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A CONCAVE–CONVEX QUASILINEAR ELLIPTIC PROBLEM

SUBJECT TO A NONLINEAR BOUNDARY CONDITION

JOSÉ C. SABINA DE LIS

Abstract. This paper deals with the existence of a positive solution to the problem
⎧⎨
⎩
−Δpu+up−1 = ur−1, x ∈Ω,

|∇u|p−2 ∂u
∂ν = λuq−1, x ∈ ∂Ω,

where Ω ⊂ R
N is a bounded domain, ν designates the unit outward normal to ∂Ω , Δp is the

p -Laplacian operator, 1 < q < p < r � p∗ , p∗ = Np/(N − p) if p < N , p∗ = ∞ otherwise,
while λ > 0 . Our main result states the existence of Λ > 0 so that positive solutions are only
possible when 0 < λ � Λ while the existence of a minimal positive solution is ensured in that
range.
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[13] J. GARCÍA-MELIÁN, J. SABINA DE LIS, Maximum and comparison principles for operators involv-
ing the p-Laplacian, J. Math. Anal. Appl., 218 (1998), 49–65.

[14] O. A. LADYZHENSKAYA, N. N. URAL’TSEVA,Linear and Quasilinear Elliptic Equations, Academic
Press, New York, 1968.

[15] G. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal.,
12, 11 (1988), 1203–1219.

[16] P. LINDQVIST, On the equation div (|∇u|p−2∇u) + λ |u|p−2u = 0 , Proc. Amer. Math. Soc., 109, 1
(1990), 157–164.

[17] J. D. ROSSI, Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem,
Chapter 5 of Handbook of differential equations: stationary partial differential equations vol. II, pp.
311–406, Elsevier/North-Holland, Amsterdam, 2005.

[18] M. STRUWE, Variational methods. Applications to nonlinear partial differential equations and Hamil-
tonian systems, Springer-Verlag, Berlin, 2008.
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