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CONTROLLABILITY OF WEAKLY COUPLED WAVE EQUATIONS
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(Communicated by J. I. Diaz)

Abstract. In this paper, we study the exact controllability of a system of weakly coupled wave
equations with an internal locally control acted on only one equation. Using a piecewise multi-
plier method, we show that, for a sufficiently large time T , the observation of the velocity of the
first component of the solution on a neighborhood of a part of the boundary allows us to get back
a weakened energy of initial data of the second component of the solution, this if the coupling
parameter is sufficiently small, but non vanishing. This result leads, by the HUM method, to
prove that the total system is exactly controllable by means of one locally distributed control.

1. Introduction and statement of the main results

Let Ω be a non-empty bounded open domain of R
N with smooth boundary Γ of

class C2 such that Γ = Γ0∪Γ1 and Γ0∩Γ1 = /0 (the case Γ0 = /0 is not excluded) and
let ω be a neighborhood of Γ1 in Ω . We consider the following weakly coupled wave
equations with Dirichlet condition:⎧⎪⎪⎪⎨⎪⎪⎪⎩

u′′1 −Δu1 +αu2 = 0 in Ω× (0,T),
u′′2 −Δu2 +αu1 = 0 in Ω× (0,T),
u1 = u2 = 0 on Γ× (0,T),
ui(0) = u0

i ,u
′
i(0) = u1

i in Ω,

(1.1)

where i = 1,2 and α �= 0 is a small constant.
In [1] and [2], Alabau-Boussouira studied the indirect boundary observability of

the system (1.1). In particular, using a multiplier method, she proved that, for suffi-
ciently large time T , the observation of the trace of the normal derivative of the first
component of the solution on a part of the boundary allows us to get back a weakened
energy of the initial data. Then the system (1.1) is exactly controllable by means of
one boundary control. In addition, in [20] Liu and Rao studied the indirect boundary
controllability of a system of two weakly coupled one-dimensional wave equations. Us-
ing the non harmonic analysis, they established a weak observability inequalities and

Mathematics subject classification (2010): 35B37, 35D05, 73K50, 93C20.
Keywords and phrases: Wave equation, coupled system, indirect observability, indirect exact control-

lability.

c© � � , Zagreb
Paper DEA-03-28

449



450 ALI WEHBE AND WAEL YOUSSEF

proved the indirect exact controllability of the system. But the problem seems still open
in the case of locally internal control.

Our purpose in this paper is to study the indirect internal observability and exact
controllability of the system (1.1). Using a piecewise multiplier method, we prove
that, for sufficiently large time T , the locally observation, in ω , of the velocity of the
first component of the total solution of (1.1) allows us to get back a weakened energy
of initial data of the second component. This result leads, by the HUM method, to
establish the exact controllability of the system (1.1) by means of only one locally
internal control. To more precise, let U = (u1,u′1,u2,u′2) be a regular solution of the
system (1.1). We define the associated partial energies by

ei(t) =
1
2

∫
Ω

(|u′i|2 + |∇ui|2
)
dx, i = 1,2 (1.2)

and the associated total (natural) energy by

E
(
U(t)

)
= e1(t)+ e2(t)+α

∫
Ω

u1u2dx. (1.3)

Moreover, in what follows we will also need to define the associated partial weakened
energies by

ẽi(t) =
1
2

(‖u′i‖2
H−1(Ω) + |ui|2L2(Ω)

)
dx, i = 1,2 (1.4)

and the total weakened energy by

Ẽ
(
U(t)

)
= ẽ1(t)+ ẽ2(t)+α

∫
Ω
∇

(�−1u1
) ·∇(�−1u2

)
dx. (1.5)

First, using a piecewise multiplier method, we establish the following indirect internal
observability inequality ∫ T

0

∫
ω
|u′1|2 � c2

(
e1(0)+ ẽ2(0)

)
. (1.6)

