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(Communicated by J. Henderson)

Abstract. We employ fixed point index theory to establish existence results for positive solutions
to the singular boundary value problem{−(au′)′(t) = b(t) f (t,u(t)), t ∈ (0,1) ,

u′(0) = u(1) = 0,

where a ∈ C1((0,1),(0,∞)) , 1/a is integrable on any compact subset of (0,1] , b ∈ C((0,1) ,
[0,+∞)) does not vanish identically and is integrable on any compact subset of [0,1) , and f :
[0,1]×R

+ → R
+ is continuous with f (t,u) > 0 for all (t,u) ∈ [0,1]× (0,∞) . As applications,

existence and nonexistence criteria for positive radial solutions to some elliptic equations are
deduced.

1. Introduction

In this paper, we present some new results guaranteeing the existence of positive
solutions to the singular boundary value problem (BVP){−(au′)′(t) = b(t) f (t,u(t)), t ∈ (0,1) ,

u′(0) = u(1) = 0,
(1.1)

where R
+ = [0,∞) , a ∈ C1((0,1),(0,∞)) , 1/a is integrable on any compact subset

of (0,1] , b ∈ C((0,1),R+) does not vanish identically and is integrable on any com-
pact subset of [0,1) , and f : [0,1]×R

+ → R
+ is continuous with f (t,u) > 0 for

all (t,u) ∈ [0,1]× (0,∞) . By a positive solution to BVP (1.1) , we mean a function
u ∈C ([0,1] ,R+)∩C1((0,1),R+) with u(t) > 0 on [0,1) satisfying both the differen-
tial equation and the boundary conditions in (1.1) .

It is worth pointing out the difference between the boundary conditions in (1.1)
and the conditions

(au′)(0) = u(1) = 0 (1.2)
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that are often considered in the literature. If u is a positive solution of (1.1), then u′
may be positive on some subinterval of (0,1) . For example,

u(t) = − 1
15

(
1− t

√
t
)
+

2
5

(
1− t2

√
t
)

is a positive solution of ⎧⎨⎩−
(

u′(t)√
t

)′
= 1,

u′(0) = u(1) = 0,

and u′(t) =
√

t
( 1

10 − t
)

is positive on
(
0, 1

10

)
. On the other hand,

v(t) =
2
5

(
1− t2

√
t
)

is a positive solution of ⎧⎪⎨⎪⎩
−
(

v′(t)√
t

)′
= 1,(

v′√
t

)
(0) = v(1) = 0,

and v′(t) =−t
√

t < 0 on (0,1) . This difference, together with the possible singularities
of a and b , makes the study of problem (1.1) harder than using the boundary conditions
(1.2).

Throughout this paper, we assume that a and b satisfy the following conditions:

lim
x→0

1
a(x)

∫ x

0
b(t)dt = 0, (1.3)

∫ 1

0

(
1

a(s)

∫ s

0
b(t)dt

)
ds < ∞, (1.4)

and ∫ 1

0
b(t)

(∫ 1

t

ds
a(s)

)
dt < ∞. (1.5)

Typical examples of a and b satisfying (1.3)–(1.5) are a(t) = b(t) = tα (1− t)β with
α > −1 and β < 1. Note that a solution of (1.1) in the case a(t) = b(t) = tn−1 with
n ∈ N is a radial solution to the elliptic equation{−Δu(x) = f (|x| ,u(x)), x ∈Ω,

u = 0 on ∂Ω,
(1.6)

where Ω is the unit ball in R
n . Moreover, in the case Ω = R

n (n � 3) , by means of
a change of variables, we can see that a radial solution of (1.6) is a solution of (1.1)
(see Section 4 for details).

Since singular BVPs arise in many physical problems, existence and multiplicity
results for positive solutions of such problems have been studied by many authors in
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recent years; see, for example, [1, 4, 12, 15, 18, 21, 28] and references therein. For
some studies on radial positive solutions of elliptic equations, the reader may refer to
[6, 8, 13, 16, 17, 23] and the included references.

Different variations of the regular version of BVP (1.1) have been studied ex-
tensively in the literature, for example, in [2, 7, 9, 10, 11, 19, 26, 24, 25, 22, 30]. In
this paper, as in the papers [7, 10, 19, 22, 24, 25, 30], our criteria for the existence of
positive solutions are determined by the relationship between the behavior of the term
f (t,x)/x near 0 and ∞ when compared with the smallest eigenvalue of an associated
linear problem subject to the same boundary conditions. However, our existence results
can not be proved with the same arguments as in those papers since the weights a and
b here are singular. To overcome the difficulty caused by the singularity of a and b ,
many new ideas and techniques are developed in this paper.

In what follows, we let E be the Banach space of all continuous functions de-
fined on [0,1] endowed with the usual sup-norm denoted by ‖·‖ , K be the cone of
nonnegative functions in E , and K∗ = K\{0} .

We recall the following convergence result due to Brezis and Lieb; see [3, Theorem
1].

LEMMA 1.1. Assume that 0 < p < ∞ and Ω is a measurable set in R
N . If { fn}

is a bounded sequence in Lp (Ω) with fn → f a.e. in Ω , then

‖ f‖p
p = lim

n→∞

(‖ fn‖p
p−‖ f − fn‖p

p

)
.

The following corollary is an immediate consequence of Lemma 1.1.

COROLLARY 1.1. Assume that 0 < p < ∞ and Ω is a measurable set in R
N . If

{ fn} is a sequence in Lp (Ω) with fn → f a.e in Ω and limn→∞ ‖ fn‖p = ‖ f‖p , then

lim
n→∞

‖ f − fn‖p = 0.

In the remainder of this section, for the sake of completeness, we recall some basic
facts from fixed point index theory. Let X be a real Banach space and K be a closed
subset of X . Then K is called a cone if

	 K is convex;

	 tx ∈ K for all t � 0 and x ∈ K ;

	 if x ∈ K and −x ∈ K , then x = 0.

The set K is called a retract of X if there exists a continuous mapping r : X → K such
that r (x) = x for all x ∈ K. The mapping r is called a retraction. From a theorem by
Dugundji, every nonempty closed convex subset of X is a retract of X . In particular,
every cone of X is a retract of X .

Let K be a retract of X , U be an open bounded subset of K , and B(0,R) be the
ball of radius R in X such that U ⊂ B(0,R) . For any completely continuous mapping
f : U → K with f (x) �= x for all x ∈ ∂U , the integer given by

i( f ,U,K) = deg
(
I− f ◦ r,B(0,R)∩ r−1 (U) ,0

)
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where deg is the Leray-Schauder degree, is well defined and is called the fixed point
index.

PROPERTIES OF THE FIXED POINT INDEX:

1. Normality: i( f ,U,K) = 1 if f (x) = x0 ∈U for all x ∈U ;

2. Homotopy invariance: Let H : [0,1]×U → K be a completely continuous mapping
such that H (t,x) �= x for all (t,x) ∈ [0,1]× ∂U. Then, the integer i(H (t, ·) ,U,K) is
independent of t ;

3. Additivity:
i( f ,U,K) = i( f ,U1,K)+ i( f ,U2,K)

whenever U1 and U2 are two disjoint open subsets of U such that f has no fixed point
in U \ (U1∪U2) ;

4. Permanence: If K′ is a retract of K with f
(
U
)⊂ K′ , then

i( f ,U,K) = i
(
f ,U ∩K′,K′) ;

5. Solution property: If i( f ,U,K) �= 0, then f admits a fixed point in U.

Now, assume that K is a cone, and for all R > 0, we set KR = B(0,R)∩K. The
following lemmas and their proofs can be found in [14].

