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SMALL DATA SCATTERING FOR A SYSTEM
OF NONLINEAR SCHRODINGER EQUATIONS

NAKAO HAYASHI, CHUNHUA L1 AND TOHRU OZAWA

(Communicated by P. Naumkin)

Abstract. We study the scattering theory for a system of nonlinear Schrédinger equations in
space dimension n > 3. In the case n > 4, existence of the scattering operator is proved in small
data setting in the Sobolev space H"272_ In the case n =3, a similar result is proved in the
weighted L? space (x)~'/21> =7 (H -1/ 2) under the mass resonance condition.

1. Introduction

We consider the following system of nonlinear Schrodinger equations:
. 1 _ _
@u—l—z Au /1\)1;, 1)
v+ 537 Av = pu”,

where u and v are complex-valued functions of (7,x) € R x R", A is the Laplacian in
R" m and M are positive constants, and A and u are complex constants. The interac-
tion terms in the system (1) is quadratic in (u,v). Regarding quadratic nonlinearity in
space R”, we have the associated critical space dimensions. By the space-time scaling
argument on (1), the critical function space is H"/>~2, where H* = (1 —A)~%/2L%. In
particular, L> and H' are critical for n = 4 and n = 6, respectively, from the scaling
point of view. As far as the asymptotic profiles of solutions are concerned, quadratic
nonlinearity is regarded as the borderline between short-range and long-range inter-
actions for n = 2. If the argument depends exclusively on the space-time integrability
properties, Strauss exponent [18] y(n) = (n+2+ vn?+ 12n+4)/(2n) is a natural crit-
ical number and quadratic nonlinearity is critical for n = 3 since y(3) = 2. In [8], [9],
a detailed asymptotic analysis on the long-time behavior of small amplitude solutions
has been made for n = 2.

The purpose in this paper is to study the scattering theory for (1) in a small data
setting for n > 3. In the case n > 4, existence of the scattering operator is proved in the
neighborhood of the origin in H"/2~2 x H"/2~2 (Theorem 2.1). The method of proof
depends on the endpoint Strichartz estimate of Keel and Tao [12] (see also [13]) and on
a special bilinear estimate (Proposition 3.1). In the case n = 3, existence of scattering
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operator is proved in a neighborhood of the origin in .# (H~'/2) x % (H~'/2) (Theo-
rem 2.3), where .% is the Fourier transform and ¥ (H "“) = (x)7L? is the weighted

? space with weight (x)* = (1 + |x| ) of order s > 0, under the mass resonance
condition
M =2m. )

The method of proof depends on the gauge invariance of the interactions in (1) under the
mass resonance condition (2) and the Strichartz estimates based on the Lorentz spaces
in time [16], [17].

The system (1) is regarded as a non relativistic limit of the system of nonlinear
Klein-Gordon equations with (2)

2 _ —
{ 262”19 Au—|—m2c u=—Avi, 3)

2 Mc 2
262M(9 v—mAv—F = —uu”,

. . . . : 2 : 2 .
where c is the speed of light, since the wave functions u. = €' u, v. = eitMey, satisfy

{ 182uc iatuc—ﬁAuC: i’”2(2m’M))chu_C7 @

1 M2 2
2L2M8 Ve —i0ve — g7 Ave = eite( m)yuc,

where the phase oscillations on the right hand sides vanish if and only if (2) holds,
and under the resonance condition (2) the limiting system of (4) formally yields (1) as
¢ — oo,

The system (3) is closely related to systems studied in [1], [6], [7] and nonrela-
tivistic limit for the nonlinear Klein-Gordon equations has been studied in [13], [14].

