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Abstract. This paper deals with the existence of a positive solution to the problem⎧⎨⎩−Δpu+up−1 = ur−1, x ∈Ω,

|∇u|p−2 ∂u
∂ν = λuq−1, x ∈ ∂Ω,

where Ω ⊂ R
N is a bounded domain, ν designates the unit outward normal to ∂Ω , Δp is the

p -Laplacian operator, 1 < q < p < r � p∗ , p∗ = Np/(N − p) if p < N , p∗ = ∞ otherwise,
while λ > 0 . Our main result states the existence of Λ > 0 so that positive solutions are only
possible when 0 < λ � Λ while the existence of a minimal positive solution is ensured in that
range.

1. Introduction

This paper is concerned with the existence of a positive solution to the quasilinear
elliptic problem ⎧⎨⎩−Δpu+up−1 = ur−1, x ∈Ω,

|∇u|p−2 ∂u
∂ν

= λuq−1, x ∈ ∂Ω,
(1.1)

where Ω is a bounded smooth domain of R
N whose outward unit normal field at

∂Ω is designated by ν , Δp stands for the p -Laplacian operator defined as Δpu =
div(|∇u|p−2∇u) in distributional sense when acting on functions u ∈W 1,p(Ω) , and λ
is regarded as a positive parameter. Concerning the different exponents in (1.1) it will
be assumed that

1 < q < p < r � p∗, (1.2)

where p∗ = Np/(N − p) if 1 < p < N (the Sobolev conjugated of p ) while p∗ = ∞
otherwise. It will be always assumed in the present work that 1 < p < N , which is just
the case worthy of study.
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The linear diffusion version of (1.1), corresponding to p = 2, was thoroughly
studied in [10] including the issues of multiplicity of positive solutions and existence
of infinitely many signed solutions. In that case observe that (1.2) reads

0 < q−1 < 1 < r−1 � 2∗ −1. (1.3)

Thus, (1.1) couples a “convex” reaction in Ω to a “concave” source on ∂Ω . The
framework of the present job is reminiscent of that scenario. Here we provide a partial
extension of the results of [10] to the p -Laplacian operator. On the other hand, both
problem (1.1) and its linear counterpart p = 2 fall in the realm of diffusion problems
under nonlinear boundary conditions. We refer to [17] for a general review on this
active area.

The interest in the literature on concave-convex reaction-diffusion equations goes
back at least to the pioneering work [1] where the Dirichlet problem{

−Δu = λuq−1 +ur−1, x ∈Ω,

u = 0, x ∈ ∂Ω,
(1.4)

q , r satisfying (1.3), λ > 0, was studied in detail. In one of the main results, the
existence of a Λ∗ > 0 is shown so that a positive solution to (1.4) is only possible when
0 < λ � Λ∗ . More importantly, authors succeed in getting the existence of two positive
solutions for all 0 < λ < Λ∗ . This fact was later coined as “global multiplicity” of
positive solutions for problem (1.4) (see [9]).

In the case Ω = B a ball of R
N and radially symmetric solutions, results in [1]

were extended in [2] to the p -Laplacian version of (1.4). Namely,{
−Δpu = λuq−1 +ur−1, x ∈Ω,

u = 0, x ∈ ∂Ω,
(1.5)

where p,q,r now satisfies (1.2). Global multiplicity of positive solutions for (1.5),
when observed in a general domain Ω , was finally achieved in [9] after a hard-working
to achieve C1,α estimates in an auxiliary associated problem (see Section 5).

For immediate use in the present work it is handy to set some notation and defini-
tions. For s > 1, function

ϕs(t) = |t|s−2t

will designate the odd extension to R of the power function ts−1 . Thus, problem (1.1)
is more properly written as⎧⎪⎨⎪⎩

−Δpu+ϕp(u) = ϕr(u), x ∈Ω,

|∇u|p−2 ∂u
∂ν

= λϕq(u), x ∈ ∂Ω.
(1.6)

By a weak solution u ∈W 1,p(Ω) to (1.6) it is understood that∫
Ω
|∇u|p−2∇u∇v+ϕp(u)v = λ

∫
∂Ω

ϕq(u)v+
∫
Ω
ϕr(u)v,
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holds for all v ∈ W 1,p(Ω) . It also convenient to introduce the energy functional Eλ
associated to (2.1). Namely,

Eλ (u) =
∫
Ω

1
p
|∇u|p +

1
p
|u|p− λ

q

∫
∂Ω

|u|q− 1
r

∫
Ω
|u|r,

with u ∈W 1,p(Ω) .
Our main result is the following.

