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ON THE ASYMPTOTIC BEHAVIOURS OF SOLUTIONS

OF THIRD ORDER NON–LINEAR AUTONOMOUS

DIFFERENTIAL EQUATION GOVERNING THE MHD FLOW

B. B. SINGH AND I. M. CHANDARKI

(Communicated by M. Pašić)

Abstract. This paper deals with the asymptotic behaviour as t →∞ of the solutions for a steady
laminar incompressible boundary layer equations governing the MHD flow near the forward
stagnation point of two-dimensional and axisymmetric bodies. The asymptotic behaviour of the
solutions is based on the method of asymptotic integration of second order linear differential
equations. The results pertaining to the asymptotic behaviour of the solutions are also expressed
in the form of Theorems 4.1 and 4.2.

1. Introduction

Boundary layer flow of electrically conducting fluid over moving surfaces emerges
in a large variety of industrial and technological applications. As a result, it has been
investigated by many researchers. Wu [47] has studied the effects of suction or injec-
tion on a steady two-dimensional MHD boundary layer flow on a flat plate. Takhar
et al. [44] studied a MHD asymmetric flow over a semi-infinite moving surface and
numerically obtained the solutions. An analysis of heat and mass transfer characteris-
tics in an electricity conducting fluid over a linearly stretching sheet with variable wall
temperature was investigated by Vajruvelu and Rollins [48]. Mahapatra and Gupta [28]
treated the steady two-dimensional stagnation point flow of an incompressible viscous
electrically conducting fluid towards a stretching surface; the flow being permeated by
a uniform transverse magnetic field. For more details, see also [9], [30], [31], [43]
and the references therein.

Motivated by the above works, we aim here to give the asymptotic behaviours of
the solutions f = f (t)of the third order non-linear autonomous differential equation
governing the magnetohydrodynamic (MHD) flow near the forward stagnation point of
two-dimensional and axisymmetric bodies:

f ′′′ +
m+1

2
f f ′′ +m(1− f ′2)+M(1− f ′) = 0 on [0,∞) (1)

accompanied by the boundary conditions

f (0) = a, f ′(0) = b and f ′(∞) = 1, (2)
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where a,b,m,M ∈ R , f ′ = d f
dt and f ′(∞) = limt→∞ f ′(t) .

The equation (1) is very interesting because it contains many known equations as
particular cases. Setting M = 0 in (1), leads to the well-known Falkner-Skan equation
(see [11], [12], [16] and the references therein), while the case M = −m reduces (1)
to the equation that arises when considering the mixed convection in a fluid saturated
porous medium near a semi-infinite vertical flat plate with prescribed temperature stud-
ied by many authors like [1], [6], [15], [26] and the references therein. The case
M = m = 0 is referred to the Blasius equation introduced in [4] and studied by several
authors (see for example [2], [3], [46]). Recently, the case m =−1 has been studied in
[7]. Mention may be made also to the reference [5], where the authors show existence
of an infinite number of similarity solutions for the case of a non-Newtonian fluid.

The objective of the present paper is to study the asymptotic behaviours of the
solutions of equations (1)-(2). The study of the asymptotic nature of the third order
nonlinear differential equation governing wedge flow was initiated by Hartman [18].
Serrin [32] also studied the asymptotic behaviours of third order nonlinear differential
equation governing steady two-dimensional laminar flow of an incompressible viscous
fluid past a rigid wall. The asymptotic behaviour of ordinary differential equation is
also due to Cesari [8]. Later, the study of the asymptotic behaviours of the differential
equations of Falkner-Skan type governing the various flow fields was carried out by
Chinquing et al. [10], Harri and Pucci [17], Kumar and Singh [25], Parhi and Dass [29],
Singh and Kumar [34], Singh and Singh [35]- [39], Singh and verma [40], Singh [41]-
[42], Tiryaki and Yaman [45], etc.

Linearization of the third order nonlinear differential equation to second order
homogeneous differential equation is due to Kocic [24]. Beside the investigations of
nonlinear equations equivalent to linear ones of same order, the nonlinear equations
which, by suitable transformations, are reduced to linear ones of different orders are
also studied by ( [13], [20], [23]). For the present case, linearization of the second
order nonlinear differential equation is done by suitable transformation which leads to
linear differential equation of same order which is not homogeneous.

