value problem (3), (2) will play crucial roles in establishing sufficient conditions.

Our analysis depends, in a fundamental way, on the nature of the boundary condi-
tions. It is evident that periodic boundary value problems represent an important special
case of (1), (2). In fact, the study of periodic behavior and its generalizations motivate
the approach presented in this paper.

Our technique used to establish existence of solutions to (1), (2) relies on the
Lyapunov-Schmidt Procedure. Ideas and techniques similar to the ones used in this
paper were successfully applied to the study of discrete and continuous dynamical sys-
tems. A general abstract approach appears in [1], [3], [4]; [2], [9], [10], [21] present
applications to periodic solutions of ordinary differential equations; discrete-time peri-
odic solutions are considered in [5], [7]; existence results for boundary value problems
in both differential and difference equations are established in [6], [13], [15], [16], [18],
[19]; a functional analytic approach to the study of strongly nonlinear boundary value
problems appears in [11], [12], [14], [17].

2. Preliminaries

Before we establish solvability criteria for (1), (2), we will first analyze the linear,
homogeneous boundary value problem (3), (2). It is easily verified that solutions to (3),
(2) are of the form

where v € R” and ®(¢) is the matrix
eloai(s)ds 0 0o - 0
0 elals)ds o ...0
D(r) =
0 0 0 ... eloan(s)ds
Note that solutions to the nonhomogeneous equation
xi(t):ai(t)xi(t)+hi(t)7 i:1727"'7n (4)

have the form

"l 't 4 S
xi(1) = efb i) () 4 el ais)ds / e~ Batdry () gs.
0

Thus, the boundary value problem (4), (2) is solvable when
1 S
d; / e~ Joaitdrp. ()ds =0
0
foreach i=1,2,---,n.

We now wish to analyze the solvability of (1), (2). In order to do this, we will
introduce notation that allows us to proceed using functional analysis tools.
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We define L: D(L) — %€ ([0,1],R", || - ||) by
Lx =x—Ax,

where
D(L) =%"([0,1],R", ] -[|-.) N X

and
X ={x€%(0,1],R",|| - ||) | Bx(0) + Dx(1) = 0}.

Here, we use the notation

X1 aq 00-.--0
X2 Oa2 0 --0
X = . 7A: . . . ’
X 000 --a,
by 0 0 0 d 00 0
0b, O 0 0d, O 0
B = and D= | .
000 --b, 000 ---4d,

The spaces €'([0,1],R", || - ||) and €*([0,1],R",]| - ||«) will denote respectively {¢ :
[0,1] — R" : ¢ is continuous} and {¢ : [0,1] — R" : ¢ is continuously differentiable}.
The norm used on these spaces is the sup norm; that is, ||¢ || =sup{|¢()]:0<r <1}
where | - | denotes the Euclidean norm on R”.

Welet F:R xR x €([0,1],R",] - ||) — €([0,1],R",]| - ||) be given by

f1 (E,t,x
Flen)(e) = fz(E,{,X(I))

fule,1,x(0))

For simplicity, we will write F(0,x)(¢) = F(x)(¢). We assume f; for i =1,---,n is
continuous and sup{|f;(0,u)| : u € R"*1} <m for some m € R. Hence, F is continuous
and, forall x € X, ||F(x)]|e. < m.

With this notation, the problem (1),(2) is equivalent to Lx = F(g,x). We first
consider the particular case when & = 0. This is equivalent to the operator equation
Lx =Fx.

The fact that L is not invertible makes it impossible to establish the solvability of
Lx = Fx by adirect use of the Schauder Fixed Point Theorem. Instead, we will analyze
this operator equation with a projection scheme usually referred to as the Lyapunov-
Schmidt Procedure. For the reader’s convenience, we provide all the necessary back-
ground. We will exploit the structure of the linear system, discussed above, in the
construction of the projections. For an abstract formulation of the methods used below
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and for a vast number of applications of these methods, we refer the interested reader
to [3],[41,[8].