THEOREM 1.1. There exists a positive number Λ such that:

i) problem (1.1) does not admit positive solutions for λ > Λ;

ii) for every 0 < λ <Λ problem (1.1) exhibits a minimal positive solution uλ ∈C1,β (Ω)
for a certain β ∈ (0,1); moreover, there exists M > 0 such that

‖uλ‖C1,β (Ω) � M, (1.7)

for 0 < λ < Λ; furthermore,
uλ → 0, (1.8)

in C1,β (Ω) as λ → 0 ;

iii) minimal solution uλ is increasing with respect to λ ∈ (0,Λ) and satisfies satisfy
Eλ (uλ ) < 0 ; moreover,

uλ → u∗

in W 1,p(Ω) as λ → Λ and u∗ ∈ W 1,p(Ω) defines a positive solution to (1.1) corre-
sponding to λ =Λ; in addition uλ is continuous from the left with respect to λ ∈ (0,Λ]
and u∗ defines the minimal solution to (1.1) for λ = Λ .

It follows from Theorem 1.1 that λ = 0 and λ =Λ can be regarded as bifurcation
values of λ with respect to the existence of positive solutions to (1.1).

This work pretends to be as self-contained as possible. All auxiliary results are
shown in full detail in Section 2. Specially, the L∞ character and further smoothness
properties of weak solutions to (1.6). Section 3 is devoted to the proof of Theorem 1.1.
A variant of problem (1.1) is completely studied in Section 4. Finally, some insights
on the problem of the global multiplicity of positive solutions to (1.1) are contained in
Section 5.

2. Preliminary results

For our purposes in what follows it is convenient to introduce the auxiliary prob-
lem, ⎧⎪⎨⎪⎩

−Δpu+ϕp(u) = 0, x ∈Ω,

|∇u|p−2 ∂u
∂ν

= λϕq(u), x ∈ ∂Ω,
(2.1)

where 1 < q < p . Next result depicts the main features of (2.1).
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THEOREM 2.1. Problem (2.1) admits positive solutions only when λ > 0 . More-
over, for every positive λ it possesses a unique positive weak solution u = ũλ ∈C1,α(Ω)
for certain 0 < α < 1 , ũλ > 0 in Ω , where

ũλ = λ
1

p−q ũ1. (2.2)

Proof. Direct integration shows that no positive solutions are possible if λ � 0.
Since the scaling (2.2) reduces (2.1) to the case λ = 1 it suffices with proving that (2.1)
with λ = 1 admits a unique positive solution.

To get the existence consider the functional

J(u) =
1
p

∫
Ω
|∇u|p +

1
p

∫
Ω
|u|p,

just defined on the manifold M = {u ∈ W 1,p(Ω) :
∫
∂Ω |u|q = 1} . Due to the com-

pactness of the embedding W 1,p(Ω) ⊂ Lq(∂Ω) it follows that M is weakly closed in
W 1,p(Ω) . Since J is coercive in M , an absolute minimizer û ∈ M of J exists, that
can be chosen positive (if necessary, replace û with |û|). Then, Lagrange’s multiplier
rule and a scaling leads to the existence of a nonnegative weak solution u ∈W 1,p(Ω) ,
u �= 0, to (2.1) with λ = 1.

That u is a weak solution to (2.1)λ=1 means of course that∫
Ω
|∇u|p−2∇u∇v+ϕp(u)v =

∫
∂Ω

ϕq(u)v for all v ∈W 1,p(Ω) . (2.3)

Then, Lemma 2.2 below says that u ∈ L∞(Ω) . Therefore, by noticing that |u|q−1 �
1+ |u|p−1 it follows from the regularity results in [15] that u ∈C1,α(Ω) for a certain
α ∈ (0,1) .

On the other hand, strong maximum principle in [19] implies that every nontrivial
and nonnegative weak solution u to (2.1) becomes strictly positive in the whole of Ω .

Let us finally show the uniqueness of positive solutions to (2.1)λ=1 . We employ
the customary notation〈−Δpu,v

〉
=

∫
Ω
|∇u|p−2∇u∇v, u,v ∈W 1,p(Ω).

Accordingly, suppose u1,u2 ∈W 1,p(Ω) are positive solutions to (2.1). Then, it follows
from [16] (see also [7] in the case of a related Dirichlet problem) that〈

− Δpu1

up−1
1

+
Δpu2

up−1
2

,up
1 −up

2

〉
=

∫
Ω
{|∇u1|p−2∇u1∇v1−|∇u2|p−2∇u2∇v2} � 0, (2.4)

where

v1 =
up

1 −up
2

up−1
1

and v2 =
up

1 −up
2

up−1
2

.
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Moreover, equality holds in (2.4) only when u1 is a scalar multiple of u2 . On the other
hand, if we set v = vi , i = 1,2, as a test function for the integral equality (2.3) satisfied
by ui as a weak solution to (2.1), then by subtracting the resulting relations we find that

∫
Ω
{|∇u1|p−2∇u1∇v1 −|∇u2|p−2∇u2∇v2}

=
∫
∂Ω

(
1

up−q
1

− 1

up−q
2

)
(up

1 −up
2). (2.5)

However, last integral becomes negative if u1 �= u2 . Since this contradicts (2.4), u1

must coincide with u2 and the uniqueness is achieved. �

The forthcoming result has to do with a further auxiliary problem stating the exis-
tence of a principal eigenvalue for a suitable “eigenvalue type” problem.