2. Governing equations

Let us suppose that an electrically conducting fluid, with electrical conductivity σ ,
in the presence of a transverse magnetic field B(x) is flowing past a flat plate stretched
with a power-law velocity. According to [27] and [33], such phenomenon is described
by the following equations

∂u
∂x

+
∂v
∂y

= 0 (3)

u
∂u
∂x

+ v
∂u
∂y

= ueuex +ν
∂ 2u
∂x2 +

σB2(x)
ρ

(ue −u). (4)

Here, the induced magnetic field is neglected. In a Cartesian system of co-ordinates
(O,x,y) , the solution variables u = u(x,y) and v = v(x, t) are the velocity components
in the x− and y− directions respectively. Here uex = γxm ,γ > 0 denotes the external
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velocity, B(x) = B0xm−1 the applied magnetic field, m the power-law velocity expo-
nent, ρ the fluid density and ν the kinematic viscosity.

The boundary conditions for the problem (3)-(4) are

u(x,0) = uw(x) = αxm, vw(x) = βx
m−1

2 and u(x,∞) = uex, (5)

where uw(x) and vw(x) are the stretching and the suction (injection) velocity respec-
tively and α , β are constants. Let us recall that α > 0 is referred to suction, α < 0
for the injection and α = 0 for the impermeable plate.

A little inspection shows that the equations (3) and (4) accompanied by condi-
tions (5) admit a similarity solution. Therefore, we introduce the dimensional stream-
function ψ in the usual way to get the following equation

∂ψ
∂y

∂ 2ψ
∂x∂y

− ∂ψ
∂x

∂ 2ψ
∂y2 = ueuex +ν

∂ 3ψ
∂y3 +

σB2(x)
ρ

(ue−u). (6)

The boundary conditions become

∂ψ
∂y

(x,0) = αxm,
∂ψ
∂x

(x,0) = −βx
m−1

2 ,
∂ψ
∂y

(x,∞) = γxm. (7)

Defining the similarity variables as follows

ψ(x,y) = x
m+1

2 f (t)
√
νγ and t = x

m−1
2 y

√
ν
γ

,

and substituting in equations (6) and (7) we get the boundary value problem (1)-(2)

where a = 2β
(m+1)

√νγ , b = α
γ and M = σB2

0
γρ > 0 is the Hartman number.

3. Asymptotic behaviour

The asymptotic behaviours, as t → ∞ , of solutions of (1)-(2) under the side con-
dition

0 < f ′ < 1 on [0,∞) (8)

will be discussed. The results will be based on the asymptotic integrations of second
order, linear differential equations. The asymptotic integrations will be based on the
following theorems.

THEOREM 3.1. Let m � 0 , −∞ < a < ∞ , 0 � b < 1. Then there exists one and
only one solution f (t) of (1) , (2) , (8) . This solution also satisfies satisfies f ′′(t) > 0
on 0 � t < ∞ .

Proof. The proofs for the existence and uniqueness of solution are similar to the
proof of Theorem 6.1 (Hartman [19]), p.521). �
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THEOREM 3.2. Let −1 � m < 0 , M +2m < 0 and 0 � b < 1 . Then there exists
a number A = A(m,b) and a continuous function γ ′(a) defined for a � A with the
properties that γ ′(A) = 0 and that f (t) is a solution of (1)-(2) , (8) hold if and only if
a � A and 0 � f ′′(0) � γ ′(a); in this case, f ′′(t) > 0 for 0 � t < ∞ .

Proof. The proof of this theorem is similar to the proof of Theorem 7.1 (Hart-
man [19], p.525). If f (t) is the solution of (1), let us put

h(t) = 1− f ′(t). (9)

Then h(t) satisfies the differential equation

h′′ +
(m+1

2

)
f h′ − [m(1+ f ′)+M]h = 0. (10)

Differentiating (10) gives

h′′′ +
(m+1

2

)
f h′′ −

[(3m−1
2

)
f ′ +M

]
h′ = 0. (11)