LEMMA 1.2. If f (x) �= λx for all x ∈ ∂KR = ∂B(0,R)∩K and λ � 1 , then

i( f ,KR,K) = 1.

LEMMA 1.3. If

	 f (x) �= λx for all x ∈ ∂KR = ∂B(0,R)∩K and λ ∈ (0,1] , and

	 inf{‖ f (x)‖ : x ∈ ∂KR} > 0 ,

then
i( f ,KR,K) = 0.

LEMMA 1.4. If ‖ f (x)‖ � ‖x‖ for all x ∈ ∂KR = ∂B(0,R)∩K , then

i( f ,KR,K) = 0.

2. Preliminary results

In this section, we focus our attention on the linear eigenvalue problem associated
with BVP (1.1) , namely,{−(au′)′(t) = λb(t)u(t), t ∈ (0,1) ,

u′(0) = u(1) = 0,
(2.1)

where λ is a real parameter.
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DEFINITION 2.1. We say that λ is a positive eigenvalue of (2.1) if λ > 0 and
there exists φ ∈ K∗ such that (λ ,φ) satisfies (2.1) .

Consider the linear operator L : E → E defined by

Lu(x) =
∫ 1

x

1
a(s)

(∫ s

0
b(t)u(t)dt

)
ds, u ∈ E.

LEMMA 2.1. Assume that (1.4) and (1.5) hold. Then the function H(x) defined
by

H(x) =
∫ x

0
b(t)dt

∫ 1

x

1
a(t)

dt

satisfies
lim
x→0

H(x) = 0 and lim
x→1

H(x) = 0.

Moreover, for all u ∈ E ,

Lu(x) =
∫ 1

0
G(x,t)b(t)u(t)dt,

where

G(x,t) =

⎧⎨⎩
∫ 1
x

ds
a(s) , if 0 < t � x < 1,∫ 1

t
ds

a(s) , if 0 < x � t < 1.

Proof. It is easy to see that

H(x) �
∫ x

0
b(t)

(∫ 1

t

ds
a(s)

)
dt

and

H(x) �
∫ 1

x

1
a(t)

(∫ t

0
b(s)ds

)
dt.

Thus,
lim
x→0

H(x) = lim
x→1

H(x) = 0.

Now, let x ∈ (0,1) and ε ∈ (0,1− x) . For any u ∈ E , an integration by parts yields

∫ 1−ε

x

1
a(t)

(∫ t

0
b(s)u(s)ds

)
dt = −

∫ 1

1−ε
ds

a(s)

∫ 1−ε

0
b(s)u(s)ds

+
∫ 1

x

ds
a(s)

∫ x

0
b(s)u(s)ds+

∫ 1−ε

x
b(t)

(∫ 1

t

1
a(s)

ds

)
u(t)dt. (2.2)

Taking into account that∫ 1

1−ε
ds

a(s)

∫ 1−ε

0
b(s)u(s)ds � H(1− ε)‖u‖
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and letting ε → 0 in (2.2) , we obtain

Lu(x) =
∫ 1

x

ds
a(s)

∫ x

0
b(s)u(s)ds+

∫ 1

x
b(t)

(∫ 1

t

1
a(s)

ds

)
u(t)dt

=
∫ 1

0
G(x,t)b(t)u(t)dt.

This completes the proof of the lemma.

LEMMA 2.2. Assume that (1.3) and (1.4) hold and u ∈ E . Then v = Lu is a
solution of the BVP {−(av′)′(t) = b(t)u(t), t ∈ (0,1) ,

v′(0) = v(1) = 0.
(2.3)

Proof. If, for all x ∈ [0,1] ,

v(x) = Lu(x) =
∫ 1

x

1
a(t)

(∫ t

0
b(s)u(s)ds

)
dt,

then v(1) = 0 and

−(av′
)′ (x) = b(x)u(x), x ∈ (0,1).

Moreover, ∣∣∣∣v(x)− v(0)
x

∣∣∣∣ =
1
x

∫ x

0

1
a(t)

(∫ t

0
b(s)u(s)ds

)
dt

� ‖u‖ 1
x

∫ x

0

1
a(t)

(∫ t

0
b(s)ds

)
dt.

Applying L’Höpital’s rule and (1.3) , we have

|v′(0)| =
∣∣∣∣limx→0

v(x)− v(0)
x

∣∣∣∣� lim
x→0

‖u‖
a(x)

∫ x

0
b(s)ds = 0.

Thus, v(t) is a solution of (2.3), completing the proof of the lemma.

LEMMA 2.3. Assume that (1.4) holds. Then L is completely continuous.

Proof. This follows from the uniform continuity of the function

x →
∫ 1

x

1
a(t)

(∫ t

0
b(s)ds

)
dt

on [0,1] and the Ascoli-Arzelà theorem.
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Let {αn} and {βn} be two sequences such that, for all n ∈ N , 0 < αn+1 � αn <
1/2, limn→∞αn = 0, and βn = 1−αn . Let In = [αn,βn] . For each n ∈ N , it is well-
known that the eigenvalue problem{−(au′)′(t) = λb(t)u(t), t ∈ (αn,βn) ,

u′(αn) = u(βn) = 0,
(2.4)

has a smallest positive eigenvalue λ n
1 = λ1 (a,b, In) and the eigenfunction φn associated

with λ n
1 has no zero in (0,1) ; see, for example, [2, Theorem 9] or [32, Theorem 4.3.2].

For each n ∈ N , let the functions ϕn , ψn , and vn be defined by

ϕn : [0,1]→ In with ϕn (s) = (βn−αn) s+αn,

ψn : In → [0,1] with ψn (s) =
s−αn

βn−αn
, and

vn : [0,1]→ R with vn (t) = φn (ϕn(t)) .

From (2.4) , we see that vn satisfies the BVP{−(anv′n)′(t) = λ n
1 (βn−αn)2 bn(t)vn(t), t ∈ (0,1) ,

v′n(0) = vn(1) = 0,
(2.5)

where an (t) = a(ϕn(t)) and bn (t) = b(ϕn(t)) . Thus, vn = λ n
1 Ln (vn) , where

Ln (u)(x) = (βn−αn)2
∫ 1

x

1
an(s)

(∫ s

0
bn(t)u(t)dt

)
ds, u ∈ E.

LEMMA 2.4. Assume that (1.4) and (1.5) hold. Then limn→∞Ln = L.

Proof. As in the case of the operator L , it is easy to see that for each n ∈ N ,

Lnu(x) =
∫ 1

0
Gn(x,t)bn(t)u(t)dt,

where

Gn(x,t) = c2
n

⎧⎨⎩
∫ 1
x

ds
an(s)

, if 0 � t � x,∫ 1
t

ds
an(s)

, if x � t � 1,

with cn = (βn−αn) . Then, for any u ∈ E with ‖u‖ = 1, we have

|Lu(x)−Lnu(x)| =
∣∣∣∣∫ 1

0
[G(x,t)b(t)−Gn(x, t)bn(t)]u(t)dt

∣∣∣∣
�
∫ 1

0
|G(x,t)b(t)−Gn(x, t)bn(t)|dt.

Thus, we have to show that

lim
n→∞

(
sup

x∈[0,1]

∫ 1

0
|G(x,t)b(t)−Gn(x,t)bn(t)|dt

)
= 0.
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Note that ∫ 1

0
|Gn(x,t)bn(t)−G(x,t)b(t)|dt = Kn(x)+Mn(x),

where

Kn(x) =
∫ 1

x

∣∣∣∣c2
nbn(t)

∫ 1

t

ds
an(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt

and

Mn(x) =
∫ x

0

∣∣∣∣c2
nbn(t)

∫ 1

x

ds
an(s)

−b(t)
∫ 1

x

ds
a(s)

∣∣∣∣dt.