Next, we consider the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
y′′1 −Δy1 +αy2 = v(t)1ω in Ω× (0,T),
y′′2 −Δy2 +αy1 = 0 in Ω× (0,T),
y1 = y2 = 0 on Γ× (0,T ),
yi(0) = y0

i , y′i(0) = y1
i in Ω,

(1.7)

where 1ω is the characteristic function of ω . The solution of system (1.7) can be
defined by the transposition method. Then we consider the indirect locally internal
exact controllability problem: For given T > 0 (sufficiently large) and initial data
(y0

1,y
1
1,y

0
2,y

1
2) , does there exists a suitable control v that brings back the solution to

equilibrium at time T , that is such that the solution of (1.7) satisfies yi(T ) = y′i(T ) = 0
for i = 1,2? Indeed, applying the HUM method introduced by Lions (see [16], [17]
and [12]) we establish the indirect locally internal controllability result.
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Finally, for partially damped linear systems, the transmission of the dissipation
from one equation to others plays an important role for the control and stabilization.
In [16], Lions studied the complete and partial observability and controllability of cou-
pled systems of either hyperbolic-hyperbolic type or hyperbolic-parabolic type. These
results assume that the coupling parameter is sufficiently small. They have been ex-
tended in [14] to the case of arbitrary coupling parameters. Complete observability
and controllability results have also been obtained in [15] for systems of coupled sec-
ond order hyperbolic equations containing first order terms in both the original and the
coupled unknowns. In [3], Alabau-Boussouira studied the boundary stabilization of an
abstract system of two coupled second order evolution equations wherein only one of
the equations is damped (this called indirect boundary stabilization). Under a condition
on the operators of each equation and on the boundary feedback operator, she proved
that the energy of smooth solutions of there system decays polynomially at infinity.
In [4], Alabau, Cannarsa and Komornik studied the the indirect internal stabilization
of weakly coupled systems. In [21], using a frequency domain approach, Liu and Rao
established the optimal polynomial energy decay rate of a system of coupled wave equa-
tions damped by one boundary feedback. In [32], Zhang and Zuazua obtained the exact
controllability for one-dimensional system of coupled heat-wave equations by Riesz
basis approach. In [22], Loreti and Rao show that a weaker damping can provide a
stronger decay rate by means of spectral compensation. we recall some results existing
in literature which are related to the indirect control and stabilization: [26], [27], [5],
[6], [25], [32], [11], [10], [28], [7], [30], [31].

The results of this paper are mentioned in [29] and organized here as follows. In
section 2, we first established the well-posedness of the system (1.1). Next, we give the
proof of the observability inequality (1.6). In section 3, we proof that the total system
(1.7) is exactly controllable by means of one locally distributed feedback.

2. Locally internal observability results

2.1. Well-Posedness of the problem

We first define the energy space H = (H1
0 (Ω)×L2(Ω))2 equipped with the usual

product norm. We identify L2(Ω) with its dual space, then the imbeddings H1
0 (Ω) ⊂

L2(Ω) ⊂ H−1(Ω) are continuous, dense and compact. The scalar products on H and
L2(Ω) are, respectively, denoted by (· , ·)H and (· , ·) , whereas the corresponding
norms are, respectively denoted by ‖·‖H and ‖·‖ . We define the following bilinear
form (

U,Ũ
)
α =

(
U,Ũ

)
H

+α
(
u2, ũ1

)
+α

(
u1, ũ2

)
,

U =
(
u1,v1,u2,v2

)
, Ũ =

(
ũ1, ṽ1, ũ2, ṽ2

) ∈ H .

Now, let α0 = 1
c2
0

where c0 is the Poincaré’s constant, then it easy to see that, for

0 < |α| < α0 , the mapping

U 
→ ‖U‖α = (U,U)1/2
α
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defines a norm on H which equivalent to the usual product norm i.e there exist c > 0
and c̃ > 0 such that c̃‖U‖α � ‖U‖H � c‖U‖α . In addition, we have

2E
(
U(t)

)
=

(
U,U

)
α = ‖U(t)‖2

α .

Next, we define the unbounded operator Aα : D(A ) → H by

D(Aα) =
[(

H2(Ω)∩H1
0 (Ω)

)×H1
0 (Ω)

]2
,

AαU =
(− v1,−�u1 +αu2,−v2,−�u2 +αu1

)
,

∀U = (u1,v1,u2,v2) ∈ D(Aα).

