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EXISTENCE OF TWO SOLUTIONS FOR A NAVIER BOUNDARY
VALUE PROBLEM INVOLVING THE p-BIHARMONIC

YING SHEN AND JIHUI ZHANG

(Communicated by C. L. Tang)

Abstract. In this paper, we study the Navier boundary value problem involving the p-biharmonic
system with sign-changing weight function. By using the Nehari manifold and variational meth-
ods, the existence of two nontrivial solutions is obtained when the pair of the parameters (A, 1)
belongs to a certain subset of R2.

1. Introduction

In this paper, we consider the Navier boundary value problem involving the p-
biharmonic system

A(|Au]?20u) = F G 4 Ag()lul 2w in Q.
A(|Av[P—2A) = éw +uh(x)[v)9=?v  inQ, (1.1)
u=Au=v=Av=0 on dQ,

where A is the La_placian operator, Q is a bounded domain in RY with smooth bound-
ary 0Q, F € C'(Q xR?,R) is positively homogeneous of degree o, thatis, F'(x,1u,1v)
=19F(x,u,v) (t >0) holds forall (x,u,v) € QxR>. We assume that ¢ € (p, N’i—lgp) if
p<% oroe(0,+e)if p=%,1<q<p,the pair of parameters (4, 1) € R?\{(0,0)}
and the weight functions g,/ are satisfying the following conditions:

(A) g€ C(Q) with || g [|l=1,g = max{+g,0} #0;
(B) heC(Q) with || 7 ||e= 1,h* = max{+h,0} £0.

In recent years, there are many papers concerned with the existence and multiplic-
ity of positive solutions for p-biharmonic elliptic problems. Results relating to these
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problems can be found in [1, 5, 7, 10-14], and the references therein. Brown and Wu
[3] considered the following equation

—Autu= g f(x)|u* ulv/P in Q,
—Av+v= OﬁTﬁf(x)|M\a|V|B_2v inQ, (12)
% = 2g(x)|ul"2u, % = uh(x)[v)9"%v  on Q.

When F(x,u,v) = f(x)|u|*|v|P, o > 1,8 > 1 satisfying p < o+ 8 < p*, the authors

have found that if the parameters A, u satisfy 0 < \)L|ﬁ +] ,u|ﬁ < Cy, then problem
(1.2) has at least two solutions (ug,v{) and (uy,vy) such that u3 > 0,v3 >0 in Q
and u(:)t #+ O,v(:)‘E # 0. Furthermore, if f > 0, then u(“)—L > O,V(:;: >0in Q.

In this paper, we give a very simple variational method which is similar to the
“fibering method” of Pohozaev’s (see [4] or [8]) to prove the existence of at least two
nontrivial solutions of problem (1.1). In fact, we use the decomposition of the Nehari
manifold as (A, u) vary to prove the following result.

Before stating our results, we need the following assumptions:

(fi) F:QxRXxR— R isaC' function such that F(x,tu,tv) = 1°F (x,u,v) (t > 0)
and F(x, —u, —v) = F(x,u,v),Vx € Q, (u,v) € R?;

(f2) F(x,u,0)=F(x,0,v) = aa—l;(x,u,O) = %—f(x,O,v) =0, where u,v € R;
(f3) FE(x,u,v) = max{+F(x,u,v),0} Z0, Vu,v € R, uv #0.
Now we consider the even functional

L fQ|Au|l’dx

Vu € (WP (Q) NW, " (Q))\{0},
and the manifold

H:= {u e WP (Q) MW P(Q) : (/Q \u|pdx>% - 1}.

Evidently, H is a nonempty smooth manifold. By a standard argument (or similar to
the proof in [9]), I|g has a sequence of increasing critical values with the variational
characterization

Ay := inf supI(u),
k MGZWGAI/)I Q

where X;:={M C H : there exists a continuous, odd and surjectiveh : S oM } and
Sk=1"denotes the unit sphere in R*. It is not difficult to check that the critical values
and critical points of |y respectively correspond to the eigenvalues and eigenfunctions
of the following equation

A(|AulP~?Au) = A|ulP~?u  in Q,
u=Au=0 on dQ.
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‘We claim that

/Q AulPdx > Ay /Q u|Pdx, Yu € W2 (Q) N WP (Q). (1.3)

Let Co= (2 ﬁC 0,p,q,K,A1) be a positive number where
» p

0—q -0 I’L_)ff o—p q #
C(o,p,q,K, A\ ) = (—K/l ) (—/1 ) :
( )= (5= K —

Our main results are summarized in the following theorems.

