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WELL–POSEDNESS OF A DISSIPATIVE SYSTEM MODELING

ELECTROHYDRODYNAMICS IN LEBESGUE SPACES
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(Communicated by E. Marušić-Paloka)

Abstract. In this paper, we study a dissipative system of partial differential equations modeling
the flow of electrohydrodynamics. This system consists of the Navier-Stokes equations with a
source term coupled with the Nernst-Planck-Poisson equations for electronic charges. We estab-
lish local well-posedness of the initial value problem of this system in the critical and subcritical
vector Lebesgue spaces. Moreover, we also prove that if the initial data is sufficiently small in
critical Lebesgue spaces, then the solution is a global.

1. Introduction

In this paper, we study the initial value problem for a system of dissipative nonlin-
ear partial differential equations modeling the motion of an isothermal, incompressible
and viscous Newtonian fluid of uniform and homogeneous composition of a high num-
ber of positively and negatively charged particles. The problem reads as follows (cf.
[26]):

∂tu−Δu+(u ·∇)u+∇P = Δφ∇φ in R
N ×R+, (1.1)

∇ ·u = 0 in R
N ×R+, (1.2)

∂t v+u ·∇v = ∇ · (∇v− v∇φ) in R
N ×R+, (1.3)

∂tw+u ·∇w = ∇ · (∇w+w∇φ) in R
N ×R+, (1.4)

Δφ = v−w in R
N ×R+, (1.5)

(u,v,w)|t=0 = (u0,v0,w0) in R
N . (1.6)

Here u = u(x, t) ∈ R
N denotes the velocity field of the fluid, P = P(x,t) ∈ R is the

pressure inside the fluid, φ = φ(x,t) ∈ R is the electrostatic potential caused by the
charged particles, v = v(x,t)∈R and w = w(x,t) ∈R respectively represent the charge
densities of the negatively and positively charged particles, and u0 , v0 and w0 are
initial data of u , v and w , respectively. Equations (1.1) and (1.2) are the momentum
conservation and the mass conservation equations of the flow, and the right-hand side
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term in (1.1) is the Lorentz force caused by the charges. Equations (1.3) and (1.4)
model the balance between diffusion and convective transport of the charges by the flow
and the electric fields. The equation (1.5) is the Poisson equation for the electrostatic
potential φ . We refer the reader to see [5], [8], [9], [28], [30] and the references therein
for more details of the physical background of this problem and some different models
of similar equations. Note that for simplicity we have assumed that the fluid density,
the viscosity coefficient, the charge mobility and the dielectric constant are all equal to
unit.

In the case that the flow is charge-free, i.e., v = w = φ = 0, the system (1.1)-(1.6)
reduces into the well-known Navier-Stokes equations:

∂tu−Δu+(u ·∇)u+∇P = 0 in R
N ×R+, (1.7)

∇ ·u = 0 in R
N ×R+, (1.8)

u|t=0 = u0 in R
N . (1.9)

This problem has drawn great attention of researchers for many years, and a huge num-
ber of works can be found from the literature, cf., e.g., [4], [6], [10], [11], [17]-[21],
[25], [31] and the references therein. If, on the other hand, the velocity field u is iden-
tically vanishing, then (1.1)-(1.6) reduces into the following problem:

∂t v = ∇ · (∇v− v∇φ) in R
N ×R+, (1.10)

∂tw = ∇ · (∇w+w∇φ) in R
N ×R+, (1.11)

Δφ = v−w in R
N ×R+, (1.12)

(v,w)|t=0 = (v0,w0) in R
N . (1.13)

This problem is the so-called Nernst-Planck-Poisson system which was formulated by
W. Nernst and M. Planck at the end of the nineteenth century as a basic model for the
diffusion of ions in an electrolytes (cf. [7]). In some literatures it is also called Debye-
Hückel system (cf. [3]). It has drawn much attention of analysts during the past twenty
years (cf. [1], [2], [3], [12], [15] and [16]). As for the problem (1.1)-(1.6), the results are
much less. In [13], Jerome established the first existence result for this system in Kato’s
semigroup framework. More precisely, he proved that (1.1)-(1.6) has a unique local
smooth solution for smooth initial data where he verified the local existence in Kato’s
semigroup framework. In [29], by using the energy inequalities and the Schauder’s
fixed point theorem, Schmuck obtained existence of global weak solutions to the system
(1.1)-(1.6) in a bounded domain Ω with homogeneous Neumann boundary conditions
under the assumption that u0 ∈ [L2(Ω)]N and v0 , w0 ∈ L∞(Ω) for N = 2,3. In [14], the
existence of a global weak solution was proved to hold for the initial/boundary-value
problem of the system (1.1)-(1.6). In [27], Ryham studied existence, uniqueness and
regularity of weak solutions of (1.1)-(1.6) in a bounded domain with no-flux boundary
conditions for general L2 initial data in N = 2 and for small initial data in N = 3. For
computational simulations of the problem (1.1)-(1.6), see [22]-[24].

In this paper we study well-posedness of the problem (1.1)-(1.6) in the vector
Lebesgue spaces [Lq(RN)]N ×Lp(RN)×Lp(RN) for suitable q and p . By a standard
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scaling argument we can easily see that [LN(RN)]N ×L
N
2 (RN)×L

N
2 (RN) is the critical

vector Lebesgue space for the system (1.1)-(1.5). We can thus expect that the problem
(1.1)-(1.6) is locally well-posed in this space for arbitrarily large initial data, and glob-
ally well-posed for sufficiently small ones. Our first goal of this paper is to prove that
this is indeed the case. The subcritical spaces are [Lq(RN)]N ×Lp(RN)×Lp(RN) with
q > N and N

2 < p < N . The second goal of this paper is to prove that at least for (p,q)
satisfying the conditions N < q < ∞ , N

2 < p < N and 2
p < 3

N + 1
q , the problem (1.1)-

(1.6) is locally well-posed in these subcritical spaces. The restriction N
2 < p < N is due

to some similar reasons as illustrated in [15] and [16], and the condition 2
p < 3

N + 1
q is

caused by the coupling between the components u and (v,w) . To state our main results
we first introduce some notations in the following paragraph.

For 1 < p <∞ , we let Lp(RN)= [Lp(RN)]N , and denote by Lp
ω (RN) the subspace

of Lp(RN) consisting of all divergence-free vector fields, i.e.,

Lp
ω(RN) = {u ∈ Lp(RN) : div u = 0}.

For a given Banach space X , we use the notation ‖ · ‖X to denote the norm of X .
However, the norms of the Lebesque space Lp(RN) and its N -vector counterpart will
be simply written as ‖ · ‖Lp . Given 0 < T � ∞ and a Banach space X , we denote by
BC([0,T ),X) the Banach space of all bounded and continuous mappings from [0,T )
to X , with norm

‖φ‖BC([0,T),X) = sup
t∈[0,T )

‖φ(t)‖X for φ ∈ BC([0,T ),X).

For T , X as before and σ > 0, we use the notation BCσ ([0,T ),X) to denote the Banach
space of all continuous mappings from (0,T ) to X such that tσφ(t) ∈ BC([0,T ),X) ,
with norm

‖φ‖BCσ ([0,T ),X) = sup
t∈[0,T )

tσ‖φ(t)‖X .