Then setting U = (u1,u′1,u2,u′2) , we convert the system (1.1) into an evolutionary equa-
tion:

U ′ +AαU = 0, U(0) = U0 ∈ H . (2.1)

It easy to prove that Aα is a skew adjoint and maximal monotone on H and therefore
generates a strongly continuous group of isometries Sα(t) = exp

(− tAα
)
, t ∈ R on

H (see [24], [8]). Then we establish the well-posedness result:

THEOREM 2.1. Let α ∈ (0,α0) . Then for all U0 = (u0
1,u

1
1,u

0
2,u

1
2) ∈ H , the sys-

tem (2.1) has a unique solution U satisfies U ∈ C
(
R+;H

)
. Moreover, if U0 ∈D(A k

α )
for k ∈ N

∗ , then the solution U is more regular and satisfies

C k− j(
R+;D(A j

α )
)

f or j = 0, ...,k.

In addition, we have

E
(
U(t)

)
= E

(
U(0)

)
, Ẽ

(
U(t)

)
= Ẽ

(
U(0)

)
, t � 0.

2.2. Observability results

In this part, using a piecewise multiplier method, we establish the inverse indirect
observability inequality. In order to use the piecewise multiplier method we need define,
for 0 < ε0 < ε1 , the neighborhoods of Γ1 as follows (see [19] and [23])

ωεi =
{
x ∈Ω; d(x,Γ1) < εi

}
i = 0,1.

It easy to see that, for small ε1 , we have ωε0 ⊂ ωε1 ⊂ ω . First, using Theorem 2.1 and
the definition of the total energy, we have the following direct inequality:∫ T

0

∫
ω
|u′1|2 � 2

∫ T

0
‖U‖2

H dt � 2c2
∫ T

0
‖U‖2

αdt = 2Tc2E(U(0)) (2.2)

for all solution U of system (1.1). We deduce that u1 is an element of H1(0,T ;L2(ω)) .
Next, we will establish the main indirect observability inequality:
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THEOREM 2.2. (main theorem) Assume that there exist a constant δ > 0 and
a point x0 ∈ R

N such that, putting m(x) = x− x0 , we have (m · ν) � 0 on Γ0 and
(m ·ν) � δ > 0 on Γ1 . Then there exists α� > 0 such that for all 0 < |α| < α� , there
exists T0 = T0(α) > 0 such that for all T > T0 and all U0 = (u0

1,u
1
1,u

0
2,u

2
2) ∈ H , the

solution (u1,u′1,u2,u′2) of system (1.1) satisfies∫ T

0

∫
ω
|u′1|2 � c1

(
e1(0)+ ẽ2(0)

)
, (2.3)

where ω be a neighborhood of Γ1 in Ω , T0 is an explicit constant and where c1 an
explicit positive constant which depends only on α and T .

Proof. Let α1 = min(α0,2−1√α0) and α2 ∈ (0,α1) .

Step 1. Recall that (see [1]), for all 0 < |α|<α2 for all U0 = (u0
1,u

1
1,u

0
2,u

2
2)∈H ,

the solution (u1,u2) of system (1.1) satisfies:

e1(T )+ e1(0) � c3
(
e1(0)+ ẽ2(0)

)
+ c4α

∫ T

0
e(t)dt, (2.4)∫ T

0
|u2|2dt � 2c5

α
(
e1(0)+ ẽ2(0)

)
+ c6

∫ T

0
e1(t)dt, (2.5)∫ T

0
ẽ2(t)dt � c7

α
(
e1(0)+ ẽ2(0)

)
+ c8α

∫ T

0
e1(t)dt, (2.6)∫ T

0
e1(t)dt � c9T

2(1+αT)
(
e1(0)− ẽ2(0)

)
, (2.7)∫ T

0
(e1(t)+ ẽ2(t))dt � c10T

2

(
ẽ1(0)+ ẽ2(0)

)
, (2.8)

where ci , i = 3, ..,10 are independent on α , T , and U0 .