We need to show that Kn and Mn converge uniformly to 0 on [0,1] . Clearly, we have

Kn(x) � Kn(0) =
∫ 1

0

∣∣∣∣c2
nbn(t)

∫ 1

t

ds
an(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt,

and for all t ∈ (0,1) ,

lim
n→∞

c2
nbn(t)

∫ 1

t

ds
an(s)

= b(t)
∫ 1

t

ds
a(s)

.

Since∣∣∣∣∫ 1

0
b(t)

(∫ 1

t

ds
a(s)

)
dt−

∫ 1

0
c2
nbn(t)

(∫ 1

t

ds
an(s)

)
dt

∣∣∣∣
=
∣∣∣∣∫ 1

0
b(t)

(∫ 1

t

ds
a(s)

)
dt−

∫ βn

αn

b(t)
(∫ βn

t

ds
a(s)

)
dt

∣∣∣∣
=
∫ 1

βn

b(t)
(∫ 1

t

ds
a(s)

)
dt +

∫ βn

αn

b(t)
(∫ 1

βn

ds
a(s)

)
dt +

∫ αn

0
b(t)

(∫ 1

t

ds
a(s)

)
dt

�
∫ 1

βn

b(t)
(∫ 1

t

ds
a(s)

)
dt +

∫ βn

0
b(t)dt

∫ 1

βn

ds
a(s)

+
∫ αn

0
b(t)

∫ 1

αn

ds
a(s)

dt

=
∫ 1

βn

b(t)
(∫ 1

t

ds
a(s)

)
dt +H(βn)+H(αn),

from Lemma 2.1 and (1.5) , it follows that

lim
n→∞

∣∣∣∣∫ 1

0
b(t)

(∫ 1

t

ds
a(s)

)
dt−

∫ 1

0
c2
nbn(t)

(∫ 1

t

ds
an(s)

)
dt

∣∣∣∣= 0.

In view of the fact that∫ 1

0
c2
nbn(t)

(∫ 1

t

ds
an(s)

)
dt =

∫ βn

αn

b(t)
(∫ βn

t

ds
a(s)

)
dt

<
∫ 1

0
b(t)

(∫ 1

t

ds
a(s)

)
dt < ∞,
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then from Corollary 1.1, we conclude that

lim
n→∞

(
sup

x∈[0,1]
Kn(x)

)
= lim

n→∞
Kn(0) = 0.

Next, for x ∈ [0,1/2], we have ϕn(x) � x and

Mn(x) �
∫ x

0

∣∣∣∣cnbn(t)
∫ 1

ϕn(x)

ds
a(s)

−b(t)
∫ 1

ϕn(x)

ds
a(s)

∣∣∣∣dt

+
∫ x

0
b(t)dt

∫ ϕn(x)

x

ds
a(s)

+
∫ x

0
b(t)dt

∫ 1

βn

ds
a(s)

�
∫ x

0

∣∣∣∣cnbn(t)
∫ 1

ϕn(t)

ds
a(s)

−b(t)
∫ 1

ϕn(t)

ds
a(s)

∣∣∣∣dt +H(x)−H(ϕn (x))

+
∫ ϕn(x)

x
b(t)dt

∫ 1

ϕn(x)

ds
a(s)

+
∫ x

0
b(t)dt

∫ 1

βn

ds
a(s)

,

which implies that

Mn(x) �
∫ 1

2

0

∣∣∣∣cnbn(t)
∫ 1

ϕn(t)

ds
a(s)

−b(t)
∫ 1

ϕn(t)

ds
a(s)

∣∣∣∣dt

+H(x)−H(ϕn (x))

+
∫ ϕn(x)

x
b(t)

(∫ 1

t

ds
a(s)

)
dt +

∫ βn

0
b(t)dt

∫ 1

βn

ds
a(s)

.

Note that if I is the function defined by I(x) = x , then ϕn converges uniformly

to I and the functions H and x → ∫ x
0 b(t)

(∫ 1
t

ds
a(s)

)
dt are uniformly continuous on

[0,1] . Hence, H(x)−H(ϕn (x)) and
∫ ϕn(x)
x b(t)

(∫ 1
t

ds
a(s)

)
dt converge to 0 uniformly

on [0,1/2] . Moreover, it is clear that

lim
n→∞

∫ βn

0
b(t)dt

∫ 1

βn

ds
a(s)

= 0

and ∫ 1
2

0

(
cnbn(t)

∫ 1

ϕn(t)

ds
a(s)

−b(t)
∫ 1

ϕn(t)

ds
a(s)

)
dt � 2

∫ 1
2

0

(
b(t)

∫ 1

t

ds
a(s)

)
dt < ∞.

It remains to show that

lim
n→∞

∫ 1
2

0

∣∣∣∣cnbn(t)
∫ 1

ϕn(t)

ds
a(s)

−b(t)
∫ 1

ϕn(t)

ds
a(s)

∣∣∣∣dt = 0. (2.6)

For all t ∈ (0,1/2],

lim
n→∞

(
cnbn(t)

∫ 1

ϕn(t)

ds
a(s)

−b(t)
∫ 1

ϕn(t)

ds
a(s)

)
= 0.
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By straightforward computations,∣∣∣∣∣
∫ 1

2

0

(
cnbn(t)

∫ 1

ϕn(t)

ds
a(s)

−b(t)
∫ 1

ϕn(t)

ds
a(s)

)
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

2

αn

b(t)
(∫ 1

t

ds
a(s)

)
dt−

∫ 1
2

0
b(t)

(∫ 1

ϕn(t)

ds
a(s)

)
dt

∣∣∣∣∣
�
∫ αn

0
b(t)

(∫ 1

t

ds
a(s)

)
dt +

∫ 1
2

0
b(t)

(∫ ϕn(t)

t

ds
a(s)

)
dt.

It is clear that limn→∞
∫ αn
0 b(t)

(∫ 1
t

ds
a(s)

)
dt = 0, limn→∞ b(t)

(∫ ϕn(t)
t

ds
a(s)

)
= 0, and for

all n ∈ N and t ∈ (0,1/2], b(t)
(∫ ϕn(t)

t
ds

a(s)

)
� b(t)

(∫ 1
t

ds
a(s)

)
. Then, by the Lebesgue

dominated convergence theorem,

lim
n→∞

∫ 1
2

0
b(t)

(∫ ϕn(t)

t

ds
a(s)

)
dt = 0.

Thus, from Corollary 1.1, (2.6) holds, and so

lim
n→∞

(
sup

x∈[0, 1
2 ]

Mn(x)

)
= 0.

Now, for x ∈ [1/2,1] , we have ϕn(x) � x and

Mn(x) �
∫ x

0

∣∣∣∣cnbn(t)
∫ 1

x

ds
a(s)

−b(t)
∫ 1

x

ds
a(s)

∣∣∣∣dt +
∫ x

0
b(t)dt

∫ x

ϕn(x)

ds
a(s)

+
∫ βn

0
b(t)dt

∫ 1

βn

ds
a(s)

�
∫ x

0

∣∣∣∣cnbn(t)
∫ 1

t

ds
a(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt +H(ϕn (x))−H(x)

+
∫ x

ϕn(x)
b(t)dt

∫ 1

ϕn(x)

ds
a(s)

+
∫ βn

0
b(t)dt

∫ 1

βn

ds
a(s)

�
∫ x

0

∣∣∣∣cnbn(t)
∫ 1

t

ds
a(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt +H(ϕn (x))−H(x)

+
∫ x

ϕn(x)
b(t)

(∫ 1

ϕn(t)

ds
a(s)

)
dt +

∫ βn

0
b(t)dt

∫ 1

βn

ds
a(s)

.