The notation BĊσ ([0,T ),X) denotes the following subspace of BCσ ([0,T ),X) :

BĊσ ([0,T ),X) =
{
φ : φ ∈ BCσ ([0,T ),X), lim

t→0+
tσ‖φ‖X = 0

}
.

Finally, we denote P = I+∇(−Δ)−1div , i.e., P is the N×N matrix pseudo-differential

operator in R
N with the symbol (δi j − ξiξ j

|ξ |2 )N
i, j=1 , where I represents the unit operator

and δi j is the Kronecker symbol. Note that denoting by R the Riesz transform in R
N ,

i.e., R = (R1,R2, · · · ,RN) and Rj is the pseudo-differential operator in R
N with symbol

ξ j
|ξ | , j = 1,2, · · · ,N , then P = I−R⊗R , where ⊗ denotes the tensor product between
N -vectors. Hence by the well-known theory of Calderon and Zygmund on singular
integral operators, we see that for any 1 < p <∞ , P is a bounded linear mapping from
Lp(RN) to itself. Note also that for any u ∈ [S(RN)]N , div (Pu) = 0 and Pu = u if
div u = 0. Hence, since [S(RN)]N is dense in Lp(RN) , we see that when restricted on
Lp(RN) , P is the projection onto the subspace Lp

ω(RN) , so that Lp
ω (RN) = PLp(RN) .

The main results of this paper are the following Theorems 1.1-1.4:
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THEOREM 1.1. Let N � 2 . Assume that u0 ∈ LN
ω (RN) and v0 , w0 ∈ L

N
2 (RN) .

Then there exists T > 0 and a unique solution (u,v,w) of (1.1)-(1.6) such that

u ∈ BC([0,T ),LN
ω (RN))∩BĊσ ([0,T ),Lq

ω (RN)),

v,w ∈ BC([0,T ),L
N
2 (RN))∩BĊη([0,T ),Lp(RN)),

where N < q � 2N , N
2 < p < N , 2

p < 3
N + 1

q , σ = 1
2(1− N

q ) and η = 1
2 (2− N

p ) . In
addition, there exists ε > 0 such that if

‖(u0,v0,w0)‖
LN×[L

N
2 ]2

� ε,

then the above assertion holds for T = ∞ , i.e., the solution (u,v,w) of (1.1)-(1.6) is
global.

THEOREM 1.2. Let (u,v,w) be the solution of (1.1)-(1.6) given by Theorem 1.1.
Then there exists 0 < T1 � T such that for any N < q � 2N , N < r < ∞ , 2

r = 1− N
q ,

N
2 < p < N , N

2 < s < ∞ , 2
s = 2− N

p and 2
p < 3

N + 1
q , we have

u ∈ Lr((0,T1),L
q
ω (RN)) and v,w ∈ Ls((0,T1),Lp(RN)).

In addition, there is ε > 0 such that if ‖(u0,v0,w0)‖
LN×[L

N
2 ]2

� ε , then we may take

T1 = ∞ .

THEOREM 1.3. Let N � 2 , N < q0 <∞ and N
2 < p0 < N satisfying 2

p0
< 3

N + 1
q0

.

Assume that u0 ∈ Lq0
ω (RN) and v0,w0 ∈ Lp0(RN) . Then there exists T > 0 and a

unique solution (u,v,w) of (1.1)-(1.6) such that

u ∈ BC([0,T ),Lq0
ω (RN)) and v,w ∈ BC([0,T ),Lp0(RN)).

THEOREM 1.4. Let (u,v,w) be the solution of (1.1)-(1.6) given by Theorem 1.3.
Then there exists 0 < T1 � T such that for any N < q0 < q < ∞ and N

2 < p0 < p < N
satisfying 2

p0
< 3

N + 1
q0

and 2
p < 3

N + 1
q , we have

u ∈ Lr((0,T1),L
q
ω (RN)) and v,w ∈ Ls((0,T1),Lp(RN)),

where q0 < r < ∞ and p0 < s < ∞ satisfying 1
r = N

2 ( 1
q0
− 1

q ) and 1
s = N

2 ( 1
p0
− 1

p) .

REMARK 1.1. Note that in the above theorems we did not consider P and φ . The
reason is that when u , v and w are determined, then P and φ can be easily obtained
from (1.2) and (1.5).

REMARK 1.2. Theorem 1.1 implies that for small initial data, the solution is not
only global but also decays to zero as t →∞ . In fact, this theorem shows that as t →∞ ,

‖u(t)‖Lq ∼Ct−
1
2 (1− N

q ) (N < q � 2N )

and
(‖v(t)‖Lp ,‖w(t)‖Lp) ∼Ct−

1
2 (2− N

p ) ( N
2 < p < N ).
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The rest of this paper is organized as follows. In Section 2, we reformulate the
system (1.1)-(1.6) into an equivalent mild integral equations and state some preliminary
results. Section 3 is devoted to giving the proofs of Theorems 1.1 and 1.2. The proofs
are based on the analytic C0 -semigroup theory and the Lp -Lq estimates for the heat
semigroup. In Section 4 we give the proofs of Theorems 1.3 and 1.4.

2. Preliminaries

As a standard practice, we can reformulate the problem (1.1)-(1.6) into an equiva-
lent system of integral equations. For this purpose, we first solve the equation (1.5) to
get φ as a functional of v−w :

φ = (−Δ)−1(w− v) = K ∗ (w− v), (2.1)

where K = K(x) is defined for all x ∈ R
N\{0} by:

K(x) =

{− 1
2π log |x| if N = 2,

1
4π

− N
2 Γ

(
N
2 −1

)|x|−(N−2) if N � 3.

Next, we use the standard argument in the theory of Navier-Stokes equations to elim-
inate the pressure P , namely, we apply the operator P to both sides of (1.1). Then
(1.1)-(1.2) reduce into the following equation:

∂tu−Δu+P(u ·∇)u = PΔφ∇φ . (2.2)

Hence, the problem (1.1)-(1.6) can be reduced into the following system of integral
equations by the well-known Duhamel formula

u = etΔu0 +
∫ t

0
e(t−τ)ΔG1(u(τ),v(τ),w(τ))dτ, (2.3)

v = etΔv0 +
∫ t

0
e(t−τ)ΔG2(u(τ),v(τ),w(τ))dτ, (2.4)

w = etΔw0 +
∫ t

0
e(t−τ)ΔG3(u(τ),v(τ),w(τ))dτ, (2.5)

where ⎧⎨
⎩

G1(u,v,w) = −P∇ · (u⊗u)+P(v−w)∇((−Δ)−1(w− v)),
G2(u,v,w) = −∇ · (uv)−∇ · (v∇(−Δ)−1(w− v)),
G3(u,v,w) = −∇ · (uw)+∇ · (w∇(−Δ)−1(w− v)).

Later on we shall work on this system of integral equations.
Now we collect some basic results concerning the operator etΔ , which are the main

tools for the proofs of Theorems 1.1-1.4.

LEMMA 2.1. ([18]) For any 1 � p < ∞ , {etΔ}t�0 is a contractive and analytic
C0 -semigroups in both Lp(RN) and Lp

ω (RN) .