Step 2. Recall that for all u ∈ H2(Ω) , we have the following well-know Rellich’s
identity:

2
∫
Ω
Δu(m ·∇u)dx = (N−2)

∫
Ω
|∇u|2dx

+2
∫
Γ
∂νu(m ·∇u)dΓ−

∫
Γ
(m ·ν)|∇u|2dΓ. (2.9)

Multiplying the first wave equation of (1.1) by the classical multiplier Mu1 = 2(m ·
∇u1)+ (N−1)u1 and using Rellich’s identity, we get∫ T

0

∫
Γ
(m ·ν) |∂νu1|2 = 2

∫ T

0
e1(t)dt +α

∫ T

0

∫
Ω

u2Mu1 +
[∫

Ω
u′1Mu1

]T

0
.

We know that ‖Mu1‖L2(Ω) � 2R‖∇u1‖L2(Ω) (see [12]), then we have∣∣∣∫
Ω

u′1Mu1

∣∣∣ � 2Re1(t), ∀t ∈ R.
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Then using the geometrical condition (m ·ν)� 0 on Γ0 , Cauchy-Schwartz and Poincaré’s
inequalities, we deduce that

R
∫ T

0

∫
Γ1

|∂νu1|2 � 2
∫ T

0
e1(t)dt−αR

∫ T

0

∫
Ω
|u2|2−αR

∫ T

0

∫
Ω
|∇u1|2

−2R
(
e1(0)+ e1(T )

)
. (2.10)

The main problem is to estimate, and more precisely to majoring the first boundary
integral in (2.10). To overcome this difficulty we will consider a special vector field h
in the following step.

Step 3. Let h ∈ C 1(Ω;RN) . Multiplying the first wave equation of (1.1) by 2h ·
∇u1 and integrating by parts, we get

∫ T

0

∫
Ω

divh
(∣∣u′1∣∣2 − ∣∣∇u1

∣∣2)
+2

∫ T

0

∫
Ω
∂ihk∂iu1∂ku1 +2α

∫ T

0

∫
Ω

u2(h ·∇u1)

+
[
2

∫
Ω

u′1(h ·∇u1)
]T

0
=

∫ T

0

∫
Γ
(h ·ν)

∣∣∇u1
∣∣2, (2.11)

where we used the convention summation of repeated indices. Now, consider a pecial
vector field h verifying the following conditions:

h ·ν = 1 on Γ1, h ·ν � 0 and supph ⊂ ω̃ ⊂ ωε0 . (H)

See [16] for the proof of existence of such field vector. First since h is of class C1 , then
there exists a positive constant ch such that

|h(x)| � ch and
N

∑
i, j=1

∣∣∂ih j(x)
∣∣ � ch, ∀x ∈Ω.

On the other hand, since u1 = 0 on Γ then ∇u1 = (∂νu1) . It follows from (2.11) and
condition (H) that

∫ T

0

∫
Γ1

∣∣∂νu1
∣∣2 � c11

∫ T

0

∫
ωε0

(∣∣u′1∣∣2 +
∣∣∇u1

∣∣2)
+α2

∫ T

0

∫
Ω

∣∣u2
∣∣2 +2ch

(
e1(0)+ e1(T )

)
, (2.12)

where c11 is independent of T , α and U0 . Finally, combining (2.10) and (2.12), we
obtain

2
∫ T

0
e1(t)dt− c12α

∫ T

0

∫
Ω

∣∣u2
∣∣2− c13α

∫ T

0

∫
Ω

∣∣∇u1
∣∣2
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− c14
(
e1(0)+ e1(T )

)
� c11R

∫ T

0

∫
ωε0

(∣∣u′1∣∣2 +
∣∣∇u1

∣∣2), (2.13)

where c12 = R(1+α2) , c13 = R and c14 = 2R(1+ ch) .

Step 4. Define the cut-off function ξ ∈C∞
0 (Ω) by⎧⎪⎨⎪⎩

0 � ξ � 1 on Ω,

ξ = 1 on ωε0 ,

ξ = 0 on Ω\ωε1 .