As above, {ϕn} converges uniformly to I and the functions H and

x →
∫ x

0
b(t)

(∫ 1

t

ds
a(s)

)
dt
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are uniformly continuous on [0,1] . Then, H(x)−H(ϕn (x)) and∫ x

ϕn(x)
b(t)

(∫ 1

ϕn(t)

ds
a(s)

)
dt

converge uniformly to 0 on [1/2,1]. Moreover, it is clear that

lim
n→∞

∫ βn

0
b(t)dt

∫ 1

βn

ds
a(s)

= 0.

Then, it remains to show that

lim
n→∞

(
sup

x∈[ 1
2 ,1]

∫ x

0

∣∣∣∣cnbn(t)
∫ 1

t

ds
a(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt

)
= 0. (2.7)

For x ∈ [1/2,1] , we have∫ x

0

∣∣∣∣cnbn(t)
∫ 1

t

ds
a(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt

=
∫ 1

2

0

∣∣∣∣cnbn(t)
∫ 1

t

ds
a(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt

+
∫ x

1
2

∣∣∣∣cnbn(t)
∫ 1

t

ds
a(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt.

Note that∫ 1
2

0

∣∣∣∣cnbn(t)
∫ 1

t

ds
a(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt �
∫ 1

2

0
|cnbn(t)−b(t)|dt

∫ 1

t

ds
a(s)

.

Then, from Corollary 1.1, limn→∞
∫ 1

2
0 |cnbn(t)−b(t)|dt = 0, and so

lim
n→∞

∫ 1
2

0

∣∣∣∣cnbn(t)
∫ 1

t

ds
a(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt = 0.

We need to show that

lim
n→∞

(
sup

x∈[ 1
2 ,1]

∫ x

1
2

∣∣∣∣cnbn(t)
∫ 1

t

ds
a(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt

)
= 0.

To this end, let us prove

lim
n→∞

∫ 1

1
2

∣∣∣∣cnbn(t)
∫ 1

t

ds
a(s)

−b(t)
∫ 1

t

ds
a(s)

∣∣∣∣dt = 0. (2.8)

For all t ∈ [1/2,1), limn→∞ cnbn(t)
∫ 1
t

ds
a(s) = b(t)

∫ 1
t

ds
a(s) and

∫ 1

1
2

cnbn(t)
(∫ 1

t

ds
a(s)

)
dt =

∫ βn

1
2

b(t)
(∫ 1

ψn(t)

ds
a(s)

)
dt
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�
∫ 1

1
2

b(t)
(∫ 1

t

ds
a(s)

)
dt < ∞.

Moreover, ∣∣∣∣∫ 1

1
2

cnbn(t)
(∫ 1

t

ds
a(s)

)
dt−

∫ 1

1
2

b(t)
∫ 1

t

ds
a(s)

dt

∣∣∣∣
=
∣∣∣∣∫ βn

1
2

b(t)
(∫ 1

ϕn(t)

ds
a(s)

)
dt−

∫ 1

1
2

b(t)
(∫ 1

t

ds
a(s)

)
dt

∣∣∣∣
�
∫ 1

1
2

b(t)
(∫ t

ϕn(t)

ds
a(s)

)
dt +

∫ 1

βn

b(t)
(∫ 1

t

ds
a(s)

)
dt.

It is clear that limn→∞
∫ 1
βn

b(t)
(∫ 1

t
ds

a(s)

)
dt = 0, limn→∞ b(t)

(∫ t
ϕn(t)

ds
a(s)

)
= 0, and for

all t ∈ [1/2,1) , b(t)
(∫ t

ϕn(t)
ds

a(s)

)
� b(t)

(∫ 1
t

ds
a(s)

)
, so by the Lebesgue dominated con-

vergence theorem,

lim
n→∞

∫ 1

1
2

b(t)
(∫ t

ϕn(t)

ds
a(s)

)
dt = 0.

Hence, by Corollary 1.1, (2.8) holds, which in turn implies (2.7).
Finally, from the above discussion, we conclude that

lim
n→∞

(
sup

x∈[0,1]

∫ x

0

∣∣∣∣c2
nbn(t)

∫ 1

x

ds
a(s)

−b(t)
∫ 1

x

ds
a(s)

∣∣∣∣dt

)
= 0

and

lim
n→∞

(
sup

x∈[0,1]

∫ 1

0
|bn(t)Gn (x,t)−b(t)Gn (x,t)|dt

)
= 0.

This completes the proof of the lemma.

LEMMA 2.5. Assume that (1.3)–(1.5) hold. Then, the spectral radius, rL , of L
satisfies rL > 0 , and there exists ϕ ∈ K∗ such that Lϕ(t) = rLϕ(t) . Consequently,
λ1 := 1/rL is the smallest positive eigenvalue of (2.1) , i.e., ϕ(t) = λ1Lϕ(t) .

Proof. By Lemma 2.3, L is completely continuous and it is clear that L maps K
into K . Since the weight b does not vanish identically on (0,1) , there exists [γ,χ ] ⊂
(0,1) such that b > 0 on [γ,χ ] . Choose u ∈ E such that u(t) � 0 on [0,1] , u(t∗) > 0
for some t∗ ∈ [γ,χ ] , and u(t) = 0 on [0,1]\ [γ,χ ] . Then for t ∈ [γ,χ ] , we have

Lu(t) =
∫ 1

t

1
a(s)

(∫ s

0
b(τ)u(τ)dτ

)
ds �

∫ 1

χ

1
a(s)

(∫ s

γ
b(τ)u(τ)dτ

)
ds > 0.

Thus, there exists c > 0 such that cLu(t) � u(t) for t ∈ [0,1] . Now, from [20, Chapter
5, Theorem 2.1], it follows that rL > 0. Finally, since rL > 0 and K is a total cone, the
conclusion of the lemma readily follows from the well known Krein–Rutman theorem
(see, for example, [31, Proposition 7.26]). This completes the proof of the lemma.
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We need the following fundamental result of Nussbaum [27] as quoted by Webb
[29].

LEMMA 2.6. Let {Ln} be a sequence of compact linear operators on a Banach
space X and suppose that Ln → L in operator norm as n → ∞ . Then r(Ln) → r(L)
where r(Ln) and r(L) denote the spectral radii of Ln and L, respectively.

REMARK 2.1. For each n ∈ N , let rn
L be the spectral radius of Ln . As in the

proof of Lemma 2.5, we see that rn
L > 0. Then, by the Krein–Rutman theorem, there

exists a normalized eigenfunction φn (i.e., ||φn|| = 1) such that Lnφn(t) = rn
Lφn(t) and

λ n
1 = 1/rn

L . Thus, Lemmas 2.4 and 2.6 imply that λ1 = limn→∞λ n
1 .

3. Nonexistence and existence results

Below, we let λ1 , λ n
1 , φn , vn , Ln , L , and In be as defined in Section 2.

THEOREM 3.1. Assume that (1.3)-(1.5) hold. If

inf

{
f (t,u)

u
: t ∈ [0,1) and u > 0

}
> λ1,

then BVP (1.1) has no positive solution.

Proof. Assume, to the contrary, that BVP (1.1) has a positive solution u(t) . Inte-
grating the equation in (1.1) on [ε,ζ ] with ε,ζ ∈ (0,1) , we have

a(ε)u′(ε)−a(ζ )u′(ζ ) =
∫ ζ

ε
b(s)( f (s,u(s))ds.