THEOREM 1.1. If the parameters A, U satisfy

0 < A7 + |u| 77 < C(0,p,q,K M),

and (f1)-(f3) hold, then problem (1.1) has at least one nontrivial solution (u§ ,v{).

THEOREM 1.2. If the parameters A,u satisfy 0 < \7L|# + |,LL|ﬁ < Cy, and
(f1)-(f3) hold, then problem (1.1) has at least two nontrivial solutions (u§,v{) and

(ug ,vy)-
REMARK 1.3. There are many functions F satisfying the conditions of Theorem
1.1 and 1.2 for the problem (1.1). For examples: let

3

FEOWMEPE+ £0)2£5, (u,v) £ (0,0),

0, (u,v) = (0,0),

Fi(x,u,v) :{

where fi,f, € C(Q)NL?(Q) with max{+fi,£f,0} ZO0;

3y3 5.3
Fyray) — | S BEEE w) £(0.0),
thds) O7 (M,V) = (0’0)’

where f1, > € C(Q)NL?(Q) with max{%f1,+/,0} Z0, fifr >0;

Ly + Lruts n LU’y
F (x,u, V) = 2u2 41?2 W34 PrERY )

0
0, (M,V) = (070)7

where f17f27f3 € C(Q)QLOO(Q) with maX{:l:f17:|:f27:|:f3,O} §é 0, flfl 20,i=2,3.
Obviously, F1, F, and F3 satisfy (f1)-(f3)-

This paper is organized as follows. In Section 2, we give some notations and
preliminaries. In Section 3, we prove Theorem 1.1 and Theorem 1.2.
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2. Some notations and preliminaries
Problem (1.1) is posed in the framework of the Sobolev space
E= (W (Q)nW, " (@) x (WH(Q) W, "(Q)

with the standard norm

1
()] = (/Q|Au|1’dx+/gmv|ﬁdx)”.

1
In addition, we define ||u||, = (g [u|Pdx)? as the norm of the Sobolev space L”(Q).
Using assumption (f1), we have the so-called Euler identity

(u,v) - VF(x,u,v) = oF (x,u,v) (2.1)

and
|F (x,u,v)| < K(|u]® + [v|°) for some constant K > 0. (2.2)
Moreover, a pair of functions (u,v) € E is said to be a weak solution of problem

(1.1) if

1 r OF
/|Au|p72Aqu)1dx+/ \Av|p72AvA(p2dx——/ Mq)ldx
Q Q cJao du

1 oF
__/ M%dx_/l/gwq‘zu(pldx—‘u/h|v|q_2v(p2dx=0
oo dv Q Q

for all (¢1,¢,) € E. Thus, by (2.1) the corresponding energy functional of problem
(1.1) is defined by

Jyu(u,v) =

1 1 1
= —||(u,v p——/Fx,u,v dx—-K ,(u,v
pH( WP == A (x,u,) p oo (1,v)

for (u,v) € E, where
Ky (0,7 :/1/ g|u\qu+u/ hlv|7dx.
’ Q Q
In order to verify J; , € C!'(E,R), we need the following lemmas.

LEMMA 2.1. Assume that F € g (Q x R2R) is positively homogeneous of de-
gree ¢ with o > 1, then %—5, %—f € C(Q xR2,R) are positively homogeneous of degree

o—1.

Proof. The proof is almost the same as that in Chu and Tang [6].