Multiplying the first equation of (1.1) by ξu1 and integrating by parts, we obtain∫ T

0

∫
Ω

(− ξ
∣∣u′1∣∣2 + ξ |∇u1|2 − 1

2
|u1|2Δξ +αξu1u2

)
dxdt +

[∫
Ω

u′1ξu1

]T

0
= 0.

Since suppξ ⊂ ωε1 , we deduce that∫ T

0

∫
ωε0

|∇u1|2 �
∫ T

0

∫
Ω
ξ |∇u1|2

=
∫ T

0

∫
Ω

(
ξ |u′1|2 +

1
2
�ξ |u1|2 −αξu1u2

)
dxdt−

[∫
Ω

u′1ξu1

]T

0

� c15

∫ T

0

∫
ωε1

(
|u′1|2 + |u1|2

)
+α2

∫ T

0

∫
ωε1

|u2|2 + c0
(
e1(0)+ e1(T )

)
, (2.14)

where c15 is independents of T , α and U0 . Substituting (2.14) into (2.13), we get

2
∫ T

0
e1(t)dt− c16α

∫ T

0

∫
Ω
|u2|2 − c13α

∫ T

0

∫
Ω
|∇u1|2 − c17

(
e1(0)+ e1(T )

)
� c18

∫ T

0

∫
ωε1

∣∣u′1∣∣2 + c19

∫ T

0

∫
ωε1

|u1|2 , (2.15)

where c16 = c12 +α2c11R , c17 = c14 +c0c11R , c18 = c11(1+c15)R and c19 = c11c15R .
The main problem in (2.15) is the constant c19 is not sufficiently small and it is inde-
pendents of α .

Step 5. In order to estimate the last integral in (2.15), we need a particular multi-
plier called internal multiplier (boundary multiplier introduced in [9]). Then, define the
function ζ ∈C∞

0 (Ω) by ⎧⎪⎨⎪⎩
0 � ζ � 1 on Ω,

ζ = 1 on ωε1 ,

ζ = 0 on Ω\ω .

(2.16)
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Fix t and consider the solution z of the following elliptic problem:{
−Δz = ζ (x)u1 in Ω,

z = 0 on Γ.
(2.17)

Multiplying (2.17) by z and integrating by parts, we deduce that there exists c20 > 0
and c21 > 0 such that ∫

Ω
|∇z|2 � c20

∫
ω
|u1|2,

and ∫
Ω
|z|2 � c21

∫
ω
|u1|2. (2.18)

On the other hand, deriving (2.17) with respect to t , we deduce that z′ is solution of
the following problem: {

−Δz′ = ζ (x)u′1 in Ω,

z′ = 0 on Γ,
(2.19)

and we have the following inequality∫
Ω
|z′|2 � c21

∫
ω
|u′1|2. (2.20)

Now, multiplying the first equation of (1.1) by z and we integrating by parts, we get∫ T

0

∫
Ω
(−u′1z

′ −u1Δz+αu2z)dxdt +
[∫

Ω
u′1zdx

]T

0
= 0. (2.21)

Then using (2.16), (2.17), (2.18), (2.20) and Cauchy-Schwartz inequality, we deduce
from (2.21) that, for all ε > 0, the following estimation holds

∫ T

0

∫
ωε1

|u1|2 � ε
2

∫ T

0

∫
Ω
|u′1|2 +

c21

2ε

∫ T

0

∫
ω
|u′1|2 +

α
2

∫ T

0

∫
Ω
|u2|2

+
αc21

2

∫ T

0

∫
Ω
|u1|2 + c22(e1(0)+ e1(T )). (2.22)

Combining (2.22) and (2.15) we obtain

2
∫ T

0
e1(t)dt− c23α

∫ T

0

∫
Ω
|u2|2 − c24α

∫ T

0

∫
Ω
|∇u1|2

− εc19

2
α

∫ T

0

∫
Ω
|u′1|2− c25

(
e1(0)+ e1(T )