This implies that limε→0 a(ε)u′(ε) exists; denote this value by � . We will consider two
cases.

If � � 0 and φn is the solution of (2.4) corresponding to λ n
1 , we have

a(βn)u(βn)φ ′
n (βn)+a(αn)u′ (αn)φn (αn)

=
∫ βn

αn

[− (au′
)′ (t)φn(t)+

(
aφ ′

n

)′ (t)u(t)
]
dt

=
∫ βn

αn

b(t)φn(t)( f (t,u)−λ n
1 u(t))dt.

This equality is impossible since a(βn)u(βn)φ ′
n (βn)+ a(αn)u′ (αn)φn (αn) � 0, but

from Remark 2.1,
f (t,u)

u
> λ n

1 for large n implying that

∫ βn

αn

b(t)φn(t)( f (t,u(t))−λ n
1 u(t))dt > 0.



360 ABDELHAMID BENMEZAI, JOHN R. GRAEF AND LINGJU KONG

Now suppose � > 0. Since (au′)′(t) = −b(t) f (t,u(t)) � 0, there exists a unique
t1 ∈ (0,1) such that u′(t1) = 0 and u(t1) = ‖u‖ = maxt∈[0,1] u(t) . Moreover, there
exists an interval I = (t2,t3) ⊂ (t1,1) on which b(t) does not vanish identically. For
sufficiently large n , we then have

0 � a(t3)u(t3)φ ′
n(t3) =

∫ t3

t1

[− (au′
)′ (t)φn(t)+

(
aφ ′

n

)′ (t)u(t)
]
dt

=
∫ t3

t1
b(t)φn(t)( f (t,u(t))−λ n

1 u(t))dt > 0,

which is a contradiction. This completes the proof of the theorem.

REMARK 3.1. Notice that � �= 0 holds only if
∫ 1
0

dt
a(t) < ∞ and limx→∞

1
a(x) = 0.

THEOREM 3.2. Assume that (1.3)-(1.5) hold. If

sup
{ f (t,u)

u
: t ∈ [0,1) and u > 0

}
< λ1,

then BVP (1.1) has no positive solution.

Proof. Assume, to the contrary, that BVP (1.1) has a positive solution u(t) . Then,{−(au′)′(t) = b(t)m(t)u(t), t ∈ (0,1) ,

u′(0) = u(1) = 0,

where m(t) =
f (t,u(t))

u(t)
. From Property 3 of [2, Theorem 9], it follows that

1 = λ1 (a,bm, [0,1]) = lim
n→∞

λ1 (a,bm, In)

� lim
n→∞

λ1 (a,b, In)
α

=
λ1 (a,b, [0,1])

α
=

λ1

α
> 1,

where α = sup
{ f (t,u)

u
: t ∈ [0,1)and u > 0

}
. This is impossible and thus completes

the proof of the theorem.

REMARK 3.2. In the above proof, λ1 (a,bm, [0,1]) is well defined because m is
bounded and the weights a and bm satisfy conditions (1.3) -(1.5) .

In the following, we will give some existence results for positive solutions of BVP
(1.1) . To this end, we introduce the following notations:

f 0 = limsup
u→0

(
max
t∈[0,1]

f (t,u)
u

)
, f∞ = limsup

u→+∞

(
max
t∈[0,1]

f (t,u)
u

)
,

f0 = liminf
u→0

(
min

t∈[0,1]

f (t,u)
u

)
, f∞ = liminf

u→+∞

(
min

t∈[0,1]

f (t,u)
u

)
.
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Let F : E → E be the Nemyckii operator defined by Fu(t) = f (t,u(t)) . It is well
known that F is continuous and maps bounded sets into bounded sets. For any n ∈ N ,
we write Tn = Ln ◦F and T = L◦F .

As was the case for L (see the proof of Lemma 2.3), Ln is compact. Then, T and
Tn are completely continuous operators. Moreover, if Ω is an open bounded set in E ,
and TΩ and Tn,Ω are the restrictions of T and Tn to Ω , respectively, then it follows
from Lemma 2.4 that limn→∞ Tn,Ω = TΩ . Furthermore, for any retract X of E and
retraction r : E → X , we have limn→∞ I −Tn,XΩ ◦ r = I −TXΩ ◦ r , where XΩ = X ∩Ω .
Thus, limn→∞ i(Tn,XΩ ,XΩ,X) = i(TXΩ ,XΩ,X) . It is clear that u is a fixed point of T in
E if and only if u is a solution of BVP (1.1) .

LEMMA 3.1. Assume that (1.3)-(1.5) hold. If f 0 < λ1 , then there exists q0 > 0
such that i(T,K∩B(0,q) ,K) = 1 for all q ∈ (0,q0

]
.

Proof. In view of Remark 2.1, there exist q0 > 0 and N ∈ N such that f (t,u) <
λ n

1 u for all u ∈ [0,q0
]

and n � N .
For any n � N , assume that for q∈ (0,q0

]
, there exist u∈K∩∂B(0,q) and λ � 1

such that Tnu = λu . Then, we have{−(anu′)′(t) = λ−1 (βn−αn)2 bn(t) f (t,u(t)), t ∈ (0,1) ,

u′(0) = u(1) = 0.
(3.1)

Multiplying the differential equation in (3.1) by a solution vn of (2.5) and integrating
over [0,1] , we reach the contradiction

0 =
∫ 1

0
[−(anu

′)′ vn +
(
anv

′
n

)′
u] = (βn−αn)

2
∫ 1

0
bnvn(λ−1 f (t,u)−λ n

1 u) < 0.

Thus, from Lemma 1.2, i(Tn,K∩B(0,q) ,K) = 1 for any n � N . Hence,

i(T,K∩B(0,q) ,K) = lim
n→∞

i(Tn,K ∩B(0,q) ,K) = 1.

This completes the proof of the lemma.

LEMMA 3.2. Assume that (1.3)-(1.5) hold. If f0 > λ1 , then there exists q0 > 0
such that i(T,K∩B(0,q) ,K) = 0 for all q ∈ (0,q0] .

Proof. Let ε > 0 be such that f0 > λ1 + ε . Then there exists n0 ∈ N such that
n � n0 implies f0 > λ1 +ε > λ n

1 . Thus, there exists q0 > 0 such that f (t,u) > λ n
1 u for

all u ∈ [0,q0] and n � n0 . Let

Kn = {u ∈ K : u(x) � ρn (x)‖u‖ for all x ∈ [0,1]} ,

where ρn (x) = 1
ρn

∫ 1
x

ds
an (s)

with ρn =
∫ 1
0

ds
an (s)

.
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We claim that Tn(K) ⊂ Kn . In fact, from the definition of Gn(t,s) , we see that
Gn(x, t) � Gn(t, t) for x,t ∈ [0,1] and

Gn(x,t)
Gn(t,t)

=

⎧⎪⎨⎪⎩
∫ 1
x

ds
an(s)∫ 1

t
ds

an(s)
if 0 � t � x � 1,

1, if 0 � x � t � 1,

�
∫ 1
x

ds
an(s)∫ 1

0
ds

an(s)

= ρn(x).