Since h′ = − f ′′ .
In order to eliminate the middle term in (10), let us put

h = xexp
{
−

(m+1
4

)∫ t

0
f dτ

}
(12)

so that x satisfies
x′′ −q(t)x = 0, (13)

where

q(t) = (m+M)+
(5m+1

4

)
f ′ +

1
16

(m+1)2 f 2

=
1
16

(m+1)2 f 2
[
1+

16(m+M)
(m+1)2 f 2 +

4(5m+1)
(m+1)2

f ′

f 2

]
. (14)

Thus

q′(t) =
(5m+1

4

)
f ′′ +

1
8
(m+1)2 f f ′

and by (1),

q′′(t) = − (5m+1)(m+M)
4

+
(5m+1)M

4
f ′

− m(m+1)
2

f f ′′ +
(11m2 +4m+1

8

)
f ′2.

Since 0 < f ′ < 1, f ′′ > 0 and f ′ ∼ 1, f ∼ t as t → ∞ , there is a constant k such that
for large t ,

q′2

q5/2
� k

[ f ′′2

t5
+

1
t3

]
and

| q′′ |
q3/2

� k
[ f ′′

t2
+

1
t3

]
.
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In addition,
∫ ∞ f ′′dt is absolutely convergent (since f ′ → 1 as t → ∞), so that

∫ ∞ q′2

q5/2
dt < ∞ and

∫ ∞ | q′′ |
q3/2

dt < ∞ (15)

provided that ∫ ∞ f ′′2

t5
dt < ∞. (16)

It is easy to check the validity of (16), for an integration by parts (integrating f ′′ and
differentiating f ′′/t5 ) gives

∫
f ′′2

t5
dt =

f ′ f ′′

t5
+

∫
f ′

t5

[(m+1
2

)
f f ′′ +m(1− f ′2)+M(1− f ′)+

5 f ′′

t

]
dt

by (1). The last integral is absolutely convergent and liminf f ′′(t) = 0 as t → ∞ . Thus
(16) holds. Consequently, (15) holds, and thus (13) has a principal solution x(t) satis-
fying, as t → ∞ ,

x ∼ Kq−1/4 exp
(
−

∫ t

0
q1/2(s)ds

)
, (17)

where K �= 0 is a constant, while linearly independent solutions satisfy

x ∼ Kq−1/4 exp
(∫ t

0
q1/2(s)ds

)
(18)

cf. Exercise XI 9.6 (Hartman [19], p.382). From (14) and f ∼ t ,

q1/2(t) =
(m+1)

4
f +

(5m+1)
(2m+2)

f ′

f
+

(2M +2m
m+1

) 1
f

+O
(
1/t3

)
,

q1/4(t) ∼
(1

2
t
)1/2

,

hence
∫ t

q1/2(s)ds =
(m+1)

4

∫ t
f dt +

(5m+1)
(2m+2)

log f

+
(2M +2m)

(m+1)

∫ t dt
f

+K0 +O(1),

where K0 is a constant. Thus, (17) and (18) become

x ∼ Kt−
1
2− 5m+1

2m+2 exp

(
−

∫ t [(m+1
4

)
f +

(2M +2m
m+1

) 1
f

]
dt

)
(19)

x ∼ Kt−
1
2− 5m+1

2m+2 exp

(∫ t {(m+1
4

)
f +

(2M +2m
m+1

) 1
f

}
dt

)
. (20)

In view of (12), the (10) has a principal solution satisfying

h ∼ Kt−
3m+1
m+1 exp

(
−

∫ t {(m+1
4

)
f +

(2M +2m
m+1

) 1
f

}
dt

)
(21)
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and that the linearly independent solutions satisfy

h ∼ Kt
2m

m+1 exp

(∫ t {(2M +2m
m+1

)1
f

}
dt

)
, (22)

where K �= 0. By treating (11) as a second order equation for h′ in the same way that
(10) was handled, it is seen that (11) has the principal solution satisfying

h′ = K′t−
4m

m+1 exp

(
−

∫ t {(m+1
2

)
f +

( 2M
m+1

) 1
f

}
dt

)
, K′ �= 0, (23)

and that the linearly independent solutions satisfy

h′ = K′t
3m−1
m+1 exp

(∫ t {( 2M
m+1

)1
f

}
dt

)
, K′ �= 0, (24)

as t → ∞ .
If (11) satisfies (23), then since f ∼ t , it follows that

∫ ∞ htdt <∞ ; thus

f = t +K1 +O(1) and
∫ t

f dt =
t2

2
+K1t +K2 +O(1) as t → ∞.