)
� c26

∫ T

0

∫
ω

∣∣u′1∣∣2 , (2.23)

where:

c23 = c16 +
c19

2
, c24 = c13 +

c21c19c0

2
,

c25 = c17 + c22c19 and c26 = c18 +
c21c19

2ε
.
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Step 6. We set ε = 1
c19

. Inserting (2.4) and (2.5) into (2.23) we obtain

(1−αc27)
∫ T

0
e1(t)dt− c28

(
e1(0)+ ẽ2(0)

)
� c29

∫ T

0

∫
ω
|u′1|2 ∀α ∈ (0,α2),

where c27 = 2c4c25 +2c24+2c6c23 , c28 = 2c3c25 +4c23c5 and c29 = c18 + c21c
2
19

2 . This
implies that ∫ T

0
e1(t)dt− c28

(
e1(0)+ ẽ2(0)

)
� c29

∫ T

0

∫
ω

∣∣u′1∣∣2 .

Now let ε̃ > 0. Then we have

(1− ε̃)
∫ T

0
e1(t)dt + ε̃

∫ T

0
(e1(t)+ ẽ2(t))dt− ε̃

∫ T

0
ẽ2(t)dt

− c28
(
e1(0)+ ẽ2(0)

)
� c29

∫ T

0

∫
ω
|u′1|2. (2.24)

Inserting (2.6), (2.7) and (2.8) into (2.24), we obtain[
(1− ε̃c29)

c9T
2(1+αT)

− c30
ε̃ +α
α

]
e1(0)

+
[
ε̃
c10T

2
− (1− ε̃c29)

c9T
2(1+αT)

− c30
ε̃ +α
α

]
ẽ2(0)

+ ε̃
c10T

2
ẽ1(0) � c29

∫ T

0

∫
ω
|u′1|2, (2.25)

where c29 = 1+α2c8 and c30 = max(c7,c28) . Let ε� > 0 such that

0 < ε� < c−1
29 .

Then for ε̃ ∈ (0,ε�) we define

a1 = (1− εc29)
c9

2
> 0, a2 = ε

c10

2
,

this implies, from (2.25), that[ a1T
1+αT

− c30
ε̃ +α
α

]
e1(0)+

[
(a2− a1

1+αT
)T − c30

ε̃ +α
α

]
ẽ2(0)

+a2T ẽ1(0) � c29

∫ T

0

∫
ω
|u′1|2. (2.26)

We remark that a1
a2

goes to +∞ as either ε̃ goes to zero. Then, for α ∈ (0,α2) , we can
define

T1 = T1(α) =
(a1

a2
−1

)
α−1 > 0. (2.27)

This implies that for any T � T1 we have

a2− a1

1+αT
> 0.
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Now we will prove that the coefficients of e1(0) and ẽ2(0) in (2.26) which depend only
on T , α and ε̃ are positive for sufficiently large T and small α and ε� . For this, we
denote by Qα the second order polynomial with respect to T defined by

Qα(T ) = αa2T
2 +[a2−a1− c30(ε̃ +α)]T − c30(ε̃ +α)

α
.

We see that the coefficient of ẽ2(0) can be written under the following form

Qα(T )
1+αT

.

The polynomial Qα has two real roots. Moreover, using the definition of a2 the coef-
ficient of T in Qα(T ) is negative for sufficiently small ε independently on α . Hence,
one root T−

2 (α) is negative whereas the other one T+
2 (α) is positive. We remark that

T+
2 (α) > T1(α) , this implies that, for T � T+

2 (α) the coefficient of ẽ2(0) is positive.
It is given by

α
a2(T −T+

2 (α))(T −T−
2 (α))

1+αT
.

Finally, it easy to see that, for sufficiently large T and small α and ε̃ , the coefficient
of e1(0) in (2.26) is positive. In fact, we set 0 < α� < c9(2c30)−1 and we define
ε̂ = min(ε�, ε ) , where

ε =
c9 −2α�c30

c29c9 +2c30
.