432 JIHONG ZHAO, CHAO DENG AND SHANGBIN CUI

LEMMA 2.2. ([15], [17]) Let k ∈ Z+ = {n ∈ Z : n � 0} , α ∈ Z
N
+ and 1 � p �

q � ∞ . Then for any ϕ ∈ Lp(RN) we have

‖∂ k
t ∂

α
x (etΔϕ)‖Lq � Ct−σ‖ϕ‖Lp , ∀t > 0, (2.6)

where σ = k + |α |
2 + N

2 ( 1
p − 1

q ) . Moreover, if either k + |α |
2 
= 0 or k + |α |

2 = 0 and
1 � p < q � ∞ , then

lim
t→0+

tσ‖∂ k
t ∂

α
x (etΔϕ)‖Lq = 0. (2.7)

LEMMA 2.3. ([17]) Let G(ϕ ,ψ) =
∫ t
0 e(t−τ)Δϕψdτ . Then for any α,β ,γ � 0

such that γ � α +β < min{N,2+ γ} , we have the following estimate:

‖G(ϕ ,ψ)‖
L

N
γ

� C
∫ t

0
(t− τ)−

1
2 (α+β−γ)‖ϕ‖

L
N
α
‖ψ‖

L
N
β
dτ. (2.8)

Furthermore, if γ � α+β < min{N,1+ γ} , then we also have the following estimate:

‖∇G(ϕ ,ψ)‖
L

N
γ

� C
∫ t

0
(t− τ)−

1
2 (1+α+β−γ)‖ϕ‖

L
N
α
‖ψ‖

L
N
β
dτ. (2.9)

LEMMA 2.4. ([11]) Let 1 < p < q � r < ∞ . Then for any ϕ ∈ Lp(RN) we have∫ t

0
‖eτΔϕ‖r

Lqdτ � C‖ϕ‖r
Lp for t > 0, (2.10)

where 1
r = N

2 ( 1
p − 1

q ) , and the constant C depends only on p, q and N .

LEMMA 2.5. Let p, s and σ be positive constants such that N
2 < p < N and

s > N
2 . Then for any 0 < T � ∞ we have the following assertion: if

v,w ∈

⎧⎪⎨
⎪⎩

BC([0,T ),Lp(RN)) or

BĊσ ([0,T ),Lp(RN)) or

Ls((0,T ),Lp(RN)) respectively,

then

∇((−Δ)−1(w− v)) ∈

⎧⎪⎪⎨
⎪⎪⎩

BC([0,T ),L
Np

N−p (RN)) or

BĊσ ([0,T ),L
Np

N−p (RN)) or

Ls((0,T ),L
Np

N−p (RN)) respectively,

and the following estimates respectively hold:

sup
t∈[0,T )

‖∇((−Δ)−1(w− v))‖
L

Np
N−p

� C sup
t∈[0,T )

‖(v,w)‖Lp , (2.11)

sup
t∈[0,T )

tσ‖∇((−Δ)−1(w− v))‖
L

Np
N−p

� C sup
t∈[0,T )

tσ‖(v,w)‖Lp , (2.12)

‖∇((−Δ)−1(w− v))‖
Ls((0,T),L

Np
N−p )

� C‖(v,w)‖Ls((0,T ),Lp). (2.13)
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Proof. By (2.1) we have

∇((−Δ)−1(w− v)) = ∇K ∗ (w− v).

Since |∇K(x)|�C|x|−(N−1) for all x∈R
N\{0} , by using the Hardy-Littlewood-Sobolev

inequality we see that for any t ∈ [0,T ) , v(·,t) and w(·, t) belong to Lp(RN) implies
that

∇((−Δ)−1(w(·,t)− v(·,t))) ∈ L
Np

N−p (RN)

and
‖∇((−Δ)−1(w(·,t)− v(·,t)))‖

L
Np

N−p
� C‖(v(·,t),w(·,t))‖Lp .

This yields the desired assertions easily. �

3. Proofs of Theorems 1.1 and 1.2

In this section we give the proofs of Theorems 1.1-1.2. Thus, throughout this
section we assume that

u0 ∈ LN
ω (RN) and v0,w0 ∈ L

N
2 (RN).

THE PROOF OF THEOREM 1.1 Under the assumptions of Theorem 1.1, we intro-
duce two spaces XT and YT as follows:

XT = BĊσ ([0,T ),Lq
ω (RN))×BĊη([0,T ),Lp(RN))×BĊη([0,T ),Lp(RN)),

YT =
{
(u,v,w) : u ∈ BC([0,T ),LN

ω (RN))∩BĊσ ([0,T ),Lq
ω (RN)) and

v,w ∈ BC([0,T ),L
N
2 (RN))∩BĊη([0,T ),Lp(RN))

}
,

where σ = 1
2(1− N

q ) and η = 1
2 (2− N

p ) . The norms in XT and YT are respectively
defined by

‖(u,v,w)‖XT = sup
t∈[0,T )

tσ‖u(t)‖Lq + sup
t∈[0,T)

tη‖(v(t),w(t))‖Lp ,

‖(u,v,w)‖YT = sup
t∈[0,T )

‖u(t)‖LN + sup
t∈[0,T )

tσ‖u(t)‖Lq

+ sup
t∈[0,T)

‖(v(t),w(t))‖
L

N
2

+ sup
t∈[0,T )

tη‖(v(t),w(t))‖Lp .

It can be easily checked that (XT ,‖ · ‖XT ) and (YT ,‖ · ‖YT ) are both Banach spaces,
and (YT ,‖ ·‖YT ) is an embedded Banach subspace of (XT ,‖ ·‖XT ) . We now introduce a
mapping F defined in the space XT as follows: Given (u,v,w)∈XT , we let F(u,v,w) =
(û, v̂, ŵ) , where

û(t) = etΔu0 +
∫ t

0
e(t−τ)ΔG1(u(τ),v(τ),w(τ))dτ, (3.1)
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v̂(t) = etΔv0 +
∫ t

0
e(t−τ)ΔG2(u(τ),v(τ),w(τ))dτ, (3.2)

ŵ(t) = etΔw0 +
∫ t

0
e(t−τ)ΔG3(u(τ),v(τ),w(τ))dτ. (3.3)

In what follows we prove that F is well-defined and maps XT into YT , and if T is
sufficiently small then it is a contraction mapping from a closed ball of XT into itself.
Besides, there exists ε > 0 such that if ‖(u0,v0,w0)‖

LN×[L
N
2 ]2

� ε , then we can take

T = ∞ .

LEMMA 3.1. For any 0 < T � ∞ , F is well-defined and maps XT into YT .

Proof. We first consider û . By (3.1) we have û = û1 + û2 + û3 , where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

û1(t) = etΔu0,

û2(t) =
∫ t

0
e(t−τ)Δ

P[−∇ · (u⊗u)](τ)dτ,

û3(t) =
∫ t

0
e(t−τ)Δ

P[(v−w)∇((−Δ)−1(w− v))](τ)dτ.

(3.4)

For û1 , since u0 ∈ LN
ω(RN) , by Lemmas 2.1 and 2.2 we immediately see that

û1 ∈ BC([0,T ),LN
ω (RN))∩BĊσ ([0,T ),Lq

ω (RN)) (3.5)

and
‖û1(t)‖LN + tσ‖û1‖Lq � C‖u0‖LN . (3.6)

For û2 , by applying (2.9) with α = β = N
q and γ = 1, we get

‖û2(t)‖LN =
∥∥∥∫ t

0
e(t−τ)Δ

P[−∇ · (u⊗u)](τ)dτ
∥∥∥

LN

�
∫ t

0
(t− τ)−

1
2 (1+ N

q + N
q −1)‖u‖2

Lqdτ

� C
(

sup
t∈[0,T )

tσ‖u‖Lq

)2 ∫ t

0
(t− τ)−

N
q τ−2σdτ � C

(
sup

t∈[0,T )
tσ‖u‖Lq

)2
.