We conclude this section by giving some of the notation used in this paper. For
any p with 1 < p <o, [P =LP(R") denotes the Lebesgue space on R”. For any
s € R and for any p with 1 < p <o, H) = (1 - )7“‘/2LP denotes the Sobolev space

defined i in terms of Bessel potentrals We shall also use the homogeneous Sobolev

spaces H = (=A)~*/2LP. For simplicity we put H® = H‘ and H H2 For any p
with 1 < p oo, the exponent dual to p is denoted by p'. For any interval / C R and
any Banach space X, we denote by C (I;X) the space of strongly continuous functions
from I to X and by L” (I;X) [resp. LP4(I;X)] the space of strongly measurable
functions u from I to X such that ||u(-);X| € LP (I) [resp. |lu(:);X]| € L1 (I)],
where L”¢ denotes the Lorentz space. We refer to [2], [19] for general information on
function spaces. We define the Fourier transform in R" by

(Fu)(&)=u(g)= (2ﬂ)_"/2/exp(—ix~ &)u(x)dx.
We denote aV b the maximum of a,b € R

2. Main theorems

To state the main theorems, we introduce the following notation. The Cauchy
problem for (1) with data (u(0),v(0)) = (¢,y) at r = 0 shall be treated in the form of
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the following integral equations:

{zdﬂ::U%@)¢—dngm@—¢QAvﬁUUdﬂ,
V(1) = Un () —i fgUn(t — ") pu? (') dt’,

where Uy, (1) = exp (i5=A) and Uy (1) = exp (i55;A) are free propagators with masses
m and M, respectively. For n > 4, we introduce the following Banach space

&)

X = (CNL”) (R;H">72) N L (R; Hy > )
with norm
s | = [l = (E22) | e 22 (115122)
where 2* = 2n/ (n — 2) is the critical Sobolev exponent.
For € > 0, we define

.n/2-2
o;H

.nj2-2

Be = {(¢,u/) € H"/* 2 x g"/*2, \/Hu/;H

<ef.

THEOREM 2.1. Let n > 4. Then there exist €y and Cy such that 0 < & <1< Gy
with the following properties.

(1) For any € with 0 < € < & and any (§,y) € B the system (5) has a unique
pair of solutions (u,v) € X x X. Moreover, there exist unique (¢+,y+) € Be,e such
that

() = Un(1) 93 H"72|| — 0,
|v(r) _UM(I)W:I:§HH/272H — 0,
ast — Zoo.

(2)4 For any € with 0 < € < & and any (¢+,w) € B the system (5) has a
unique pair of solutions (u,v) € X x X such that (u(0),v(0)) € Bc,e,

() = Un(1) 9 :H"72|| — 0,
||V(t) - UM(I)III+;Hn/2_2H — 0,
as t — oo,

(2)_ For any € with 0 < € < & and any (¢_,y_) € B, the system (5) has a

unique pair of solutions (u,v) € X x X such that (u(0),v(0)) € Bc,e,
() = Un(1)9—:H"*72|| — 0,
|v(t) — Un(e)w—; H"*2|| — 0,

as t — —oo,

COROLLARY 2.2. The wave operators Wy : (¢+,w+) — (u(0),v(0)) are de-
fined as mappings from B to Bc,e for any € with 0 < € < &. The scattering operator
S: (-, w-) — (¢4, W) is defined as a mapping from B, to Bcye for any € with

0
0<e<g.
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REMARK 2.1. As in the definition of B , smallness of the data is necessary for
the scaling invariant part. The smallness assumption L? part is necessary only for n =4,
since n/2 —2=0. See [3], [4], [11], [15] for the related topics.

For n = 3, we introduce the following Banach space
Y = (CNL”) (R;L?) NL** (R;L?)

with norm

)

Y] = |

wty (1) v

L (L3) ’

where L*? is the Lorentz space with second exponent 2, so that L*! ¢ L*? c [** =
L* C L**. For the free propagator

.t _ L1 2
Un(t) =exp (is—-4) = F Vexp (—is— [ ) 7,
(1) =exp (i~ exp (—is—¢]
we introduce the standard generator of Galilei transformations as
Lt
In(t) = Up(t)xUp (—t) = x—HZV’
which are also represented as
.1 .m 2
In(8) = My (£)i- VMo (=), M (1) = exp (5 )
for ¢ # 0. Fractional power of J,, are defined as
[ “(2) = Up(t) [x]* Un(—1),a > 0,

which are also represented as (see [10])