Thus, Gn(x, t) � ρn(x)Gn(t,t) for x,t ∈ [0,1] . Hence, for x ∈ [0,1] , we have

Tnu(x) =
∫ 1

0
Gn(x,t)bn(t) f (t,u(t))dt

� ρn(x)
∫ 1

0
Gn(t,t)bn(t) f (t,u(t))dt � ρn(x)||Tnu||,

i.e., Tn(K) ⊂ Kn .
For any n � n0 , assume that, for q ∈ (0,q0] , there exist u ∈ Kn ∩ ∂B(0,q) and

0 < λ � 1 such that Tnu = λu . Multiplying the differential equation in (3.1) by vn

and integrating over [0,1] , we obtain the contradiction

0 =
∫ 1

0
[−(anu

′)′ vn +
(
anv

′
n

)′
u] = (βn−αn)

2
∫ 1

0
bnvn(λ−1 f (t,u)−λ n

1 u) > 0.

Moreover, for u ∈ Kn ∩∂B(0,q) ,

‖Tnu‖ = Tnu(0) = (βn−αn)
2
∫ 1

0

1
a(s)

(∫ s

0
b(t) f (t,u(t))dt

)
ds

> λ n
1 (βn−αn)2

∫ 1

0

1
an(s)

(∫ s

0
bn(t)u(t)dt

)
ds

� λ n
1 q(βn−αn)2

∫ 1

0

1
an(s)

(∫ s

0
bn(t)ρn (t)dt

)
ds > 0.

Hence,

inf{‖Tnu‖ : u ∈ Kn∩∂B(0,q)}

� λ n
1 q(βn−αn)

2
∫ 1

0

1
an(s)

(∫ s

0
bn(t)ρn (t)dt

)
ds > 0.

Then, by Lemma 1.3, i(Tn,Kn ∩B(0,q) ,Kn) = 0 for all n � n0 . This, together with
the permanence property of the fixed point index, implies that i(Tn,K∩B(0,q) ,K) = 0
for all n � n0 . Thus, i(T,K∩B(0,q) ,K) = limn→∞ i(Tn,K ∩B(0,q) ,K) = 0. This
completes the proof of the lemma.

LEMMA 3.3. Assume that (1.3) -(1.5) hold. If f∞ < λ1 , then there exists q∞ > 0
such that i(T,K∩B(0,q∞) ,K) = 1 .
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Proof. Let α > 0 be such that α < λ1 and let us compute i(αL,K ∩B(0,q) ,K)
for any q > 0. Arguing as in the proof of Lemma 3.1, we obtain

i(αLn,K ∩B(0,q) ,K) = 1,

so
i(αL,K ∩B(0,q) ,K) = lim

n→∞
i(αLn,K∩B(0,q) ,K) = 1.

Now consider the BVP{−(au′)′(s) = b(s)(tαu(s)+ (1− t) f (s,u(s))) , s ∈ (0,1) ,

u′(0) = u(1) = 0,
(3.2)

where t ∈ [0,1] . We claim that there exists q∞ > 0 such that (3.2) has no solution in
K ∩ ∂B(0,q∞) for all t ∈ [0,1] . Assume, to the contrary, that for all q > 0 there exist
tq ∈ [0,1] and uq ∈ K ∩∂B(0,q) such that tqαLu+(1− tq)Tuq = uq . Now, if {qn} is
a sequence such that

lim
n→∞

qn = +∞ and limsup
n→∞

(
max
s∈[0,1]

f (s,qn)
qn

)
= f∞,

then there exist {un} ⊂ K and {tn} such that ‖un‖ = qn , tn ∈ [0,1] , and tnαLun +
(1− tn)Tun = un . Clearly, the sequence {wn} given by wn = un/‖un‖ is bounded
(‖wn‖ = 1) and satisfies

wn (x) =
∫ 1

x

1
a(s)

(∫ s

0
b(σ)

(
tnαwn (σ)+ (1− tn)

f (σ ,un(σ))
‖un‖

)
dσ
)

ds. (3.3)

For n∈ N , let θn (σ) = tnαwn (σ)+(1− tn)
f (σ ,un(σ))

‖un‖ . The condition f∞ < λ1 implies

that there exists C > 0 such that f (σ ,u) < λ1u+C for all (σ ,u) ∈ [0,1]× [0,+∞) .
Thus,

θn (σ) �
(
λ1wn(σ)+

C
‖un‖

)
� λ1 +C.

Since wn = L(θn) and L is compact, there exists a subsequence of {wn} , also denoted
by {wn} , that converges to w in E with ‖w‖ = 1. Without loss generality, we may
assume that t∞ = limn→∞ tn . Then, taking the limit as n → ∞ in (3.3) , we see that w
satisfies

w(x) �
∫ 1

x

1
a(s)

(∫ s

0
b(σ)(t∞α +(1− t∞) f∞)w(σ)dσ

)
ds

= (t∞α +(1− t∞) f∞)Lw(x) .

Let ξ = (t∞α+(1− t∞) f∞)−1 and L̃ =
L
ξ

. Then, we have

w � L̃w � L̃2w � . . . . . . � L̃nw � . . . .
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Hence,

1 = ‖w‖ 1
n �

∥∥L̃nw
∥∥ 1

n �
∥∥L̃n
∥∥ 1

n =
‖Ln‖ 1

n

ξ
.

Passing to the limit, we obtain that ξ � r (L) , where r (L) is the spectral radius of L .

Since
1
λ1

= r(L) , we obtain the contradiction

1
λ1

= r(L) � ξ =
1

(t∞α +(1− t∞) f∞)
>

1
λ1

.

Finally, by the homotopy property of the fixed point index,

i(T,K ∩B(0,q∞) ,K) = i(tαL+(1− t)T,K∩B(0,q∞) ,K)
= i(αL,K ∩B(0,q∞) ,K) = 1.

This complete the proof of the lemma.

LEMMA 3.4. Assume that (1.3)–(1.5) hold. If λ1 < f∞ � f∞ < ∞ , then there
exists q∞ > 0 such that i(T,K∩B(0,q∞) ,K) = 0 .

Proof. Let α > 0 be such that α > λ1 and let us compute i(αL,K ∩B(0,q) ,K)
for any q > 0. Using the cone Kn and arguing as in the proof of Lemma 3.2, we obtain

i(αLn,Kn ∩B(0,q) ,Kn) = 0.

Then, by the permanence property of the fixed point index, we have

i(αL,K ∩B(0,q) ,K) = lim
n→∞

i(αLn,K∩B(0,q) ,K)

= lim
n→∞

i(αLn,Kn∩B(0,q) ,Kn) = 0.

Consider the BVP{−(au′)′(s) = b(s)(tαu(s)+ (1− t) f (s,u(s))) , s ∈ (0,1) ,

u′(0) = u(1) = 0,
(3.4)

where t ∈ [0,1] . We claim that there exists q∞ > 0 such that (3.4) has no solution in
K ∩ ∂B(0,q∞) for all t ∈ [0,1] . Assume, to the contrary, that for all q > 0 there exist
tq ∈ [0,1] and uq ∈ K ∩∂B(0,q) such that tqαLu+(1− tq)Tuq = uq . Then, if {qn} is
the sequence such that

lim
n→∞

qn = ∞ and liminf
n→∞

(
min

s∈[0,1]

f (s,qn)
qn

)
= f∞,

there exist {un} and {tn} such that ‖un‖ = qn, tn ∈ [0,1] , and tnαLun +(1− tn)Tun =
un . Clearly, the sequence {wn} given by wn = un/‖un‖ is bounded (‖wn‖ = 1) and
satisfies

wn (x) =
∫ 1

x

1
a(s)

(∫ s

0
b(σ)

(
tnαwn (σ)+ (1− tn)

f (σ ,un(σ))
‖un‖

)
dσ
)

ds.
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Taking into consideration the additional hypothesis in Lemma 3.4 and arguing as in the
proof of Lemma 3.3, we see that the sequence {wn} has a subsequence, also denoted
by {wn} , which converges to w in E with ‖w‖ = 1 and

w(x) �
∫ 1

x

1
a(s)

(∫ s

0
b(σ)(tα +(1− t) f∞)w(σ)dσ

)
ds.