Substituting this into (21) and (23), gives

1− f ′ ∼ K0t
− 2M+5m+1

m+1 exp
{
−

(m+1
2

)( t2

2
+K1t

)}
, f ′′ ∼ t(1− f ′) (25)

as t → ∞ , where K0 > 0, K1 are the constants.
If (9) satisfies (22), then f ∼ t implies that h = 1− f ′ ∼ ct(2M+4m)/(m+1) as t →∞ .

Hence,

f = t +O
(
t

2M+3m−1
m+1 +ε

)
as t → ∞ for all ε > 0.

If this is substituted into (22), (24) and if it is assumed that −1 � m < 0, M +2m < 0,
(and (2M +4m)/(m+1)+ ε < 0) , then

1− f ′ ∼ K0t
2M+4m

m+1 and f ′′ ∼
(2M +4m

m+1

)
K0t

2M+3m−1
m+1 (26)

as t → ∞ , where K0 > 0 is a constant.

4. Results

The results pertaining to the asymptotic behaviour can be expressed in terms of
the following theorems.

THEOREM 4.1. Let m � 0 and f (t) be a solution of (1)-(2) and (8) . Then there
exist constants K0 > 0 , K1 such that (25) holds as t → ∞ .
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Proof. For a given f (t) , it has to be decided whether h = 1− f ′ satisfies (21), (23)
or (22), (24). If m � 0, (22) cannot hold, for otherwise h = 1− f ′ → 0, t → ∞ fails to
hold. Thus, (21), (23) are valid and, as was seen, this gives (25). Hence (25) holds as
t → ∞ . �

THEOREM 4.2. Let −1 � m < 0 , M+2m < 0 , 0 � b < 1 and a � A(m,b) , where
A(m,b) , γ ′(a) are given by Theorem 3.2. Let f (t) be a solution of (1)-(2) . Then there
exist constants K0 > 0 , K1 such that (25) holds if and only if f ′′(0) = γ ′(a); for
other solutions f (t) of (1) , (2) , (8) , with a > A(m,b) and 0 � f ′′(0) < γ ′(a) , the
asymptotic relations (26) hold with a suitable constant K0 > 0 .

Proof. The proof is based on the change of variables introduced by Grohne and
Iglisch [14]. If f = f (t) is a solution of (1) on some t -interval satisfying f ′(t) > 0, so
that f (t) is an increasing function. Let f be the new independent variable and z = f ′2
the new dependent variable.
Thus,

d
dt

= f ′
d
d f

= z1/2 d
d f

or
d
d f

= z−1/2 d
dt

and if a dot denotes differentiation with respect to f ,

f ′ = z1/2 � 0, f ′′ =
1
2
ż, f ′′′ =

1
2
z1/2z̈. (27)

The equation (1) is transformed into

z1/2z̈+(
m+1

2
) f ż+2m(1− z)+2M(1− z1/2) = 0, (28)

where ż = dz
d f , and the boundary conditions (2) into

z(a) = b2, z(∞) = 1 (29)

and the side condition (8) into

0 < z( f ) < 1, for a < f < ∞. (30)

Based on the results of Iglisch and Kemnitz [21], it can be shown that if z( f ) is a
solution of (28) determined by the initial conditions

z(a) = b2, ż(a) = 2γ ′ where 0 � b < 1, γ ′ > 0, (31)

then:

(a) z( f ) > 0, ż( f ) > 0 for small f −a ;

(b) as f increases, ż( f ) remains positive as long as (30) holds ; and

(c) if z( f ) exists for f � a and satisfies (30) for f > a , then z( f ) → 1 as f → ∞ , so
that (29) holds and the corresponding solution f (t) of (1) satisfies (2), (8).
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For a given solution z( f ) of (28), let us introduce the functions

w = 1− z( f ), r =
ẇ
w

, (32)

then (28) becomes a second order equation for w :