2 a/2
() = Mon(6) (= 8) " M (1)
for 1 # 0, since U, (t) is represented as
Un(t) = My (1) Dy (2) F My (1)
with )
(D ()W) (x) = (it /m) ™"y (mx /1)
We solve (5) in the Banach space

Y = {u €Y || V2u e Y}

with norm
[0 You | = (Y |V [[ |2 Y .

For € > 0, we define

R Y 12
Bo={ (0w e 77 ) [ v [

)

{0.w) € 2 x L5020, 10 2y € L2, [ 29 L2 v [[lx) 2y L2 < .
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THEOREM 2.3. Let n = 3. Let m and M satisfy M = 2m. Then there exist €&
and Cy such that 0 < gy < 1 < Cy with the following properties.

(1) For any € with 0 < € < & and any (¢,y) € Be the system (5) has a unique
pair of solutions (u,v) € Yy, X Ya,,. Moreover, there exist unique (§+,y+) € Be,e such

that
|Un(=1)ute) = 937 (') | = 0,

HUzm(—t)v(t) . u/i;ﬁ(Hm)H —0,

ast — Zoo.
(2)4 Forany € with 0 < & < & and any (¢+,wy) €B
unique pair of solutions (u,v) € Y X Yo, such that (u(0),v(0)

’ Un(—t)u(t) — o457 (H'/?) H 0,

HUzm(—t)v(t) — vy T (HY) H 0,

¢ the system (5) has a
) S BCOE’

as t — oo,
(2)— For any € with 0 < & < & and any (¢—,y_) € Be the system (5) has a
unique pair of solutions (u,v) € Y,, X Yo, such that (u(0),v(0)) € Bce,

HUm(—t)u(t) —qL;ﬁ(HW)H 0,
HUzm(—t)v(t) —y T (H') H 0,

as t — —oo,

COROLLARY 2.4. The wave operators Wy : (¢+,y1) — (u(0),v(0)) are de-
fined as mappings from B to Bg,e for any € with 0 < € < &. The scattering operator

S:(o—,w_) — (¢+,yy) is defined as a mapping from B\Cglg to Ecog for any € with
0<e<g.

3. Proof of Theorem 2.1

In this section we prove Theorem 2.1. For that purpose we use the following
bilinear estimates.

PROPOSITION 3.1. Let n > 4. Then there exists a constant C depending only on
n such that the following estimates hold:

2] <

.n/2-2
u;Hz* H }
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.n/2-2 )
forany ue Hye veLl? and

.n/2=2
uv, H

.n/2=2
M,Hz*

.nj2-2

<C V;Hz*

.nj2-2
Sforany u,v € H,.

Proof. The first inequality follows from the Holder inequality with 1/2 =1/2* +
.nj2-2
1/n and the Sobolev embedding H,«  C L". When n is even, the second inequality
follows from

.n/2-2
uv;H <c ) Hé‘“(uv);ﬁ”
la|=n/2-2
<Cc ) H&Buﬁyv L2H
lot|=n/2— 2B+y a
<c ¥ Haﬁ g/ (Bl+1) H Hav ./ WI+1)H
lo|=n/2-2B+y=0
.nj2-2 . n/2-2
S C M;Hz* V;Hz* s

where the last inequality follows from the Sobolev embedding

.n/2-2 .S
H. CHn/(erl)

for any s € R with 0 <s < n/2—2. When n is odd, we estimate

.n/2-2

12
uv,H

<C 0% (uv);H

la=(n-5)/2

<c 'y ¥

la=(n—3)/2B-+7=0:

<c ¥ X

lo[=(n=5)/2 p+y=0x

12
oPudrv.H H

P
O u;Hy (g1+3/2)