Then, ω = Lw satisfies{−(aω ′)′(s) � b(s)(tα +(1− t) f∞)ω(s), s ∈ (0,1) ,

ω ′(0) = ω(1) = 0.
(3.5)

Multiplying (3.5) by a solution φn of (2.4) and integrating over In yields

a(βn)ω (βn)φ ′
n (βn)+a(αn)ω ′ (αn)φn (αn) =

∫ βn

αn

[−(aω ′)′ φn +
(
aφ ′

n

)′ω ]

� (tα +(1− t) f∞−λ n
1 )
∫ βn

αn

bωφn.

But this inequality is impossible since

a(βn)ω (βn)φ ′
n (βn)+a(αn)ω ′ (αn)φn (αn) < 0

and tα +(1− t) f∞ > λ n
1 for n large enough.

Finally, by the homotopy property of the fixed point index, we have

i(T,K ∩B(0,q∞) ,K) = i(tαL+(1− t)T,K∩B(0,q∞) ,K)
= i(αL,K ∩B(0,q∞) ,K) = 0.

This completes the proof of the lemma.

LEMMA 3.5. Assume that (1.3) and (1.4) hold. If f∞ =∞ and
∫ 1
0

ds
a(s) <∞ , then

there exist q∞ > 0 such that i(T,K∩B(0,q) ,K) = 0 for all q > q∞ .

Proof. Define

K = {u ∈ K : u(x) � p(x)‖u‖ for all x ∈ [0,1]} ,

where

p(x) =
1
a

∫ 1

x

ds
a(s)

and a =
∫ 1

0

ds
a(s)

.

Then, using an argument similar to the one in the proof of Lemma 3.2 to show Tn (K)⊂
Kn , we can prove that T (K)⊂K . By the permanence property of the fixed point index,

i(T,K∩B(0,q) ,K) = i
(
T,K∩B(0,q) ,K

)
for all q > 0.

We will compute i
(
T,K ∩B(0,q) ,K

)
for q large enough.
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Let α be such that

α
∫ 1

0

1
a(t)

∫ t

0
b(s)p(s)dsdt > 1.

Since f∞ = ∞ , there exists C > 0 such that

f (s,u) � αu−C for all (s,u) ∈ [0,1]× [0,+∞) .

Let

A = C
∫ 1

0

1
a(t)

∫ t

0
b(s)dsdt.

Then, for any q � q∞ with

q∞ =
(
α
∫ 1

0

1
a(t)

∫ t

0
b(s)p(s)dsdt −1

)−1

CA and u ∈ K∩∂B(0,q) ,

we have

‖Tu‖ = Tu(0) � α
∫ 1

0

1
a(t)

∫ t

0
b(s)u(s)dsdt−CA

� α ‖u‖
∫ 1

0

1
a(t)

∫ t

0
b(s)p(s)dsdt −CA

= αq
∫ 1

0

1
a(t)

∫ t

0
b(s)p(s)dsdt −CA

� q = ‖u‖ .

Hence, by Lemma 1.4, i(T,K∩B(0,q) ,K) = i
(
T,K ∩B(0,q) ,K

)
= 0. This complete

the proof of the lemma.

THEOREM 3.3. Assume that (1.3)-(1.5) hold. If f∞ < λ1 < f0 , then BVP (1.1)
has at least one positive solution.

Proof. From Lemmas 3.2 and 3.3, we have that for 0 < q < q0 ,

i(T,K ∩ (B(0,q∞)\B(0,q)),K)
= i(T,K∩B(0,q∞) ,K)− i(T,K∩B(0,q) ,K) = 1.

Then, from the solution property of the fixed point index, it follows that T has a fixed
point u with q < ‖u‖ < q∞ and which is a positive solution to BVP (1.1) .

THEOREM 3.4. Assume that (1.3)-(1.5) hold. If f 0 < λ1 < f∞ � f∞ < ∞ , then
BVP (1.1) has at least one positive solution.
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Proof. From Lemmas 3.1 and 3.4, we have that for 0 < q < q0 ,

i(T,K ∩ (B(0,q∞)\B(0,q)),K)
= i(T,K ∩B(0,q∞) ,K)− i(T,K ∩B(0,q) ,K) = −1.

Then, from the solution property of the fixed point index, it follows that T has a fixed
point u with q < ‖u‖ < q∞ and which is a positive solution to BVP (1.1) .

THEOREM 3.5. Assume that (1.3)-(1.5) hold. If f 0 < λ1 , f∞ =∞ and
∫ 1
0

ds
a(s) <

∞ , then BVP (1.1) has at least one positive solution.

Proof. From Lemmas 3.1 and 3.5, we have that for 0 < q1 < q0 < q∞ < q2 ,

i(T,K ∩ (B(0,q2)\B(0,q1)) ,K)
= i(T,K∩B(0,q2) ,K)− i(T,K∩B(0,q1) ,K) = −1.

Then, from the solution property of the fixed point index, it follows that T has a fixed
point u with q1 < ‖u‖ < q2 and which is a positive solution to BVP (1.1) .

4. Existence of positive radial solutions to an elliptic equation

Consider the BVP {−Δu(x) = q(x) f (u(x)), x ∈Ω,

u = 0 on ∂Ω,
(4.1)

where Ω is an open set in R
n and f : R

+ → R
+ is continuous. The corresponding

linear eigenvalue problem to BVP (4.1) is{−Δu(x) = λq(x)u(x), x ∈Ω,

u = 0 on ∂Ω.

In this section, we will provide existence and nonexistence results for positive
radial solutions to BVP (4.1) in both the cases Ω = B(0,1) (the unit ball) or Ω = R

n

with n � 3. Below, we assume that q : Ω \ {0} → R
+ is continuous, and for all x ∈

Ω\ {0} , q(x) = q(|x|) .
We will use the following notations.

f 0 = limsup
u→0

f (u)
u

, f∞ = limsup
u→+∞

f (u)
u

,

f0 = liminf
u→0

f (u)
u

, f∞ = liminf
u→+∞

f (u)
u

.
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4.1. Ω= B(0,1) , the unit ball in R
n

In this case, a radial solution to BVP (4.1) is a solution of the BVP{−(tn−1u′)′ = tn−1q(t) f (u(t)), t ∈ (0,1) ,

u′(0) = u(1) = 0.
(4.2)

The corresponding linear problem to BVP (4.2) is{−(tn−1u′)′ = λ tn−1q(t)u(t), t ∈ (0,1) ,

u′(0) = u(1) = 0.
(4.3)

COROLLARY 4.1. Assume that 0 <
∫ 1
0 (1− t)q(t)dt < ∞ . Then BVP (4.3) has a

smallest positive eigenvalue λ1 such that

if either inf
{ f (x)

x
: x > 0

}
> λ1 or sup

{ f (x)
x

: x > 0
}

< λ1,

then BVP (4.2) has no positive solution. Moreover,

if either f∞ < λ1 < f0 or f 0 < λ1 < f∞ � f∞ < ∞,

then BVP (4.2) has a positive solution.

Proof. This corollary follows from Lemma 2.5 and Theorems 3.1, 3.2, 3.3, and
3.4 once conditions (1.3) , (1.4) , and (1.5) are shown to hold. Let a(t) = tn−1 and
b(t) = tn−1q(t) . Then, for t ∈ (0,1/2) , we have

1
a(t)

∫ t

0
b(s)ds =

∫ t

0

(s
t

)n−1
q(s)ds

�
∫ t

0
q(s)ds =

∫ t

0
(1− s)q(s)ds+

∫ t

0
sq(s)ds

� 2
∫ t

0
(1− s)q(s)ds.