(1−w)1/2ẅ+(
m+1

2
) f ẇ−2λ ∗w = 0, (33)

where λ ∗ = m[1+ M
1+ f ′ ] and r satisfies the corresponding Riccati equation

ṙ = −r2 +
2λ ∗ − (m+1

2 ) f r

(1−w)1/2
. (34)

If z( f )→ 1 as f →∞ so that w→ 0 as f →∞ , then (33) is a perturbation of the Weber
linear differential equation

V̈ +(
m+1

2
) f V̇ −2λ ∗V = 0, (35)

where V̇ = dV
d f . If V �= 0 is a solution of (35), then

s =
V̇
V

(36)

satisfies the Riccati equation

ṡ = −s2 +
(
2λ ∗− m+1

2
f s

)
. (37)

As is well known, the (37) has a principal solution V ( f ) which is positive for large f
and satisfies

s ∼− f as f → ∞. (38)

After the variation of constants V = xexp(−m+1
4 f 2) , this fact is implied by the result

mentioned above concerning (13), (15) and (17). Let a0 > 0 be so large that

0 <V ( f ) < 1 and 2λ ∗ − (
m+1

2
) f s > 0 for f � a0 > 0. (39)

Let z( f ) be a solution of (28) on some f -interval [ f0, f0 + ε] , f0 � a0 , such that
0 � z( f ) < 1 and w( f ) , r( f ) are the functions (32). Let us suppose that

r( f ) > s( f ) (40)

at f = f0 . Then simple results on differential inequalities imply that (41) holds for
all f > f0 as long as z( f ) exists and z( f ) < 1. On the other hand, if r( f ) � s( f ) on
some interval on f � f0 , then the last part of (32), (36) and a quadrature show that
w( f ) � k′V ( f ) > 0 on that interval for some k′ > 0 ; i.e. z( f ) < 1. Consequently, if
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z( f ) is such that 0 � z( f0) < 1 and (40) holds at f = f0 , then z(f) exists for all f � f0 ,
0 < z( f ) < 1 for f > f0 and following (31), z( f ) → 1 as f → ∞ .

The case when: f ′′(0) = γ ′(a) . After these preliminaries, it will be shown that the
solution of (1) determined by

f (0) = a, f ′(0) = b, f ′′(0) = γ ′(a), (41)

which satisfies (2), (8), also satisfies (25).
Let us denote the solution of (1) by f ∗(t) . Let z∗( f ) be the corresponding solution

of (28), w∗ = 1− z∗( f ) and r∗( f ) = ẇ∗
w∗ . It will be first verified that if V = V ( f ) is a

fixed solution of Weber’s equation (35) satisfying (38), (39), then

r∗( f ) � s( f ) for f � a0. (42)

Let us assume that r∗( f0) > s( f0) for some f0 � a0 . Then the continuity considerations
show that if z( f ) is the solution of (28), (31) with γ ′(� 0) near to γ ′(a) , then z( f )
exists on an interval containing [a, f0] and that the function r( f ) belonging to z( f )
satisfies (40) at f = f0 . In this case, the remarks above imply that z( f ) exists for f � a
and the corresponding solution f (t) of (1) satisfies (2), (8). But this contradicts the
maximal property of γ ′(a) in Theorem 3.2 and so (42) holds good.

A quadrature of (42), where r∗ = ẇ∗
w∗ and s = V̇

V gives w∗( f ) � k′′( f ) for some
k′′ > 0 and f � a0 ; i.e. 1− z∗( f ) � k′′V ( f ) . In view of (38),

V ( f ) = O
(
e−( 1

2−ε)t2
)

for large f and if ε is fixed, 0 < ε < 1/2.

Since f ∗(t)∼ t as t →∞ and z∗( f ) = f ∗2(t) at the t -value where f ∗(t) = f , it follows
that

1− f ∗
′2(t) = O

(
e−( 1

2−ε)t2
)

as t → ∞ if 0 < ε < 1/2.

This implies that

1− f ∗(t) = O
(
e−( 1

2−ε)t2
)

as t → ∞.

Hence f = f ∗(t) can not satisfy (26) for any K0 > 0 and so (25) holds for f = f ∗(t)
for suitable constants K0 > 0 and K1 .

The case when: a > A(m,b) and 0 � f ′′(0) < γ ′(a) . The assertion (26) can be
proved in this case by showing that (1), (2), (8) cannot have two distinct solutions
satisfying (25).