In addition, by the Lemma 2.1, we get the existence of positive constant M such
that
’ dF

o-1 o-1
S )| <Ml 4y, 23)
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JoF _
W(x,u,v)‘ <M(Jul® v, vx € Q, u,v € R. 2.4

Similar to [15, Theorem A.2], we consider the continuity of the superposition op-
erator

A LP(Q)x LP(Q) — L1(Q) : (u,v) — f(x,u,v).
LEMMA 2.2. Assume that |Q| < oo,1 < p, r<oo f € C(QxR*R) and
» »
f O )| < e(U[ul7 +[v]r).
Then, for every (u,v) € LP(Q) x LP(Q), f(-,u,v) € L"(Q) and the operator
A:LP(Q)x LP(Q) — L' (Q) : (u,v) — f(x,u,v) is continuous.

It is well known that these following embedding mappings

L'(Q), r< N}X—gw whenp<%7
WP (Q) ﬂWol’p(Q) = L' (Q), r<+eo, whenp=75,
c(Q), when p > 5§,

are compact. Thus, it is not difficult to verify the following result.

LEMMA 2.3. (see Proposition 1 in [9]) Suppose that VF € C(Q x R?,R) verifies
condition (2.3) and (2.4). Then the functional J,, ,, belongsto C'(E,R), and

<J;L,u(u7v)’(uﬁv>> = H(u,v)”p—/QF(x,u,v)dx—K;w(u,v).

As the energy functional J, , is not bounded below on E, it is useful to consider
the functional on the Nehari manifold

N/L,u. = {(u,v) € E\{(O7O>}|<J;L,y(u’v)7(u7v)> = 0}
Thus, (u,v) € N, if and only if
<J//17M(u,v), (u,v)) = || (u,v)||P — /QF(x,u,v)dx—K,LM(u,v) =0. (2.5)

Note that N, , contains every nonzero solution of problem (1.1). Moreover, we have
the following result.

LEMMA 2.4. The energy functional Jj, , is coercive and bounded below on N; ;.

Proof. If (u,v) € Ny, then by the Sobolev imbedding theorem

o—p 0—q
S (u,v) = p—GH(”»V)HP— q—GKA#(””’)
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o—p —q0—q ,, L _p_\ b4
> — P ——= (AP~ —a) P 1, 2.6
o NVIIP =47 (1A 1777 + [ul7=0) 7 [ )l (2.6)

Thus, J;, ,, is coercive and bounded below on N; . O

Define
D u(u,v) = <J§L,y(”vv)7 (,v)).

Then for (u,v) € Ny 4,

<CD/A,M(”‘7‘))7 (u,v)) = pH(u,v)Hﬁ, - O'/QF(x,u,v)dx—qK;L’“(u,v) (2.7)

= (p=0) [ Frun)dr=(g=p)Keuluy) @8
= (p= )l ~(0~q) | Flxuv)dx 2.9)
= (p— )| wV)]P = (g — 0)Ky u(u,1). (2.10)

Now, we split N, ,, into three parts:

{(u,v) € N (@), (u,v), (u,v)) > O},
Ng,p. ={(u,v) € N)L,u‘<q)£l“u,(uvv)7 (u,v)) =0},
{(M7V) € N?L.,/JKCDA,M(’/‘?‘)% (M7V)> < O}'

Then, we have the following result.

LEMMA 2.5. Assume that (uo,Vvo) is a local minimizer for J) ,, on N, ,, and that
(uo,vo) & N/%M.Then Ji# (ug,vo) =0 in E~! (the dual space of the Sobolev space E).

Proof. The proof is almost the same as that in Wu [16]. O

LEMMA 2.6. We have:
@ if (u,v) ENK#, then Ky, (u,v) >0;
(ii) if (u,v) € Ng#, then Kj, ,(u,v) >0 and [q F(x,u,v)dx > 0;
@ii) if (u,v) € Ny o then Jo F(x,u,v)dx > 0.