For
hy
hy
h= . )
hy
if follows that

1 "S
Lx=h ifandonlyif d / e~ Bty (9ds = 0 foreach i=1,2,---,n
0

We see that this simplifies to Lx = & if and only if fol O ()n(t)dt =

The projections we define below are familiar to the Lyapunov-Schmidt Procedure.
We will now provide a self-contained presentation of the Lyapunov-Schmidt Procedure
for the reader’s convenience.

By direct computation, we can verify that the maps P: X — X defined by

[ ai(s)ds
sz() et / foa:

fl e2 fai(s s)ds iy

and E': %([Ov 1]7Rn7 || : H‘X’) - %([07 l}anv H ’ ||°°) defined by

/ Lo By (5)ds

o foails)ds

Ex;(t) =x;(t T I
( ) ( ) fl -2 [§ai(s det

are projections and Im(P) = ker(L) and Im(E) = Im(L). This allows us to write X =
ker(L) ®Im(I — P) and €([0,1],R",|| - ||) = Im(L) ® Im(I — E).

REMARK 2.1. If L is the restriction of L to D(L) NIm(I — P) then Im(L) =
Im(L). L, viewed as a map from D(L) NIm(I — P) into Im(L) is invertible. We denote
(L)~! by M and note that MLx = (I — P)x. Later, we will use the fact that M is
compact.

PROPOSITION 2.2. Lx = F(x) is equivalent to

x = Px+MEF(x)
and
(I—E)F(Px+MEF(x)) =0.

Proof. Using the fact that E is a projection, we have Lx = Fx if and only if
E(Lx—Fx)=0

and
(I-E)(Lx—Fx)=0.
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Since (I — E)L=0 and EL = L, this is equivalent to

Lx=EF(x)
and
(I-E)F(x)=0.

Applying M to the first equation, we obtain

(I—P)x=MEF(x)
and
(I-E)F(x)=0.

From this, we conclude that Lx = F(x) is equivalent to

x=Px+MEF(x)
nd
(2;—E)F(Px—|—MEF(x)) =0.

3. Main Results
According to Proposition 2.2, Lx = Fx if and only if

X = ﬁlq)l (Z) + - +ﬁnq)n(l) +MEF()C)
0= Jo (@1(1)) " £1(0,2, Br®@1(t) + -+ + Bu®n(t) + MEF (x)(1))dt s

0= fol (@, ()" (0,2, B1®1 (2) + -+ -+ Bu®D,(t) + MEF (x)(¢))dt),
where ®;(t) = eloais)ds
LEMMA 3.1. Suppose that:
() bi + dieho @5 = 0 forall i =1,2,---,n;

(i) fi : R"*2 = R is continuous forall i=1,---,n;

(>iii) for each i = 1,-- -, n, there exists y; € R such that

ﬁ(07t7ﬁla'“7ﬁi7”'7ﬁn)ﬁ(07t7ﬁl7'”7_Bi7"'7ﬁn)<0

whenever B; > ;.

Then (5) has a solution.
Proof. Assume, without loss of generality, that for
Bi= i, (®i(t) " £:(0,0,B1,-, Bis--+ Ba) > 0.
We define mappings

Hy =G ([0, 1], RY || - fl) X R = Z7([0, 1], R || - [[),
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Hi1 ([0, 1,RY]| - |lo) xR* = R, fori=1,---,n,
by
Hy(x,Br,-+-,Bn) = B1®1(t) + -+ Bu®u(t) + MEF (x),
Hi+l(x7617' o 7Bn)

=pi— /Ol(q)l(f))_lﬁ(oﬁ»ﬁlq)l(f) + o+ Bu®(t) + MEF (x)(2))dt,

and

H(x,Br,---,By) = (Hi (x,B1,-+,Bn)s s Hug 1 (x, Bry -+, Bn))-

If f; is sufficiently large, we have
Di(1) " fi(0,0, Br @1 (1) + -+ Bi®i(1) + -+ BuPult) + MEF (x) (1)) > 0
and
Di(1) " fi(0,0, B @1 (¢) + - = Bi®i(1) + -+ BuPu(t) + MEF (x) (1)) < 0

for all ¢ € [0,1] and every x € %([0,1],R",]| - ||-). Therefore there is some o; >
| (@;) " such that for all f; > as, x € %([0, 1], R"| - |..),

Hi+1(x7ﬁl7"'7ﬁi7"'7ﬁn) < ﬁi and Hi+l(x7ﬁ17”'7_Bi7"'7ﬁn) > _Bi'
Letting § = max{a; +m||(®;)"'||«}, define
B = {(xvﬁla"'7ﬁn) € %([07 l}anv H ! ||°°) xR":
[[xlleo < 8([|P1leo+ -+ + | Pullec) +ml[| ME]], |Bi] < & fori=1,---,n}.