Here we used the assumption N < q � 2N which ensures that γ � α + β and N
q <

1. By a standard argument (cf. [17] and [11]), the above estimate implies that û2 ∈
BC([0,T ),LN

ω (RN)) . Besides, by applying (2.9) with α = β = γ = N
q ,

‖û2(t)‖Lq =
∥∥∥∫ t

0
e(t−τ)Δ

P[−∇ · (u⊗u)](τ)dτ
∥∥∥

Lq

�
∫ t

0
(t− τ)−

1
2 (1+ N

q )‖u‖2
Lqdτ

� C
(

sup
t∈[0,T )

tσ‖u‖Lq

)2 ∫ t

0
(t− τ)−

1
2 (1+ N

q )τ−2σdτ
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� Ct−σ
(

sup
t∈[0,T )

tσ‖u‖Lq

)2
.

This estimate yields that û2 ∈ BĊσ ([0,T ),Lq
ω (RN)) . Hence,

û2 ∈ BC([0,T ),LN
ω (RN))∩BĊσ ([0,T ),Lq

ω (RN)) (3.7)

and
‖û2(t)‖LN + tσ‖û2(t)‖Lq � C( sup

t∈[0,T )
tσ‖u‖Lq)2. (3.8)

For û3 , by applying (2.8) with α = N
p , β = N−p

p , γ = 1 and (2.12),

‖û3(t)‖LN =
∥∥∥∫ t

0
e(t−τ)Δ

P[(v−w)∇((−Δ)−1(w− v))](τ)dτ
∥∥∥

LN

� C
∫ t

0
(t − τ)−

N
2 ( 2

p− 2
N )‖(v−w)‖Lp‖∇((−Δ)−1(w− v))‖

L
Np

N−p
dτ

� C
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2 ∫ t

0
(t − τ)−

N
2 ( 2

p− 2
N )τ−2ηdτ

� C
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2
.

This estimate yields that û3 ∈ BC([0,T ),LN
ω (RN)) . Furthermore, by applying (2.8)

with α = N
p , β = N−p

p , γ = N
q and (2.12),

‖û3(t)‖Lq =
∥∥∥∫ t

0
e(t−τ)Δ

P[(v−w)∇((−Δ)−1(w− v))](τ)dτ
∥∥∥

Lq

� C
∫ t

0
(t − τ)−

N
2 ( 2

p− 1
N − 1

q )‖(v−w)‖Lp‖∇((−Δ)−1(w− v))‖
L

Np
N−p

dτ

� C
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2 ∫ t

0
(t − τ)−

N
2 ( 2

p− 1
N − 1

q )τ−2ηdτ

� Ct−σ
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2
.

Here we used the assumptions N
2 < p < N and 2

p < 3
N + 1

q to ensure that the above
integral ∫ t

0
(t− τ)−

N
2 ( 2

p− 1
N − 1

q )τ−2ηdτ

is convergent and independent of t , thus the above estimate implies that

û3 ∈ BĊσ ([0,T ),Lq
ω (RN)).

Hence, we have proved that

û3 ∈ BC([0,T ),LN
ω (RN))∩BĊσ ([0,T ),Lq

ω (RN)) (3.9)
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and

‖û3(t)‖LN + tσ‖û3(t)‖Lq � C
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2
. (3.10)

Combining (3.5)-(3.10), we obtain

û ∈ BC([0,T ),LN
ω (RN))∩BĊσ ([0,T ),Lq

ω (RN)) (3.11)

and

sup
t∈[0,T )

‖û(t)‖LN + sup
t∈[0,T)

tσ‖û(t)‖Lq

� C
[
‖u0‖LN +

(
sup

t∈[0,T )
tσ‖u‖Lq

)2
+

(
sup

t∈[0,T )
tη‖(v,w)‖Lp

)2]
. (3.12)

Next we consider v̂ . By (3.2) we have v̂ = v̂1 + v̂2 + v̂3 , where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̂1(t) = etΔv0,

v̂2(t) =
∫ t

0
e(t−τ)Δ[−∇ · (uv)](τ)dτ,

v̂3(t) =
∫ t

0
e(t−τ)Δ[−∇ · (v∇((−Δ)−1(w− v)))](τ)dτ.

(3.13)

Since v0 ∈ L
N
2 (RN) , similarly as for û1 it can be easily seen that

v̂1 ∈ BC([0,T ),L
N
2 (RN))∩BĊη([0,T ),Lp(RN)) (3.14)

and
‖v̂1(t)‖

L
N
2

+ tη‖v̂1(t)‖Lp � C‖v0‖
L

N
2
. (3.15)

For v̂2 , by using (2.9) with α = N
q , β = N

p and γ = 2, we get

‖v̂2(t)‖
L

N
2

=
∥∥∥∫ t

0
e(t−τ)Δ[−∇ · (uv)](τ)dτ

∥∥∥
L

N
2

� C
∫ t

0
(t− τ)−

1
2− N

2 ( 1
p + 1

q− 2
N )‖u‖Lq‖v‖Lpdτ

� C
(

sup
t∈[0,T )

tσ‖u‖Lq

)(
sup

t∈[0,T )
tη‖v‖Lp

)∫ t

0
(t− τ)

1
2− N

2 ( 1
p + 1

q )τ−σ−ηdτ

� C
(

sup
t∈[0,T )

tσ‖u‖Lq

)(
sup

t∈[0,T )
tη‖v‖Lp

)
.

Thus, we obtain v̂2 ∈ BC([0,T ),L
N
2 (RN)) , and

‖v̂2(t)‖
L

N
2

� C
(

sup
t∈[0,T )

tσ‖u‖Lq

)(
sup

t∈[0,T )
tη‖v‖Lp

)
.



WELL-POSEDNESS OF A DISSIPATIVE SYSTEM 437

Besides, by applying (2.9) with α = N
q and β = γ = N

p ,

‖v̂2(t)‖Lp =
∥∥∥∫ t

0
e(t−τ)Δ[−∇ · (uv)](τ)dτ

∥∥∥
Lp

� C
∫ t

0
(t− τ)−

1
2 (1+ N

q )‖u‖Lq‖v‖Lpdτ

� C
(

sup
t∈[0,T )

tσ‖u‖Lq

)(
sup

t∈[0,T )
tη‖v‖Lp

)∫ t

0
(t− τ)−

1
2 (1+ N

q )τ−σ−ηdτ

� Ct−η
(

sup
t∈[0,T )

tσ‖u‖Lq

)(
sup

t∈[0,T )
tη‖v‖Lp

)
.

Thus v̂2 ∈ BĊη([0,T ),Lp(RN)) , and

tη‖v̂2(t)‖Lp � C
(

sup
t∈[0,T )

tσ‖u‖Lq

)(
sup

t∈[0,T )
tη‖v‖Lp

)
.