Proof. The proof is immediate from (2.5),(2.8),(2.9) and (2.10). O

Moreover, we have the following result.
LEMMA 2.7. If 0 < 4|70 + |u|77 < C(0,p.q.K. A1), then NY , =0.
Proof. Suppose otherwise, that is there exists (4, 1) € R*\{(0,0)} with

0 < [A|7 +|u|77 < C(0,p,q,K, 1)
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such that Ng . 7 0. Then for (u,v) € Ng 4+ by (2.9), (2.10) we have

0= (@ ,(0).(0v)) = (p= | W)~ (0 ~q) | Flxuv)a
=(p—0)[[(u,)[|” = (g — 0)K; pu(u,v).
From the Holder inequality, (2.2) and (1.3), it follows that
/F(x,u,v)dxg/ \F(x,u,v)\dng/(\u|0+\v\ﬁ)dxgmfﬁ||(u,v)uﬁ.
Q Q Q

Thus,
and

This implies that
A o
|A|7=7 +|ulP= > C(o,p,q,K, A1),
which is a contradiction. Thus, we can conclude that if
0 <|A|77 +|u|P7 < C(0,p.q.K, 1),
we have N/(l)# =0.0

By Lemma 2.7, we write N, ,, = N/{ru UN, and define

0, = inf T ,(uv); 0 = inf Ty, (u,v);
H (u,v)GNA#M a# A (u,v)EN)tH i
0, = inf Jy ,(u,v).
= )

Then we have the following result.
LEMMA 2.8. (i) If
0 <[4]77 +|u|77 < C(0,p,q.K, 7).

then we have 9,1# < 6{_# <0
(i) If
»_ e
0 <A77 + |77 < Co,
then 6;7” > dy for some dy = dy(0,p,q,K,A1,A,u) > 0.



406 YING SHEN AND JIHUI ZHANG
Proof. (i) Let (u,v) € N/{r#. By (2.9)
P—q p /
—|[(u,)||? > | F(x,u,v)dx
22wl > [ Flruy)
and so
1 1 1 1
Iy u(u,v) = <———> u,v p+(———>/Fx7u7v dx
MURY) e [ ()| 7 o)) (x, u,v)

AED - D

~ (p—q)(oc—p)
i — ([ (u,v)]|P < 0.

Thus, from the definition of 6, , and G)tu . we can deduce that 6, < 6;;1 <0.
(ii) Let (u,v) € N;.u' It follows from (2.9)

P—q » /
—|[(u,)||P < | F(x,u,v)dx.
el < [ Feuuy)
Moreover, by (1.3) we obtain
/F(x,u,v)dx<K)Ll_UH(u,V)HU.
Q
This implies that

— QAN 55 -
||(u7v)><%> forall (u,v) €Ny . 2.11)

By (2.6) in the proof of Lemma 2.4
Jk,p. (”vv)

c—p _ _,0—q o 2 \H
> [l(u,v) |4 V)|P— A q_(/l = ,>
O e IR R = (TSR

(P=@A NS [0—p(P—@AINES =g, 2 o r
><(o—q>l<> T (<a_q>1<) qora (A7 +lul7e) 7.

Thus, if
»_ -
0 <|A|P7d +|u|P1 < Cy,
then
Jy u(u,v) >dy for all (u,v) ENyw

for some dy = do(0,p,q,K,A1,A, 1) > 0. This completes the proof. O
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For each (u,v) € E with [, F(x,u,v)dx > 0, set

_(__(=glv)F 7
Imax = <(G—q) fQF(x7u7v)dx> > 0.

Then the following lemma hold.

LEMMA 2.9. For each (u,v) € E with [oF(x,u,v)dx >0, we have:
() if Ky u(u,v) <O, then there is unique t~ > tmax such that (t~u,t"v) € N; , and

w7 u,t7v) = supJy (tu,tv);
: M ot

(ii) if Ky, (u,v) > 0, then there are unique 0 < t* < tymax <1~ such that (t*u,1v) €

N/{i”, (tTu,t7v) e Ny and

T, t) — ) - ) —
Syt u,t v)—ogtuglgmh#(tu,tv), Syt ut v)-f;g];w(tu,tv).