This implies that, for α ∈ (0,α�) and ε ∈ (0, ε̂) , the real a1 − c30(ε̃ +α) is positive
and we can define the real T3(α) by

T3(α) =
c30(ε̃ +α)

a1− c30(ε̃ +α)
> 0

such that for T > T3 the coefficient of e1(0) is positive. It is given by

a1(T −T3)
(1+αT)(1+αT3)

.

The proof is thus complete.

3. Indirect exact controllability

In this section, we study the exact controllability of a system of two weakly cou-
pled wave equations with locally internal control acted on only one equation. We con-
sider the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

y′′1 −Δy1 +αy2 = v(t)1ω in Ω× (0,T),
y′′2 −Δy2 +αy1 = 0 in Ω× (0,T),
y1 = y2 = 0 on Γ× (0,T ),
yi(0) = y0

i , y′i(0) = y1
i in Ω,

(3.1)
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where ω is a neighborhood of Γ1 in Ω and 1ω is the characteristic function of ω .
First, thanks to the direct inequality (2.2), the solution of the system (3.1) as usual by
the method of transposition (see [16], [17], [12]). Let v0 ∈ L2(0,T ;L2(ω)) , we choose
the control

v(t) = − d
dt

v0(t) ∈ H1(0,T ;L2(ω))′, (3.2)

where the derivative
d
dt

is not taken within the meaning of the distributions but within

the meaning of the duality between H1(0,T ;L2(ω)) and its dual [H1(0,T ;L2(ω))]′ ,
i.e.

−
∫ T

0

d
dt

v1(t)μ(t)dt =
∫ T

0
v1(t)

d
dt
μ(t)dt, ∀μ ∈ H1(0,T ;L2(ω)). (3.3)

Then we have the following result.

THEOREM 3.1. Let 0 < |α| < α0 . For all

Y 0 = (y0
1,y

1
1,y

0
2,y

1
2) ∈ L2(Ω)×H−1(Ω)×L2(Ω)×H−1(Ω)

and v =− d
dt v0 ∈

[
H1(0,T ;L2(ω))

]′
, the controlled system (3.1) has a unique solution.

Next, we consider the indirect locally internal exact controllability problem: For
given T > 0 (sufficiently large) and initial data Y 0 , does there exists a suitable control
v that brings back the solution to equilibrium at time T , that is such that the solution
of (1.4) satisfies yi(T ) = y′i(T ) = 0 for i = 1,2? Indeed, applying the HUM method
introduced by Lions (see [16], [17], [12], [13]) we obtain the following result.

THEOREM 3.2. We assume the same hypothesis as in Theorem 2.1. There exists
α� > 0 such that for all 0 < |α| < α� , there exists T0 = T0(α) > 0 such that for all
T > T0 and all Y 0 = (y0

1,y
1
1,y

0
2,y

1
2) ∈ L2(Ω)×H−1(Ω)×H1

0 (Ω)×L2(Ω) , there exists
v ∈ [

H1(0,T ;L2(ω))
]′

such that the solution of the system (3.1) satisfies

y1(T ) = y′1(T ) = y2(T ) = y′2(T ) = 0.

Proof. We will apply the HUM method. The idea is to seek a suitable control
in the special form v = ∂t(u′1) , where (u1,u′1,u2,u′2) solves the system (1.1) for some
appropriate choice of the initial data (u0

1,u
1
1,u

0
2,u

1
2) . It is sufficient to show that if

(u0
1,u

1
1,u

0
2,u

1
2) runs over an appropriate Hilbert space F and if (ψ1,ψ ′

1,ψ2,ψ ′
2) de-

notes the solution (defined by the transposition method) of the following retrograde
problem ⎧⎪⎪⎨⎪⎪⎩