Here, |||ME||| denotes the operator norm of the bounded, linear map ME. Since M is
compact, we will show that the completely continuous function H maps the non-empty,
closed, bounded, convex set Z into itself. Then the Schauder Fixed Point Theorem will
guarantee the existence of a fixed point, (x, 1, --,B,), of H in 2. This fixed point is
a solution of (5).

Note that |MEF (x)|| < m|||ME]|| for every x € €([0,1],R",]| -||). Now if B; €
[, 0], forall x € €([0,1],R",]| - ||), We have

HiJrl(xaBla"' 7ﬁi7"' 7671)
1
:Bi_/o (@i(1)) 7" £i (0,8, Bi®1 (8) + -+ + Bi®i(1) + - + B DPu(1)
+MEF (x)(t))dt

= Bi_‘/ol |(q)i(t))_1Hfl‘(OJaqu)l(t)+--. +qu)l(t)+ +ﬁnq)n(t)
+MEF (x)(t))|dt
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> B —ml|(®) e = fi— 04 =0
and
Hor (i B )
=i [ @) LB+~ B+ i)
+MEF (x)(t))dt
<t [ @) [H0.0Bi910) 4o~ B+ @)

+MEF(x)(t)) ’dt

Thus, for all x € €([0,1],R",]| - ||), Bi € [04,8], and i=1,--- |n,
Hier (6B, Bise o3 Bu)y Hivat (6, By, =Biy-++ . Ba) € [=Bi Bi] € [-6,6].
Furthermore, if 0 < §; < oy, for all x € €([0,1],R",]| - ||),
[Hig1 (6B, B+, B)
< |+ B —|—/01 [(Di(1)) M| £i(0,2, Bi @y () + -+ & Bii(t) + - + BuPult)

+MEF (x)(1))|dt
< 0+ m|| (@)l < 8

fori=1,---,n.
We have shown that H;, | maps €([0,1],R", || ||.) x [~8,8] x R"~! into [, §].
From this it follows that H(#) C #. Forif (x,fi,---,B,) € £, then

Hi-‘rl('x?Bl;"' 7ﬁn) S [_5,6} fori= 1, N,
while

[Hi(x, By Ba) | < [Bil| @1 flee + -+ + |Bal [ ®]o + [MEF (x)]|-o
SO([Piflew+ -+ 4[| Pallee) +ml[[ME]].

We now establish existence of solutions of (1), (2) for values of € different from
zero. It is significant to observe that the nonlinearities f;(€,,x1(t),--,x,(t)) are al-
lowed to be unbounded.

THEOREM 3.2. Suppose that:
() bi + dieho @15 = 0 forall i =1,2,---,n;
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(i) f; : R"2? =R is continuous forall i=1,---,n;

(iii) for each i = 1,-- - n, there exists y; € R such that

fi(O’t7Bla"'7ﬁi7"'7ﬁn)fi(0’t7ﬁl7'"7_Bi7"'7ﬁn) <0

whenever B; > v;.

Then, there exists an € such that for € € [0, €], there is at least one solution of
Xi(t) = ai(t)xi(t) + fi(e, t,x1(2), -, xn (1)), i=1,2,---n,

that satisfies
bixi(0)+dx;(1) =0, i=1,2,---,n.