Proof. Fix (u,v) € E with [ F(x,u,v)dx > 0. Let
m(t) = 79| (u, v)[|? — 1779 /Q Flxu)dx  for 130, (2.12)
Clearly, m(0) = 0,m(t) — —oo as t — oo. Since
m'(t) = (p— )"~ 7| (u,v)||” — (G—Q)Ichfl/ng(x,u,V)dx,

we have m/(t) =0 at £ = fyax, m'(¢) > 0 for 1 € [0,max) and m'(z) <0 for t € (fmax,°°).
Then m(t) achieves its maximum at #m,x , is increasing for 7 € [0,#max) and decreasing
for ¢ € (fmax,°°). Moreover,

ltmas) = o (=) 77 — (2= ) (Lendl”_y &5

c—gq c—q Jo F(x,u,v)
C—p\/O—q ._o\bo

> a( L) (Z—Lga )" e, .

> [wn)(S=2) (S=2ka) @13

() K; u(u,v) <0. There is a unique ¢~ > fmax such that m(t~) = Kj ,,(u,v) and
m'(17) < 0. Now,

(p—a)(t )| (u,v)[|” — (G—q)(t‘)"/QF(x,u,V)dx = () (1) <0,
and

<J§W(t_u,t_v),(t_u,t_v)> =" )m@") —Kp u(u,v)] =0.
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Thus, (" u,t7v) € N/{u' Since for t > tpax , We have

d2
(p=a)ew0)|" = (0= q) | Flrtuv)dr <0, 50 ylou,m) <0

and

d

—J u(tu,tv) :tp_1||(u7v)Hp —tc_l/ F(x7u7v)dx—tq_1K,1 u(u,v)

dt ™ o ;
=0 for t=1¢".

Thus, Jy, (17 u,t™v) = sup,oJ5 u(tu,tv).
(ii) K;  (u,v) > 0. By (2.13) and

m(0) =0 <K ,,(u,v)

P pP—q

(AR [A]
C—P\(CO—q.,, ¢\io

q — KA °

<l (5=0) (=g k)

< m(tmax)7

for
0 < [A|77 + |u|77 < C(0,p,q,K, M),

there are unique ¢ and ¢~ such that 0 < 7 <fpu <t~
mtt) = K/Lu(”ﬂ’) =m(t")
and
m' (tT)>0>m'(17).

We have (*u,t*v) €Ny

(tTu,t7v) e N; »and
Lowut7v) =0y (tu,tv) > 0 (6 u,ttv) foreach 1€ [1t,17]
and J), , (t*u,t™v) <Jj (tu,tv) foreach r € [0,17]. Thus,

Jop(tTut™v) = inf  Jy ,(tu,tv) and Jy (6 u,7v) = supdy  (tu,tv).
' 0<i<tmax ' =0

This completes the proof. O
For each (u,v) € E with K}, (u,v) >0, set
_ ((G_Q)KA,M(M»V)> g
(o= p)llG )P

Then we have the following lemma.

(2.14)



NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p-BIHARMONIC 409

LEMMA 2.10. For each (u,v) € E with K; ,(u,v) >0, we have:
() if fo F(x,u,v)dx <0, then there is unique 0 <t < fmax such that (tTu,t™v) € N/{M
and

Dy (T u,t™v) = infJ;_, (tu,tv);

7L.,/J( ) ) 1>0 7L.,/J( ) )

(ii) if [o F (x,u,v)dx > 0, then there are unique 0 <t* <fmax <t~ suchthat (ttu,rv)
€ N/{M, (tTu,tv)e Ny u and

Sop@Fut™v)y = inf Ty (tu,ev)y Ty (6wt v) = supdy ().
’ 0<i <Fmax ' >0

Proof. Fix (u,v) € E with K ,,(u,v) > 0. Let
m(t) =P~ (u,v)||P =177 °K; ,(u,v)  for t>0. (2.15)
Clearly, m(t) — —eo as t — 0%, m(t) — 0 as t — oo. Since
m (1) = (p— )"~ ()P — (g —0)? 7Ky (),

we have /(1) =0 at 1 = fmax, M (f) > 0 for 1 € (0,7max) and (1) <0 for 7 €
(fmax, ). Then m(¢) achieves its maximum at 7y , is increasing for ¢ € (0,7max) and
decreasing for # € (fmax, o). Similar to the argument in Lemma 2.9, we can obtain the
results of Lemma 2.10. O

3. Proofs of Theorems 1.1 and 1.2
Before giving the proofs of Theorem 1.1 and 1.2, we need the following lemma.
LEMMA 3.1. (3) If
0 < 21757 + |u|7s < C(0.p.q.K. ),
then there exists a (PS)g, , -sequence {(iun,vn)} C Ny y in E for Jy y;
(ii) If
. &
0 <A77 + |77 < Co,
then there exists a (PS)BI -sequence {(un,vy)} C Ny in E for Jy .
M ’
Proof. The proof is almost the same as that in Wu [16].