Hence, we see that

v̂2 ∈ BC([0,T ),L
N
2 (RN))∩BĊη([0,T ),Lp(RN)) (3.16)

and

‖v̂2(t)‖
L

N
2

+ tη‖v̂2(t)‖Lp � C
(

sup
t∈[0,T )

tσ‖u‖Lq

)(
sup

t∈[0,T )
tη‖v‖Lp

)
. (3.17)

For v̂3 , by applying (2.9) with α = N
p , β = N−p

p , γ = 2 and (2.12), we obtain

‖v̂3(t)‖
L

N
2

=
∥∥∥∫ t

0
[e(t−τ)Δ∇ · (v∇((−Δ)−1(w− v)))(τ)]dτ

∥∥∥
L

N
2

� C
∫ t

0
(t − τ)−( N

p −1)‖v‖Lp‖∇((−Δ)−1(w− v))‖
L

Np
N−p

dτ

� C
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2 ∫ t

0
(t − τ)−( N

p −1)τ−2ηdτ

� C
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2
.

Thus v̂3 ∈ BC([0,T ),L
N
2 (RN)) , and

‖v̂3(t)‖
L

N
2

� C
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2
.

Besides, by applying (2.9) with α = γ = N
p , β = N−p

p and (2.12),

‖v̂3(t)‖Lp =
∥∥∥∫ t

0
[e(t−τ)Δ∇ · (v∇((−Δ)−1(w− v)))(τ)]dτ

∥∥∥
Lp
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� C
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2 ∫ t

0
(t − τ)−

N
2p τ−2ηdτ

� Ct−η
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2
.

Thus, v̂3 ∈ BĊη([0,T ),Lp(RN)) , and

tη‖v̂3(t)‖Lp � C
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2
.

Hence, we obtain that

v̂3 ∈ BC([0,T ),L
N
2 (RN))∩BĊη([0,T ),Lp(RN)) (3.18)

and

‖v̂3(t)‖
L

N
2

+ tη‖v̂3(t)‖Lp � C
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2
. (3.19)

Combining (3.14)-(3.19), we have proved that

v̂ ∈ BC([0,T ),L
N
2 (RN))∩BĊη ([0,T ),Lp(RN)), (3.20)

and

sup
t∈[0,T )

‖v̂‖
L

N
2

+ sup
t∈[0,T )

tη‖v̂‖Lp

� C
[
‖v0‖

L
N
2

+ sup
t∈[0,T )

tσ‖u‖Lq sup
t∈[0,T )

tη‖v‖Lp

+
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2]
. (3.21)

Similarly we can prove that

ŵ ∈ BC([0,T ),L
N
2 (RN))∩BĊη([0,T ),Lp(RN)) (3.22)

and

sup
t∈[0,T )

‖ŵ‖
L

N
2

+ sup
t∈[0,T)

tη‖ŵ‖Lp

� C
[
‖w0‖

L
N
2

+ sup
t∈[0,T)

tσ‖u‖Lq sup
t∈[0,T )

tη‖w‖Lp

+
(

sup
t∈[0,T )

tη‖(v,w)‖Lp

)2]
. (3.23)

Putting the estimates (3.11), (3.12), (3.20), (3.21), (3.22) and (3.23) together, we com-
plete the proof of Lemma 3.1. �
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By Lemma 3.1, there exists a constant C0 > 0 independent of T such that for
(u,v,w) ∈ XT and (û, v̂, ŵ) = F(u,v,w) , we have the following estimate

‖(û, v̂, ŵ)‖XT � ‖etΔ(u0,v0,w0)‖XT +C0‖(u,v,w)‖2
XT

. (3.24)

Since u0 ∈ LN
ω(RN) and v0,w0 ∈ L

N
2 (RN) , by Lemma 2.2 we get

lim
T→0+

‖etΔ(u0,v0,w0)‖XT

= lim
T→0+

(
sup

t∈[0,T )
tσ‖etΔu0‖Lq + sup

t∈[0,T)
tη‖etΔ(v0,w0)‖Lp

)
= 0.

Thus, for any 0 < δ < (4C0)−1 there exists corresponding T > 0 (depending on the
initial data (u0,v0,w0)) such that

‖etΔ(u0,v0,w0)‖XT � δ . (3.25)

For such a T , (3.24) implies that

‖(û, v̂, ŵ)‖XT � δ +C0‖(u,v,w)‖2
XT

. (3.26)

Let XT be a closed ball in XT with radius 2δ , i.e.,

XT =
{
(u,v,w) ∈ XT : ‖(u,v,w)‖XT � 2δ

}
.

For any (u,v,w) ∈ XT , from (3.26) we have

‖(û, v̂, ŵ)‖XT � δ +C0(2δ )2 = (1+4C0δ )δ � 2δ .

Hence, F maps XT into itself.

LEMMA 3.2. Let δ , T and XT be as above. Then when restricted in XT , F is a
contractionmapping. Moreover, there exists ε > 0 such that if ‖(u0,v0,w0)‖

LN×[L
N
2 ]2

�
ε , then we may take T = ∞ .

Proof. Let (u1,v1,w1),(u2,v2,w2) ∈ XT , and let (û j, v̂ j, ŵ j) = F(u j,v j,wj) , j =
1,2. Then by a similar argument as in the proof of Lemma 3.1 we have the following
estimate:

‖(û1−û2, v̂1 − v̂2, ŵ1 − ŵ2)‖XT

� C0
(‖(u1,v1,w1)‖XT +‖(u2,v2,w2)‖XT

)‖(u1−u2,v1 − v2,w1 −w2)‖XT

� 4C0δ‖(u1 −u2,v1− v2,w1 −w2)‖XT .

Since 4C0δ < 1, we see that F is a contraction mapping.
Next, from the proof of Lemma 3.1 we see that there exists constant C′

0 > 0 such
that

‖etΔ(u0,v0,w0)‖XT � C′
0

(
‖u0‖LN +‖(v0,w0)‖

L
N
2

)
.
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Let δ be as before (i.e. 0 < δ < (4C0)−1 ) and choose ε > 0 sufficiently small such
that 2C′

0ε � δ . Then if
‖(u0,v0,w0)‖

LN×[L
N
2 ]2

� ε,

we see that (3.25) holds for all t � 0. Hence, the above argument shows that in this
case we can take T = ∞ . This completes the proof of Lemma 3.2. �

Theorem 1.1 follows from Lemmas 3.1-3.2 and the Banach fixed point theorem.

THE PROOF OF THEOREM 1.2 Under the assumptions of Theorem 1.2, we denote
by

X̃T = Lr((0,T ),Lq
ω (RN))×Ls((0,T ),Lp(RN))×Ls((0,T ),Lp(RN)),

ỸT = YT ∩ X̃T ,

where YT is as before. It is clear that X̃T and ỸT are both Banach spaces.

LEMMA 3.3. For any 0 < T � ∞ , F maps ỸT into itself.

Proof. Due to Lemma 3.1, we only need to prove that

û ∈ Lr((0,T ),Lq
ω (RN)) and v̂, ŵ ∈ Ls((0,T ),Lp(RN)).

Recall that û = û1 + û2 + û3 , where û1 , û2 and û3 are defined by (3.4). For û1 , since
u0 ∈ LN

ω (RN) , by Lemma 2.4,

‖û1‖Lr((0,T ),Lq) � C‖u0‖LN . (3.27)

For û2 , by using (2.9) with α = β = γ = N
q ,

‖û2(t)‖Lq � C
∫ t

0
(t− τ)−

1
2 (1+ N

q )‖u(τ)‖2
Lqdτ.