Hayv;L"/W'“) H

1/2
n +l
+C 2 Hz?BuL/‘ﬁl H'ayv Hn/ (ly+3/2)
lot|=(n—5)/2 B+y=ct
.n/2-2 .n/2-2
SC M,Hz* V;Hz* 5

where we have used fractional Leibniz estimate of Kato and Ponce [11] and the Sobolev
embedding of the same type as above. O
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3.1. Proof of Theorem 2.1

We introduce two auxiliary function spaces:
Xo = (CNL”) (RL?) N L2 (R;L*),

X =(CNL>) (R;H"/z_z) N2 (R;H’;fz_z)

)
. n/2-2

with norms

] -

u: Xo| = |

)

wty (1) v
.n/2-2
e

X (0,8) = { (00) € X X3 Xo Vil < .

|

For p,0 > 0 we define

with metric

d ((u7v),(u’7v’)) = Hu— u’;XOH \% Hu— u’;XH Vv Hv—v/;XOH \% Hv—v’;XH

u;XH\/ v;XH <5}

421

which is equivalent to the metric induced by the normin X. Let € > 0. For any (¢,y) €

B and any (u,v) € X (p,8) we define

(@) (1) = Un(1)9 —i/(: U (1 — ') v (1)

(P(uv) (1) = UM(t)u/—i/Ot U (1 — ) (¢ d’

We prove that there exist J, & such that for any € with 0 < & < & and any (¢, ) € B
the mapping (u,v) — (®(u,v),¥(u,v)) is a contraction on X (p,8) for some p > 0.

By the Strichartz estimate [12] and Proposition 3.1, we estimate

ot m):xo]| < |

o: L[ +C vy (1)
. n/2-2
viL? (Hz* )‘

o] < 2]+ L (22)]

.n/2-2
.n/2-2
Vit L} (H )H

<C|

¢;L%||+C

|

i ()

b

<cllwe?]|+c

|

;12 <L2*>

)

.n/2-2

Hd)(u,v);XH < C‘ 0. H +C
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e n/2-2 5[ n/2-2
V,L Hz* u, L Hz*

.n/2-2 .n/2-2
u? L) (H )

x| < | v
.n/2-2
u; L2 (Hz* )

o:22)|v v 22]) + Cps.

.n/2-2

CH(P;H +C

)

+C

. n/2-2 2

cHw;H +C

Therefore, we have for (u,v) € X (p,9),

1, v): Xol| V [ (1,v) 1 Xo | < C (]

HCI)(M,V);XH v H‘I’(u,v),XH < Ce+C82,
and similarly, for (u,v),(«',v') € X (p,0),

||d>(u,v) - q)(u/,v/);XOH Vv ||‘P(u,v) —‘P(u/,v/);XoH
< OB ([lu—it5Xal v o~ Vi)

H@(u,v) —q)(u/,v/);XH v H‘I’(u,v) —‘I’(u',V);XH

<co(fu-wi] |

).

we choose p, 8, and g as

o

Then (u,v) — (®(u,v),¥(u,v)) is a contraction on X (p,8) so that the corresponding
fixed point provides the required pair of solutions (u,v) of (5). The uniqueness of
solutions in X x X follows by the standard argument by taking into account that

) .n/2-2 ) .n/2-2
wL? ( IH,. w2 (IH,.

can be arbitrarily small by making the length |I| of the interval I C R sufficiently small.
The existence of scattering states (@1, y+) follows for instance by estimating

|V ||wsL?]]) < p/2.C8 < 1/2,Ce9=8/2.