Thus,

lim
t→0

1
a(t)

∫ t

0
b(s)ds = lim

t→0
2
∫ t

0
(1− s)q(s)ds = 0,

so (1.3) holds. For all x ∈ (0,1) , we have∫ x

0

1
tn−1

(∫ t

0
sn−1q(s)ds

)
dt =

∫ x

0

(∫ t

0

( s
t

)n−1
q(s)ds

)
dt

�
∫ x

0

(∫ t

0
q(s)ds

)
dt

=
∫ x

0
(x− t)q(t)dt
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�
∫ 1

0
(x− t)q(t)dt

�
∫ 1

0
(1− t)q(t)dt < ∞,

which shows that (1.4) holds. Finally, it is clear that

∫ 1

0
tn−1q(t)

(∫ 1

t

ds
sn−1

)
dt =

∫ 1

0
q(t)

(∫ 1

t

tn−1ds
sn−1

)
dt

�
∫ 1

0
(1− t)q(t)dt.

This shows that (1.5) holds and completes the proof of the corollary.

4.2. Ω= R
n, n � 3

In this case, a radial solution to BVP (4.1) is a solution of the BVP{−(tn−1u′)′ = tn−1q(t) f (u(t)), t ∈ (0,∞) ,

u′(0) = u(∞) = 0.
(4.4)

The corresponding linear eigenvalue problem to BVP (4.4) is{−(tn−1u′)′ = λ tn−1q(t)u(t), t ∈ (0,∞) ,

u′(0) = u(∞) = 0.
(4.5)

COROLLARY 4.2. Assume that q ∈C1 ((0,∞) ,(0,∞)) ,

0 <

∫ ∞

0
q(t)dt,

∫ ∞

0
tq2(t)dt < ∞,

and

lim
t→0

1
q(t)

∫ t

0
q2 (s)ds = 0.

Then BVP (4.5) has a smallest positive eigenvalue λ1 such that

if either inf
{ f (x)

x
: x > 0

}
> λ1 or sup

{ f (x)
x

: x > 0
}

< λ1,

then BVP (4.4) has no positive solution. Moreover,

if either f∞ < λ1 < f0 or f 0 < λ1 < f∞ � f∞ < ∞,

then BVP (4.4) has a positive solution.
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Proof. Let ϕ : R
+ → [0,1) be given by

ϕ(t) =
1
|q|1

∫ t

0
q(s)ds

and ψ = ϕ−1 , where |q|1 =
∫ ∞
0 |q(s)|ds . Consider the singular BVP{−(av′)′(x) = a(x) |q|1 f (v(x)), x ∈ (0,1) ,

v′(0) = v(1) = 0,
(4.6)

where

a(x) =
ψn−1(x)
ψ ′(x)

for x ∈ (0,1) .

The corresponding linear eigenvalue problem to BVP (4.6) is{−(av′)′(x) = λa(x) |q|1 v(x), x ∈ (0,1) ,

v′(0) = v(1) = 0.
(4.7)

It is easy to see that v is a positive solution to BVP (4.6) if and only if u(t) = v(ϕ(t))
is a positive solution to BVP (4.4) and λ is the positive eigenvalue of (4.5) if and only
if λ is the positive eigenvalue of (4.7) . Therefore, the desired conclusion is obtained
from Lemma 2.5 and Theorems 3.1, 3.2, 3.3, and 3.4 once conditions (1.3) , (1.4) , and
(1.5) are verified.

Using the change of variables x = ϕ (y) , we obtain

1
a(x)

∫ x

0
a(t)dt =

ψ ′(x)
ψn−1(x)

∫ x

0

ψn−1(t)
ψ ′(t)

dt

=
|q|1

yn−1q(y)

∫ ϕ(y)

0

ψn−1(t)
ψ ′(t)

dt.

Substituting t = ϕ(s) into the last integral, we have

1
a(x)

∫ x

0
a(t)dt =

1
|q|1 yn−1q(y)

∫ y

0
sn−1q2(s)ds

� 1
|q|1 q(y)

∫ y

0
q2(s)ds.

Therefore,

lim
x→0

1
a(x)

∫ x

0
a(t)dt = lim

y→0

1
|q|1 q(y)

∫ y

0
q2(s)ds = 0,

so (1.3) holds. Moreover, we have∫ 1

0

1
a(x)

(∫ x

0
a(t)dt

)
dx =

∫ 1

0

ψ ′(x)
ψn−1(x)

(∫ x

0

ψn−1(t)
ψ ′(t)

dt

)
dx

=
∫ ∞

0

1
yn−1

(∫ ϕ(y)

0

ψn−1(t)
ψ ′(t)

dt

)
dy
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=
1

|q|21

∫ +∞

0

1
yn−1

(∫ y

0
sn−1q2(s)ds

)
dy.

For H large and ε small, an integration by parts gives∫ H

ε

1
yn−1

(∫ y

0
sn−1q2(s)ds

)
dy

= − 1
n−2

∫ H

0

( y
H

)n−2
yq2(y)dy

+
1

n−2
1

εn−2

∫ ε

0
yn−1q2(y)dy+

1
n−2

∫ H

ε
yq2(y)dy

� − 1
n−2

∫ H

0

( y
H

)n−2
yq2(y)dy

+
1

n−2

∫ ε

0
yq2(y)dy+

1
n−2

∫ H

ε
yq2(y)dy.

Letting ε → 0, we obtain∫ H

0

1
yn−1

(∫ y

0
sn−1q2(s)ds

)
dy � 1

n−2

∫ H

0

(
1−
( y

H

)n−2
)

yq2(y)dy

� 1
n−2

∫ H

0
yq2(y)dy.

Thus, ∫ ∞

0

1
yn−1

(∫ y

0
sn−1q2(s)ds

)
dy � 1

n−2

∫ ∞

0
yq2(y)dy < ∞,

and so (1.4) holds. Finally, we have∫ 1

0
a(x)

(∫ 1

x

1
a(t)

dt

)
dx =

∫ 1

0

ψn−1(x)
ψ ′(x)

(∫ 1

x

ψ ′(t)
ψn−1(t)

dt

)
dx

=
1

|q|21

∫ ∞

0
yn−1q2(y)

(∫ 1

φ(y)

ψ ′(t)
ψn−1(t)

dt

)
dy

=
1

|q|21

∫ ∞

0
yn−1q2(y)

(∫ 1

y

1
sn−1 ds

)
dy

=
1

(n−2)|q|21

∫ ∞

0
yq2(y)dy < ∞,

so (1.5) holds, and this completes the proof of the corollary.

In conclusion, we wish to point out that in Corollaries 4.1 and 4.2 we state that
λ1 is the smallest positive eigenvalue, and this is true because in each case 0 is not an
eigenvalue. In the case where Ω is the unit ball in R

n ,

a(x) = xn−1 so
∫ 1

0

ds
a(s)

= ∞ if n � 2, and lim
s→0

1
a(s)

�= 0 if n = 1.
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In the case Ω is R
n with n � 3,

a(x) =
ψn−1(x)
ψ ′(x)

and
∫ 1

0

ds
a(s)

=
∫ ∞

0

dt
tn−1 = +∞ since n � 3.

Moreover, if λ0 > 0 is a positive eigenvalue, then
1
λ0

� r (L) =
1
λ1

, that is λ1 � λ0 .
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