Applying the Hardy-Littlewood-Sobolev inequality to the above estimate yields that

‖û2‖Lr((0,T ),Lq) � C‖u‖2
Lr((0,T),Lq) � C‖(u,v,w)‖2

X̃T
. (3.28)

For û3 , by using (2.8) with α = N
p , β = N−p

p and γ = N
q ,

‖û3(t)‖Lq �C
∫ t

0
(t − τ)−

N
2 ( 2

p− 1
N − 1

q )‖(v(τ),w(τ))‖Lp

‖∇((−Δ)−1(w− v)(τ))‖
L

Np
N−p

dτ.

Applying the Hardy-Littlewood-Sobolev inequality, the Hölder inequality and (2.13)
yield that

‖û3‖Lr((0,T),Lq) � C‖(v,w)‖2
Ls((0,T),Lp) � C‖(u,v,w)‖2

X̃T
. (3.29)
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From (3.27)-(3.29) we see that

‖û‖Lr((0,T),Lq) � C
(‖u0‖LN +‖(u,v,w)‖2

X̃T

)
. (3.30)

Next we consider v̂ . Recall that v̂ = v̂1 + v̂2 + v̂3 , where v̂1 , v̂2 and v̂3 are defined by
(3.13). For v̂1 , by Lemma 2.4, it is easy to see that

‖v̂1‖Ls((0,T),Lp) � C‖v0‖
L

N
2

(3.31)

due to v0 ∈ L
N
2 (RN) . For v̂2 , by using (2.9) with α = N

q and β = γ = N
p ,

‖v̂2(t)‖Lp � C
∫ t

0
(t− τ)−

1
2 (1+ N

q )‖u‖Lq‖v‖Lpdτ.

Applying the Hardy-Littlewood inequality and the Hölder inequality, we get

‖v̂2‖
Lr((0,T ),L

Nq
N+q )

� C‖u‖Lr((0,T),Lq)‖v‖
Lr((0,T),L

Nq
N+q )

� C‖(u,v,w)‖2
X̃T

. (3.32)

For v̂3 , by using (2.9) with α = γ = N
p and β = N−p

p ,

‖v̂3(t)‖Lp � C
∫ t

0
(t− τ)−

N
2p ‖v‖Lp‖∇((−Δ)−1(w− v))‖

L
Np

N−p
dτ.

Again, by using the Hardy-Littlewood-Sobolev inequality, the Hölder inequality and
(2.13), we obtain

‖v̂3‖Ls((0,T),Lp) � C‖(v,w)‖2
Ls((0,T ),Lp) � C‖(u,v,w)‖2

X̃T
. (3.33)

Combining (3.31)-(3.33), we see that

‖v̂‖Lr((0,T),Lq) � C
(‖v0‖

L
N
2

+‖(u,v,w)‖2
X̃T

)
. (3.34)

Similarly for ŵ , we have

‖ŵ‖Lr((0,T),Lq) � C
(‖w0‖

L
N
2

+‖(u,v,w)‖2
X̃T

)
. (3.35)

From (3.30), (3.34) and (3.35), we see that the desired assertion follows. �

LEMMA 3.4. For any u0 ∈ LN
ω(RN) and v0,w0 ∈ L

N
2 (RN) there exists corre-

sponding T > 0 , such that F maps a closed ball in ỸT into itself and is a contrac-
tion mapping when restricted to this ball. Moreover, there exists ε > 0 such that if
‖(u0,v0,w0)‖

LN×[L
N
2 ]2

� ε , then we may take T = ∞ .

Proof. From the proofs of Lemmas 3.1 and 3.3 we see that for any u0 ∈ LN
ω (RN)

and v0,w0 ∈ L
N
2 (RN) the following inequality holds:

‖(û, v̂, ŵ)‖ỸT
� ‖etΔ(u0,v0,w0)‖XT∩X̃T

+C‖(u,v,w)‖2
ỸT

.
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Note that for any u0 ∈ LN
ω(RN) and v0,w0 ∈ L

N
2 (RN) we have

lim
T→0

‖etΔ(u0,v0,w0)‖XT∩X̃T
= 0

and
‖etΔ(u0,v0,w0)‖XT∩X̃T

� C‖(u0,v0,w0)‖
LN×[L

N
2 ]2

.

Hence, by using a similar argument as in the proof of Lemma 3.2 we obtain the desired
assertion. �

By Lemmas 3.3 and 3.4, Theorem 1.2 follows the Banach fixed point theorem.

4. Proofs of Theorems 1.3 and 1.4

In this section we prove Theorems 1.3-1.4. Throughout this section we let q0

and p0 be two fixed numbers satisfying the conditions N < q0 < ∞ , N
2 < p0 < N and

2
p0

< 3
N + 1

q0
, and assume that

u0 ∈ Lq0
ω (RN) and v0,w0 ∈ Lp0(RN).

PROOF OF THEOREM 1.3. For a constant T > 0 to be specified later, without loss
of generality, we assume that T < 1. We define ZT by

ZT = BC([0,T ),Lq0
ω (RN))×BC([0,T ),Lp0(RN))×BC([0,T ),Lp0(RN)).

The norm in ZT is defined by

‖(u,v,w)‖ZT = sup
t∈[0,T )

‖u‖Lq0 + sup
t∈[0,T)

‖(v,w)‖Lp0 .

It is obvious that (ZT ,‖ · ‖ZT ) is a Banach space.

LEMMA 4.1. For any 0 < T < ∞ , F is well-defined and maps ZT into itself.

Proof. We first consider û . Recall that û = û1 + û2 + û3 , where û1 , û2 and û3

are defined by (3.4). For û1 , since u0 ∈ Lq0
ω (RN) , from Lemma 2.1 we see that

û1 ∈ BC([0,T ),Lq0
ω (RN)) and sup

t∈[0,T )
‖û1‖Lq0 � C‖u0‖Lq0 . (4.1)

For û2 , by applying (2.9) with α = β = γ = N
q0

,

‖û2‖Lq0 � C
∫ t

0
(t − τ)−

1
2 (1+ N

q0
)‖u‖2

Lq0 dτ � Ct
1
2 (1− N

q0
)
(

sup
t∈[0,T )

‖u‖Lq0

)2
.

Hence

û2 ∈ BC([0,T ),Lq0
ω (RN)) and sup

t∈[0,T )
‖û2‖Lq0 � CT

1
2 (1− N

q0
)‖(u,v,w)‖2

ZT
. (4.2)
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For û3 , by applying (2.8) with α = N
p0

, β = N−p0
p0

, γ = N
q0

and (2.11) with p = p0 ,

‖û3‖Lq0 � C
∫ t

0
(t− τ)−

1
2 ( 2N

p0
− N

q0
−1)‖(v−w)‖Lp0‖∇((−Δ)−1(w− v))‖

L
Np0

N−p0

dτ

� C
(

sup
t∈[0,T )

‖(v,w)‖Lp0

)2 ∫ t

0
(t− τ)−

1
2 ( 2N

p0
− N

q0
−1)

dτ

� Ct
3
2 + N

2q0
− N

p0

(
sup

t∈[0,T )
‖(v,w)‖Lp0

)2
.

Here we used the assumption 2
p0

< 3
N + 1

q0
which ensures that 1

2 ( 2N
p0

− N
q0

− 1) < 1.
Hence

û3 ∈ BC([0,T ),Lq0
ω (RN)) and sup

t∈[0,T )
‖û2‖Lq0 � CT

3
2 + N

2q0
− N

p0 ‖(u,v,w)‖2
ZT

. (4.3)

Let

θ1 = min
{1

2

(
1− N

q0

)
,
3
2

+
N

2q0
− N

p0

}
.