Let f (t) be the solution of (1), (2), (8) and z( f ) be the corresponding solution of
(28)-(30). Since z( f ) > 0 for a � f < ∞ , the function z = z( f ) is increasing and has
an inverse f =U(z) on b2 < z < 1. Let us put G(z) = ż(U(z)) . Then dU

dz = 1
G , so that

d(−U)
dz

= − 1
G

(43)

and dG
dz = z̈ dU

dz , so that by (28)

dG
dz

= −
(m+1

2

) U

z1/2
− 2(1− z1/2)

z1/2G
[m(1+ z1/2)+M]. (44)
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Following Iglisch and Kemnitz [21], if f1(t) and f2(t) are the two solutions of (1),
(2), (8) such that

0 � f ′′2 (0) < f ′′1 (0) � γ ′(a)

and if z1( f ) , z2( f ) are the corresponding solutions of (28), Uj(z) the inverse of f =
z j( f ) and Gj(Uj(z)) then for −1 � m < 0 and M +2m < 0,

U2(Z)−U1(Z) is positive and increasing for b2 < z < 1, (45)

G2(Z)−G1(Z) > 0 for b2 < z < 1. (46)

Actually, U1(b2) = U2(b2) = a and G1(b2) > G2(b2) , so that (45), (46) follow from
the Theorem of Kamke [22] since the right side of (43) is an increasing function of
G > 0 (and non-decreasing function of −U ), while right side of (44) is an increasing
function of −U .

Let us suppose, if possible, that both solutions f = f1(t) , f2(t) of (1), (2), (8)
satisfy (25). Then, for j = 1,2, f ′′j (t) → 0 and f ′′j (t) ∼ t(1− f ′j(t)) as t → ∞ . Since
f j(t) ∼ t , it follows from (27) that

ż j( f ) ∼ 2 f (1− z1/2
j ) as f → ∞.

Or since

1− ż1/2 =
(1− z j)

1+ z1/2
j

∼ {1
2
(1− z j)

}
as f → ∞,

one has ż j ∼ f (1− z j) as f → ∞ . Thus

Gj ∼Uj(1− z) as z → 1 (47)

and since f ′′j (t) → 0 as t → ∞ ,

Gj(z) → 0 as z → 1. (48)

By (44), as z → 1,
dGj

dz
= −

(m+1
2

)Uj(z)
z1/2

+O
( 1
Uj

)
.

Consequently, as z → 1,

d(G1−G2)
dz

= (
m+1

2
)
(U2−U1)

z1/2
+O

( 1
U1

)
+O

( 1
U2

)
. (49)

In view of (45), there exists a constant k′′′ such that U2(z)−U1(z) � k′′′ > 0 for z near

1. Since Uj(t)→∞ as z→ 1, implies that d(G1−G2)
dz � (m+1

2 ) k′′′
2 for z near 1. By (46),

0 < lim(G1 −G2) � ∞ as z → 1. This contradicts (48). Hence the assumption that (1),
(2), (8) have two solutions f1(t) , f2(t) satisfying (25) is untenable. This completes the
proof of Theorem. �
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5. Concluding remarks

In this paper the asymptotic behaviours of the solutions for steady laminar incom-
pressible boundary layer equations governing the magneto-hydrodynamicflow near the
forward stagnation point of two-dimensional and axisymmetric bodies have been dis-
cussed. One of the most important problems in the study of the differential equations
and their applications to the boundary layer theory is that of describing the nature of
the solutions for the large positive values of the independent variables. The solutions of
a system will show asymptotic behaviour if it approaches zero as the independent vari-
able tends to infinity or is very small for all the independent variables, or is bounded as
the independent variable tends to infinity.

If f(t) is the solution of (1), (2), (8) in Theorem 3.1, then there exist constants K0 >
0, K1 such that (25) holds as t → ∞ for m � 0 i.e. the solution (25) shows asymptotic
behaviour. If f (t) is the solution of (1), (2), (8) in Theorem 3.2 with a > A(m,b) ,
0 � f ′′(0) < γ ′(a) , then there exist constant K0 > 0 such that (26) holds as t → ∞ ; i.e.
it shows asymptotic behaviour.
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