First, we establish the existence of a local minimum for J; , on NI_ u
THEOREM 3.2. If 0 < |A|74 + |u|77 < C(o,p,q,K, M) and (f;)-(f3) hold,
then J), , has a minimizer (ug ,vg) in NIH and it satisfies:
() Jl,u(”gava_) = el,u = GI’MQ

(ii) (ug,v$) is a nontrivial solution of problem (1.1).
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Proof. By Lemma 2.4 and Lemma 3.1(i), there exists a minimizing sequence
{(un,v)} for J;  on N,  such that

T (tnyvn) = 63 y+0(1) and Jj  (,va) =0(1) in E~". (3.1)
Then by Lemma 2.4, there exists a subsequence {(u,,v,)} and (ug,vj) € E such that

uy — ug weakly in E,
up — ug strongly in L9(Q) and in L°(Q),
(3.2)

Vi —\var

weakly in E,
v, — vy strongly in L9(Q) and in L°(Q).

This implies that K, (un,va) — Ky (uf,vg) as n— oo,
Next, we will show that

/F(x7un,vn)dx—>/F(x,uar,vg)dx as n — oo,
Q Q

By Lemma 2.2, we have

OF (x,up,vy) OF (x,un,vy)  OF(x,ug,vg) .
I IY(Q d T 270270 LY(Q),
du (&) an du - du in L'(Q)
where y = 5% . It follows from the Holder inequality,
/ unaF(xmn,vn) _ugaF(x “0 ,vo )dx
Q du
aF nyvn
g/ ‘un_uoﬂ‘% I
OF ( _ IF(x, vt
+/‘ (JH‘ xumvn (x, 1 VO)‘dx
du
aF(x,un,vn)
< Jug — —
”u du ‘y
“WH HaF(x,un,vn) _3F(x,u§,v§)H
Olls u u y
— 0 asn— oo,
Hence
/ unaF(x’u"’V") _u(THF(x 4, v5) ’dx—>0 as 1 —s oo.
Q du du
In a similar way, we have that
+ o+
/ vnaF(x’u"’V") —vg O x, 1y, vp) ‘dx—>0 as n — oo,
Q dv dv



NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p-BIHARMONIC 411

So by (2.1), we obtain

'/F(x,un,vn)dx—/F(x,ug,var)dx
Q Q

< [t ) = P i) ax

B JdF (x un,vn) OF (x,upn,vy)
__/‘ +vn dv )
8F(x,u V) OF (x,ud ,v¢
(g g )‘d
oF iy
< l/ ‘u aF(xaunaVn) _uar (x’;;’vo)’dx
BF (x umv,,) +8F(x,ua’,v6r)
— dv

)dx

— 0 asn — oo,

Thus, [o F(x,un,vn)dx — [o F(x,u,v{)dx as n — oo,

By (3.1) and (3.2), it is easy to prove that (uar,va’) is a weak solution of (1.1).
Since

c—p 0—q 0—q
S (U, vn) = p—GH(”n»"n)Hp— q—GK)L (s v) = —q—GK)L u (U, vn)
and by Lemma 2.8 (i), J;, ;, (tn,vn) — 0; 4 <0 as n — oo, letting n — oo, we see that
K, u(ug ,vg) > 0. Now it follows that u, — ug strongly in E, v, — v strongly in E
and J;L#(uo,vo) 6}»#

By (u,vy) € N, and applying Fatou’s lemma, we get

1 1 1
O < a5 95) = 1507 = [ F s ) = <Ko 05)