Proof. As above, we define mappings

H ‘R x %([Oa 1]7Rna || : H‘”) X R" — <g([oa 1}7Rn7 H ' ||°°)
Hiy (R x %([07 l]aRna || : H‘”) xR"—R
H:Rx%E([0,1],R"] - [|e) x R" = €([0,1],R",]| - ||o) x R"

by
H1(87x7ﬁ17"'7ﬁn):ﬁlq)l+"'+ﬁnq)n +MEF(€7X)7
Hi+1(87x7ﬁ17 : 7Bn

—Bi— /q> (e, Bi®1 (1) + -+ Bu®u(t) + MEF (£,%)(1),

and
H(‘g?xaﬁl?"'vﬁn): (Hl(grxaﬁl? . ﬁn) . n+l(€ X Bl7 ) 7ﬁn>)~
By the proof of Lemma 3.1, redefining

o = ||(®;)7|(m+K) and § = max{c;+ || ®; |e(m+K):i=1,---,n}
for some fixed real number K, we can create a nonempty, convex set

B = {(x,ﬁl,--~,ﬁ,,) e €([0,1],R", || - [|lo) X R" :
[x]lee < S|P ]|o+ -+ + || @|eo) + [ ME| | (m + K) and
Bl <8 fori=1,---,n}

such that, when € = 0, the following hold true:
1. forall B; > oy > ||(d),-)*1 |(m+K),

Hi+1(07x7Bla"'7Bia : 7Bn) Bt K and
Hi+1(07~xaB17"'a_ﬁia. aBn) 2 B +K’
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2. for B; € [, 0],

Hi1(0,x,B1,++,Bi,-+,B) = —K and Hip1(0,x,B1,--+, =B+, Bn) < K;
3. for 0 < Bi < oy, |Hiy1(0,x, B, , 2B, ,Bn)| < 5+ K; and
4 [Hy (0., Br, -+ Bu)| < 8([| @[ + -+ ([ D) + [[|ME]]| (m + K).

It is evident that

inf  dist(H(0,x,B1,---, ), 0B) > 0;
ermhyyep BUH O B, F), 08)

that is, when &€ = 0, there is a positive distance between the boundary of the set %
and the set of H(0,x,B1,--,Bn) for (x,B1,---,Bu) € AB. Since {f1 D1+ -+ PP, +
MEF (x)|(Bi1,- -, Bn,x) € B} is equicontinuous and uniformly bounded, it is compact
by Arzela-Ascoli’s Theorem. This implies that if we choose a positive value, &, so
that we restrict € to the interval [0,&], the map (g,B1, -, Bn,x) — H(&,B1, -+, Bn,X)
is uniformly continuous on Z. From this it follows that there exists & such that if

le] < &,
H(e,Bi, Bux) € B

forall (By,---,Bs,x) € B. The solvability of the parameter dependent vector equation
xi(t) = ai(t)xi(t) +ﬁ(87t’xl (t)7 T ’x"(t))7 i= 1727 N,

that satisfies
biXi(O) —l—dix,-(l) = O, = 1727 —en,

is now a consequence of Schauder’s fixed point theorem.

4. Example

We close with an example to better illustrate the applicability of the results of this
paper. Consider the two-dimensional parameter-dependent equation
X1 (1) = ar(t)xi (1) + fi(e, 1,21 (1), x2(2))
X(1) = ax(1)x2(t) + fa(€, 1,21 (1), x2(1))
subject to the periodic boundary conditions
x1(0) —x1(1) = 0x2(0) —x2(1) = 0. @)

Here, we assume f; : R* — R to be of the form f;(e,z,B1,B2) = wi(Bi)hi(t, Br, Ba) +
egi(t,B1,B2), where g; : R — R is continuous, %; : R3 — R is continuous with the
conditions sup{|h;(¢,B1,B2)| : ¢ € [0,1] and (B, B2) € R?} is finite and h;(z, By, B2) >0
forall € [0,1], (B1,B2) € R?, and w;(B;) : R — R with the asymptotic behavior
Blim W,‘(ﬁ,‘) = W,‘(OO) >0

i

(6)

lim W,‘(ﬁ,‘) = W,‘(—OO) <0
for i = 1,2. It is evident that if fol a;i(t)dt =0 for i = 1,2, then using Theorem 3.2, we
see that the boundary value problem (6), (7) has a solution.
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