HU'”(_’ ”(f)—Um(—s)u(S);Hn/zsz

AVE(t )dt’;H"/z_zH

v;L2 s,t;H"/z_2 HHu;LZ(s,t;H”/2_2)H —0
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as t > s — +oo. Moreover, (¢+,y+) belong to Bg,, since

.nj2-2 .n/2-2
‘ o H = ||Un(t)¢+:H
. n/2-2 .n/2-2
< ||u():H + ||u(t) = Un(t) 91 H
.n/2-2 .n/2=2
< u(t);L;"’(H )H-i- u(t) —Un(t)9+: H

.n/2-2

< Ceo+ ||u(t) — Upn(t) ¢ H

for instance. This proves part (1). Finally we consider part (2) +. Forany (¢4, W+ ) € Be
and any (u,v) € X (p,0) we define

(@1 (u,v)) (t) = Upn (2) 9 —i/i:oUm (t—1") Avu (i) dr’,
(W (1)) (1) = Unt (1) o — i /i[ U (1) (1) i

Then the contraction argument proceeds in almost the same way.

4. Proof of Theorem 2.3

In this section we prove Theorem 2.3. For that purpose we use the following
bilinear estimates.

PROPOSITION 4.1. Let n = 3. Then there exists a constant C depending only on
n such that the following estimates hold:

v;L3

)

o2 < |

2] < 2 (] a2

e 2],

a7 <t (] a2

e e}

forany t #0 and any m > 0.
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Proof. The first inequality follows from the Holder inequality and the Sobolev
172
embedding H  C L3. The second inequality follows from fractional Leibniz estimate
172
of Kato and Ponce [11] and the Sobolev embedding H C L3, since

H|Jm|1/2("ﬁ);L3/2H _ H(_iA>1/4(M2_1v_m);L3/2H
<c|( ——A)1/4 |||

i (- Sa) e
< Cf|Vanl s [| My |
+C|| My, v L[| | P L

The third inequality follows in the same way, since

H\J2m|l/2(vu L3/2H H —4m2A>1/4(Mm1v-Mmlu);L3/2 .

4.1. Proof of Theorem 2.3

For p,d > 0 we define

Y(p,8) = {(1,v) € Yo x Yo Y| V 3 || < p,

H\Jm|l/2u;YH\/H|j2m‘1/2 :

<}

with metric
d ((u,v), (' V) = ||u—u"s Y| V][v =V Yam|| -

Let € > 0. Forany (¢,y) € B and any (u,v) €Y (p,8) we define
t

(@(u,)) () = Un(t)9 — i / Un(t — )V Avia(t')dr’
0

() 0) = Uanl)y =i [ Unlt —1 il 0t

By the Strichartz estimate in Lorentz spaces [16], [17], Proposition 4.1, and the Holder
inequality in Lorentz spaces, we obtain

| |+ €l ()|

=l =21 2m 202
[+ €t~ 2 || [l 20 (22)

L

L2 ()]
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< Cllgs 22|+ Clllaml 2w 1 (£2) [l 1 (1)

[y | < 2] + a2 () |
<C|lws L2|| +C[|In] Pus L (L) ||| s L (23) ]

H ‘Jm‘lpq)(u,v);YH
< Clll! 203 22|+ ||l 202 (112) |

12
(o)

+ Ol s 22 (L) [ [Vm 227 (27)

‘+C’||Jml‘/2u;L?°(L2)HHszl”zv;L?"z(ﬁ)H

1229, ¥ || < € el 2 2| - [l 20512 (17|
.1)2
el ()

o+ CllWnl P L (1) [ |25 22 (L)

Therefore, we have for (u,v) € Y (p, ),
[ ¥ [V P @)Y | < C([[os L2 v [[ws 22]) + Cps,

([ V|2 @ ()5 Y || V|| [Jom] V2P (1, v); Y || < Ce + €2

Similarly, for (u,v),(',v') €Y (p,8),
| @@, v) — @' V' ); V|| V || (,v) = P (V) Yo |
SCO([lu— sl V v =5 Yau]).

We choose p, 8, and g as

C(lo:L2| v lwsL?]l) < p/2,CE < 1/2, Cey = 8/2.

Then (u,v) — (@(u,v),¥(u,v)) is a contraction on Y (p,8) and the proof proceeds
in almost the same way as in the proof of Theorem 2.1.
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