From (4.1)-(4.3) we get
û ∈ BC

(
[0,T ),Lq0

ω (RN)
)

and
sup

t∈[0,T )
‖û‖Lq0 � C

(‖u0‖Lq0 +Tθ1‖(u,v,w)‖2
ZT

)
. (4.4)

Next we consider v̂ . Recall that v̂ = v̂1 + v̂2 + v̂3 , where v̂1 , v̂2 and v̂3 are defined by
(3.13). For v̂1 , since v0 ∈ Lp0(RN) , Lemma 2.1 implies immediately that

v̂1 ∈ BC([0,T ),Lp0(RN)) and sup
t∈[0,T )

‖v̂1‖Lp0 � C‖v0‖Lp0 . (4.5)

For v̂2 , by applying (2.9) with α = N
q0

and β = γ = N
p0

,

‖v̂2‖Lp0 � C
∫ t

0
(t − τ)−

1
2 (1+ N

q0
)‖u‖Lq0‖v‖Lp0 dτ

� Ct
1
2 (1− N

q0
)
(

sup
t∈[0,T )

‖u‖Lq0

)(
sup

t∈[0,T )
‖v‖Lp0

)
.

Hence

v̂2 ∈ BC([0,T ),Lp0(RN)) and sup
t∈[0,T )

‖v̂2‖Lp0 � CT
1
2 (1− N

q0
)‖(u,v,w)‖2

ZT
. (4.6)

For v̂3 , by applying (2.9) with α = γ = N
p0

, β = N−p0
p0

and (2.11) with p = p0 ,

‖v̂3‖Lp0 � C
∫ t

0
(t − τ)−

N
2p0 ‖v‖Lp0‖∇((−Δ)−1(w− v))‖

L
Np0

N−p0

dτ
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� Ct
1− N

2p0

(
sup

t∈[0,T )
‖(v,w)‖Lp0

)2
.

Hence

v̂3∈BC([0,T ),Lp0(RN)) and sup
t∈[0,T )

‖v̂3‖Lp0 � CT
1− N

2p0 ‖(u,v,w)‖2
ZT

. (4.7)

Let θ2 = min{ 1
2(1− N

q0
),1− N

2p0
} . Combining (4.5)-(4.7), we get

v̂ ∈ BC([0,T ),Lp0(RN))

and
sup

t∈[0,T )
‖v̂‖Lp0 � C

(‖v0‖Lp0 +T θ2‖(u,v,w)‖2
ZT

)
. (4.8)

Similarly we can prove that ŵ ∈ BC([0,T ),Lp0(RN)) and

sup
t∈[0,T )

‖ŵ‖Lp0 � C
(‖w0‖Lp0 +Tθ2‖(u,v,w)‖2

ZT

)
. (4.9)

Combining (4.4), (4.8) and (4.9), we see that the desired assertion follows. �

From the proof of Lemma 4.1 we see that there exists a constant C1 > 0 inde-
pendent of T and θ = min{θ1,θ2} , such that for any (u,v,w) ∈ ZT and (û, v̂, ŵ) =
F(u,v,w) we have

‖(û, v̂, ŵ)‖ZT � C1
(‖u0‖Lq0 +‖(v0,w0)‖Lp0 +T θ‖(u,v,w)‖2

ZT

)
. (4.10)

Let R = C1(‖u0‖Lq0 + ‖(v0,w0)‖Lp0 ) and BT be a closed ball in ZT with radius 2R ,
i.e.,

BT =
{
(u,v,w) ∈ ZT : ‖(u,v,w)‖ZT � 2R

}
.

For any (u,v,w) ∈ BT , from (4.10) we have

‖(û, v̂, ŵ)‖ZT � R+4R2T θ .

Hence, by choosing T sufficiently small such that 4RT θ < 1, we see that F maps BT

into itself. Furthermore, by using the similar argument as in the proof of Lemma 3.2
we can prove F is a contraction mapping in BT .

LEMMA 4.2. Let R, T and BT be as above. Then when restricted in BT , F is a
contraction mapping.

By using Lemmas 4.1, 4.2 and the Banach fixed point theorem, we obtain Theorem
1.3.

THE PROOF OF THEOREM 1.4. Under the assumptions of Theorem 1.4, we define
Z̃T to be the space

Z̃T = Lr((0,T ),Lq
ω (RN))×Ls((0,T ),Lp(RN))×Ls((0,T ),Lp(RN))
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with norm

‖(u,v,w)‖Z̃T
= ‖u(t)‖Lr((0,T),Lq) +‖(v(t),w(t))‖Ls((0,T),Lp).

It is clear that (Z̃T ,‖ · ‖Z̃T
) is Banach space.

LEMMA 4.3. For any 0 < T < ∞ , F maps Z̃T into itself.

Proof. Due to Lemma 4.1, we only need to prove that

û ∈ Lr((0,T ),Lq
ω (RN)) and v̂, ŵ ∈ Ls((0,T ),Lp(RN)).

We first consider û . Again, recall that û = û1 + û2 + û3 with û1 , û2 and û3 given by
(3.4). For û1 , since u0 ∈ Lq0

ω (RN) , from Lemmas 2.4 we see that

û1 ∈ Lr((0,T ),Lq
ω (RN)) and ‖û1‖Lr((0,T ),Lq) � C‖u0‖Lq0 . (4.11)

For û2 , by using (2.9) with α = β = γ = N
q ,

‖û2‖Lq � C
∫ t

0
(t− τ)−

1
2 (1+ N

q )‖u(τ)‖2
Lqdτ.

Note that 1
2(1 + N

q ) < 1 (since q > N ), applying the Hardy-Littlewood-Sobolev in-
equality yields that

‖û2‖Lr((0,T),Lq) � CT
1
2 (1− N

q0
)‖u‖2

Lr((0,T ),Lq).

Hence

û2 ∈ Lr((0,T ),Lq
ω (RN)) and ‖û2‖Lr((0,T ),Lq) � CT

1
2 (1− N

q0
)‖(u,v,w)‖2

Z̃T
. (4.12)

For û3 , by using (2.8) with α = N
p , β = N−p

p and γ = N
q ,

‖û3‖Lq � C
∫ t

0
(t− τ)−

1
2 ( 2N

p − N
q −1)‖(v−w)‖Lp‖∇((−Δ)−1(v−w))‖

L
Np

N−p
dτ.

From the assumption 2
p < 3

N + 1
q we see that 1

2 ( 2N
p − N

q −1) < 1. Hence, by applying
the Hardy-Littlewood-Sobolev inequality and (2.13) we get

‖û3‖Lr((0,T),Lq) � CT
3
2 + N

2q0
− N

p0 ‖(v,w)‖2
Ls((0,T),Lp).