1
hglnf(—ﬂ(umv,,)” — —/ F(x,up,vn) — —K;L H(un,vn)>
<liminfJy y, (tn,va) = 03 -

This follows that

T (g ,vg) = 60 and - Tim || (wn,va) |7 = || (g, vg) 17

Let (tin,Vn) = (ttn,vn) — (ug,vg ), then Brézis-Lieb lemma [12] implies that

(@, V) 17 = 1 2ty vi) |1 = [ (g w3 -

Therefore, u, — ug strongly in E, v, — v0 strongly in E.
Moreover, we have (ug,vg) € N} + . In fact, if (uj,vj) € N; y» by Lemma 2.6
(iii) and Lemma 2.9, there are unique to and 7, such that (to ”0 7to v e N + and
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(tyug ,ty v{) € N; . In particular, we have ¢ <1, = 1. Since
0 70°°0 "0 Aue 4 0 0 .

d d
5 —J; u(tg ug 1 v ) =0 and ﬁfz,u(lJugvlJV(J)r) >0,

there exists 7 <7 <1, such that J, (15 ug 15 vy) < Jy u(fug,7v{). By Lemma 2.9,

J;w(tgug,tgvar) < J;w(fug,fvar) < J,17M(t(;ug,t6v§) :JLM(uar,var),

which is a contradiction.
So by Lemma 2.5 we may assume that (uar , var ) is a nontrivial solution of problem

(1.1).

Next, we establish the existence of a local minimum for J o ON N); u
THEOREM 3.3. If 0 < |A|770 +|u|777 < Co, (fi) and (f>) hold, then J; ,, has
a minimizer (uy ,vy ) in N; u and it satisfies:

W) Ty uluy,vy) = 9{7#;

(i) (uy,vy) is anontrivial solution of problem (1.1).

Proof. By Lemma 3.1(ii), there exists a minimizing sequence {(u,,v,)} for J; ,
on N, u such that

T (ttnyvn) = 6 +o(1) and J  (un,ve) =0(1) inE~". (3.3)
Then by Lemma 2.4, there exists a subsequence {(u,,v,)} and (1, ,v,) € E such that

up — ug weakly in E,

un — ug strongly in L9(Q) and in L% (Q),

3.4
va — vy weakly inE,
vy — vy strongly in L9(Q) and in L°(Q).
This implies that
K,y (ttn,vn) — Ky (g ,vg) asn— oo,
/ F(x,up,vy)dx — / F(x,ug ,vy )dx asn — oo
Q Q
Moreover, by (2.9) we obtain
/ F (0, v > 2= ||(un7v,,)||p. (3.5)

By (2.11) and (3.5) there exists a positive number C such that

/ F(x,up,vy)dx > C.
Q
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This implies that
/ F(x,uy vy )dx > C. (3.6)
Q

By (3.3) and (3.4) we obtain that (u,v ) is a weak solution of (1.1).

Now we prove that u, — u,, strongly in £ and v, — v, strongly in E.
Supposing otherwise, then either

Jug | < timinf | or [[v | < timinf v,

By Lemma 2.9, there is a unique 7, such that (¢, u, .7, v,) € Nl,u’ since (up,vy) €

N;’M,JA’M(un,vn) > J), u(tuy,tvy) forall t >0, we have
i ultg ug 19 vy ) < nli_r}rolo.],l#(to_un,to_vn) < nli_r}rolo.],l’ﬂ(un,vn) =0, .

and this is contradiction. Hence u, — u, strongly in E and v, — v strongly in E.
This implies that

i (tnyvn) = Iy (g vy ) = 6/1_# asn — oo,
By Lemma 2.5 and (3.6) we may assume that (i, ,v, ) is a nontrivial solution of prob-
lem (1.1). O

Now, we complete the proof of Theorem 1.1 and Theorem 1.2: by Theorem 3.1,

we obtain that for all 0 < |/1|ﬁ + |,u|ﬁ < C(o,p,q,K, A1), problem (1.1) has a
nontrivial solution (ug,vy) € Ny . On the other hand, from Theorems 3.2, we get the

. _P_ _r_
second solution (g, vy ) € N, forall 0 <[A]r~0 +|u|r=a < Co <C(0,p,q,K,A1).
Since N\ NN, , =0, this implies that (ug,vy) and (ug vy ) are distinct.
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