ψ ′′
1 −Δψ1 +αψ2 = v(t)1ω in Ω× (0,T),

ψ ′′
2 −Δψ2 +αψ1 = 0 in Ω× (0,T),

ψ1 = ψ2 = 0 on Γ× (0,T ),
ψi(T ) = ψ ′

i (T ) = 0, i = 1,2 on Ω,

(3.4)

then Ψ = (ψ1(0),ψ ′
1(0),ψ2(0),ψ ′

2(0)) runs over F ′ . Indeed, then it is sufficient to
choose v(t) = ∂

∂ t (u
′
1) in (3.1) with (u0

1,u
1
1,u

0
2,u

1
2) ∈ F such that Ψ(0) = Y 0 , where
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the derivative ∂
∂ t is defined by (3.3). Equivalently, it is sufficient to show that the linear

map
Λ : F → F ′

defined by the formula

Λ(u0
1,u

1
1,u

0
2,u

1
2) = (ψ ′

1(0),−ψ1(0),ψ ′
2(0),−ψ2(0))

is an isomorphism. Now, Let U = (u1,u′1,u2,u′2) be the solution of the homogeneous

problem (1.1) with the initial data U0 = (u0
1,u

1
1,u

0
2,u

1
2) ∈

(
D(Ω)

)4
. Thanks to the

observability inequalities (2.2) and (2.3) the seminorm defined by

‖U0‖F =
(∫ T

0

∫
ω
|u′1|2dxdt

)1/2
, (3.5)

is a norm on
(
D(Ω)

)4
. We denote by F the completion of

(
D(Ω)

)4
with respect

to this norm thus, we obtain an Hilbert space. Thanks to the direct and inverse ob-
servability inequalities (2.2) and (2.3), we have the following continuous and dense
imbeddings:

H ⊂ F ⊂ H1
0 (Ω)×L2(Ω)×L2(Ω)×H−1(Ω).

Consequently, by duality, we have the following continuous imbeddings:

L2(Ω)×H−1(Ω)×H1
0 (Ω)×L2(Ω) ⊂ F ′ ⊂ H ′.

On the other hand, for U0 ∈ H , we define the following linear form

〈ΛU0,Ũ0〉 =
∫ T

0

∫
ω

u′1ũ
′
1dxdt, ∀Ũ0 ∈ H . (3.6)

By definition of the norm of F we have the following estimate

|〈ΛU0,Ũ0〉| � ‖U0‖F‖Ũ0‖F , ∀U0, ∀Ũ0 ∈ H . (3.7)

Hence, since H is dense in F by definition of F , the linear map ΛU0 can be ex-
tended in a unique way to a continuous map on F and ΛU0 ∈ F ′ . Moreover, using
(3.7) we deduce that the linear map Λ that maps U0 ∈ H to ΛU0 ∈ F ′ is continuous
when H is equipped with the norm ‖ · ‖F . Hence, since H is dense in F , the linear
map Λ can be extended in a unique way to a continuous linear map, still denote by Λ ,
from F to F ′ . In addition, we have

〈ΛU0,Ũ0〉F ′,F =
(
U0,Ũ0

)
F

, ∀U0, Ũ0 ∈ H , (3.8)

where ( · , ·)F denotes the scalar product associated with the norm ‖ · ‖F . The conti-
nuity of Λ follows from the well-posedness of the problem (1.4) and (3.4). Thanks to
the time reversibility of the wave equation the well-posedness of (3.4) can be deduced
from that of (1.4) by change of variable t 
→ T − t ). The coercivity of Λ will from
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the inverse observability inequality in Theorem 2.1. Thanks to the Lax-Milgram the-
orem, we have that Λ is an isomorphism from F onto F ′ . Let Y 0 = (y0

1,y
1
1,y

0
2,y

1
2)

∈ L2(Ω)×H−1(Ω)×H1
0 (Ω)×L2(Ω)⊂ F ′ , and define Ψ(0) =Y 0 . Then the equation

Λ(u0
1,u

1
1,u

0
2,u

1
2) := (ψ ′

1(0),−ψ1(0),ψ ′
2(0),−ψ2(0))

has a unique solution (u0
1,u

1
1,u

0
2,u

1
2) ∈ F . But, according to the nicety of the solution

of the problem (3.1), we have y1 = ψ1 and y2 = ψ2. Therefore

y1(T ) = y1,t(T ) = y2(T ) = y2,t(T ) = 0. �

Remark. These results can be generalized to other coupled equations (such as
Petrowsky-Petrowsy and wave-Petrowsky).
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