Note that the assumption 2
p0

< 3
N + 1

q0
ensures that 3

2 + N
2q0

− N
p0

> 0. Hence, we obtain

û3 ∈ Lr((0,T ),Lq
ω (RN)) and ‖û3‖Lr((0,T),Lq) � CT

3
2 + N

2q0
− N

p0 ‖(u,v,w)‖2
Z̃T

. (4.13)

Since θ1 = min{ 1
2(1− N

q0
), 3

2 + N
2q0

− N
p0
} , from (4.11)-(4.13) we get

û ∈ Lr((0,T ),Lq
ω
(
R

N)
)
,



446 JIHONG ZHAO, CHAO DENG AND SHANGBIN CUI

and
‖û‖Lr((0,T),Lq) � C

(‖u0‖Lq0 +T θ1‖(u,v,w)‖2
Z̃T

)
. (4.14)

Next we consider v̂ . Recall that v̂ = v̂1 + v̂2 + v̂3 , where v̂1 , v̂2 and v̂3 are defined by
(3.13). For v̂1 , since v0 ∈ Lp0(RN) , similarly as for û1 , we get

v̂1 ∈ Ls((0,T ),Lp(RN)) and ‖v̂1‖Ls((0,T ),Lp) � C‖v0‖Lp0 . (4.15)

For v̂2 , by applying (2.9) with α = N
q and β = γ = N

p ,

‖v̂2‖Lp � C
∫ t

0
(t − τ)−

1
2 (1+ N

q )‖u‖Lq‖v‖Lpdτ.

Using the Hardy-Littlewood-Sobolev inequality again yields that

‖v̂2‖Ls((0,T ),Lp) � CT
1
2 (1− N

q0
)‖u‖Lr((0,T ),Lq)‖v‖Ls((0,T),Lp).

Hence

v̂2 ∈ Ls((0,T ),Lp(RN)) and ‖v̂2‖Ls((0,T ),Lp) � CT
1
2 (1− N

q0
)‖(u,v,w)‖2

Z̃T
. (4.16)

For v̂3 , by applying (2.9) with α = γ = N
p and β = N−p

p ,

‖v̂3‖Lp � C
∫ t

0
(t− τ)−

N
2p ‖v‖Lp‖∇((−Δ)−1(v−w))‖

L
Np

N−p
dτ.

Note that N
2p < 1 (because p > N

2 ) . By applying the Hardy-Littlewood-Sobolev in-
equality and (2.13) we obtain

‖v̂3‖Ls((0,T ),Lp) � CT
1− N

2p0 ‖(v,w)‖2
Ls((0,T),Lp).

Hence

v̂3 ∈ Ls((0,T ),Lp(RN)) and ‖v̂3‖Ls((0,T ),Lp) � CT
1− N

2p0 ‖(u,v,w)‖2
Z̃T

. (4.17)

Since θ2 = min{ 1
2 (1− N

q0
),1− N

2p0
} , from (4.15)-(4.17) we get v̂∈ Ls((0,T ),Lp(RN)) ,

and
‖v̂‖Ls((0,T),Lp) � C

(‖v0‖Lp0 +T θ2‖(u,v,w)‖2
Z̃T

)
. (4.18)

Similarly we have ŵ ∈ Ls((0,T ),Lp(RN)) , and

‖ŵ‖Ls((0,T),Lp) � C
(‖w0‖Lp0 +Tθ2‖(u,v,w)‖2

Z̃T

)
. (4.19)

From (4.14), (4.18) and (4.19), we see that the desired assertion follows. �

From Lemma 4.3, we see that F is well-defined. Now we can use a similar argu-
ment as in the proof of Lemma 4.2, which shows that if T is sufficiently small then F
is a contraction mapping from some closed ball in Z̃T into itself. Hence, by using the
Banach fixed point theorem, we obtain Theorem 1.4.
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[12] H. GAJEWSKI AND K. GRÖGER, On the basic equations for carrier transport in semiconductors, J.
Math. Anal. Appl., 113 (1986), 12–35.

[13] J.W. JEROME,Analytical approaches to charge transport in a moving medium, Tran. Theo. Stat. Phys.,
31 (2002), 333–366.

[14] J. W. JEROME AND R. SACCO, Global weak solutions for an incompressible charged fluid with multi-
scale couplings: Initial-boundary-value problem, Nonlinear Anal., 71 (2009), 2487–2497.

[15] G. KARCH, Scaling in nonlinear parabolic equations, J. Math. Anal. Appl., 234 (1999), 534–558.
[16] G. KARCH, Scaling in nonlinear parabolic equations: applications to Debye system, AIP Conf. Proc.,

553(1) (2001), 243–248.
[17] T. KATO, Strong Lp solutions of the Navier-Stokes equations in R

m with applications to weak solu-
tions, Math. Z., 187 (1984), 471–480.

[18] T. KATO AND G. PONCE, Well-posedness of the Euler and Navier-Stokes equations in the Lebesgue
spaces Ls

p(R2) , Rev. Mat. Iberoam., 2 (1986), 73–88.
[19] T. KATO AND G. PONCE, Commutator estimates and the Euler and Navier-Stokes equations, Comm.

Pure Appl. Math., 41 (1988), 891–907.
[20] H. KOCH AND D. TATARU, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001),

22–35.
[21] J. LERAY, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63 (1934), 193–

248.
[22] M. LONGARETTI, B. CHINI, J.W. JEROME AND R. SACCO, Electrochemical modeling and charac-

terization of voltage operated channels in nano-bio-electronics, Sensor Letters, 6 (2008), 49–56.
[23] M. LONGARETTI, B. CHINI, J.W. JEROME AND R. SACCO, Computational modeling and simulation

of complex systems in bio-electronics, J. Computational Electronics, 7 (2008), 10–13.
[24] M. LONGARETTI, G. MARINO, B. CHINI, J.W. JEROME AND R. SACCO, Computational models in

nano-bio-electronics: simulation of ionic transport in voltage operated channels, J. Nanoscience and
Nanotechnology, 8 (2008), 3686–3694.

[25] F. PLANCHON, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-
Stokes equations in R

3 , Ann. Inst. Henri Poincare, 13 (1996), 319–336.
[26] I. RUBINSTEIN, Electro-Diffusion of Ions, SIAM Studies in Applied Mathematics, SIAM, Philadel-

phia, 1990.



448 JIHONG ZHAO, CHAO DENG AND SHANGBIN CUI

[27] R. J. RYHAM, Existence, uniqueness, regularity and long-term behavior for dissipative systems mod-
eling electrohydrodynamics, arXiv:0910.4973v1.

[28] R. J. RYHAM, C. LIU AND L. ZIKATANOV, Mathematical models for the deformation of electrolyte
droplets, Discrete Contin. Dyn. Syst. Ser. B, 8, 3 (2007), 649–661.

[29] M. SCHMUCK, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Models and Meth-
ods Appl. Sci., 19, 6 (2009), 993–1015.

[30] M. SHAHINPOOR AND K. J. KIM, Ionic polymer-metal composites: III. Modeling and simulation as
biomimetic sensors, actuators, transducers, and artificial muscles, Smart Mater. Struct., 13 (2004),
1362–1388.

[31] R. TEMAM, Navier-Stokes equations, AMS Chelsea Publishing, Providence, RI, (2001). Theory and
numerical analysis, Reprint of the 1984 edition.

(Received March 26, 2011) Jihong Zhao
Department of Mathematics

Northwest A&F University, Yangling
Shaanxi 712100

People’s Republic of China
e-mail: zhaojihong2007@yahoo.com.cn

Chao Deng
Department of Mathematics

Xuzhou Normal University, Xuzhou
Jiangsu 221009

People’s Republic of China
e-mail: deng315@yahoo.com.cn

Shangbin Cui
Department of Mathematics

Sun Yat-sen University, Guangzhou
Guangdong 510275

People’s Republic of China
e-mail: cuisb3@yahoo.com.cn

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