THEOREM 2.2. Assume that a ∈ L∞(Ω) satisfies a(x) � a0 > 0 a.e. in Ω while
b ∈ L∞(∂Ω) . Then, the eigenvalue problem⎧⎪⎨⎪⎩

−Δpu+ϕp(u) = μa(x)ϕp(u), x ∈Ω,

|∇u|p−2 ∂u
∂ν

= b(x)ϕp(u), x ∈ ∂Ω,
(2.6)

admits a unique eigenvalue μ = μ1 with the property of having a nonnegative eigen-
function. Moreover, μ1 is the minimum eigenvalue to (2.6) and is simple in the sense
that all eigenfunctions φ associated to μ1 are a scalar multiple of a fixed normalized
positive eigenfunction φ1 .

Proof. A pair (μ ,u) ∈ R×W 1,p(Ω) is said to be an eigenpair (μ an eigenvalue
with associated eigenfunction u ) if u �= 0 satisfies∫

Ω
|∇u|p−2∇u∇v+ϕp(u)v = μ

∫
Ω

a(x)ϕp(u)v+
∫
∂Ω

b(x)ϕp(u)v, (2.7)

for all v ∈W 1,p(Ω) .
To achieve the existence of μ1 we proceed in a standard way by looking for a

minimizer of

J1(u) =
1
p

∫
Ω
|∇u|p +

1
p

∫
Ω
|u|p− 1

p

∫
∂Ω

b(x)|u|p,

on M1 = {u∈W 1,p(Ω) :
∫
Ω a|u|p = 1} which is also a weakly closed part of W 1,p(Ω) .

By taking into account the inequality (see [11] for the case p = 2)∫
∂Ω

|u|p � ε
∫
Ω
|∇u|p +Cε

∫
Ω
|u|p,

which holds, for a fixed ε , for every u ∈W 1,p(Ω) with a constant Cε only depending
on ε , it is easily found that J1 is coercive on M1 .
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Thus, there exists a global minimizer φ ∈ M1 of J1 so that μ1 := J1(φ) satisfies

μ1 = inf
u∈W1,p(Ω)\{0}

∫
Ω |∇u|p +

∫
Ω |u|p− ∫

∂Ω b(x)|u|p∫
Ω a|u|p .

Setting φ1 = |φ | we observe that J(φ1) = μ1 and so φ1 defines a nonnegative eigen-
function associated to μ1 . Additionally, it is clear that μ1 constitutes the minimum
eigenvalue to (2.6).

According to Lemma 2.2 below any associated eigenfunction φ to μ1 lies in
L∞(Ω) . Thus, φ ∈ C1,α(Ω) for some 0 < α < 1 (cf. [15]) and every nonnegative
eigenfunction φ associated to μ1 becomes positive in Ω ([19]).

We show now that any eigenfunction φ associated to μ1 is either positive or neg-
ative in Ω . In fact, if we assume say that φ+ �= 0, then by using v = φ+ as a test
function in (2.7) we achieve J(φ+) = μ1 . This means that φ+ is an eigenfunction and
so φ > 0 in Ω . Similarly, one gets φ < 0 in Ω provided φ− �= 0.

To show the simplicity we choose arbitrary eigenfunctions φ1,φ2 which can be
both taken positive. By using equation (2.7) firstly for φ1 with test function v1 =
(φ p

1 −φ p
2 )/φ p−1

1 , and secondly for φ2 and test function v2 = (φ p
1 −φ p

2 )/φ p−1
2 , then by

subtracting the resulting equalities we achieve that∫
Ω
{|∇φ1|p−2∇φ1∇v1−|∇φ2|p−2∇φ2∇v2} = 0.

As already observed in the proof of Theorem 2.1 this implies that φ1 and φ2 are pro-
portional ([16]). Hence, μ1 is simple.

The proof of the fact that μ1 is the unique eigenvalue with a nonnegative eigen-
function fits entirely the pattern of the corresponding one for Theorem 1 in [12] and so
it is omitted. �

Our immediate goal consists in showing that weak solutions u∈W 1,p(Ω) to prob-
lem (1.6) are bounded provided r,q fall in the regime (1.2). We proceed in two steps.
The first one is reminiscent of a well known result in [4] (cf. [18]).

LEMMA 2.1. Assume that Ω⊂ R
N is a bounded Lipschitz domain, f : Ω×R →

R , g : ∂Ω×R → R are Carathéodory functions satisfying the growth conditions

| f (x,u)| � a(x)(1+ |u|p−1) a.e. x ∈Ω, u ∈ R,

|g(x,u)| � b(x)(1+ |u|p−1) a.e. x ∈ ∂Ω, u ∈ R,

with a ∈ L
N
p (Ω) , b ∈ L

N−1
p−1 (∂Ω) . Then, every weak solution u ∈W 1,p(Ω) to⎧⎪⎨⎪⎩

−Δpu = f (x,u), x ∈Ω,

|∇u|p−2 ∂u
∂ν

= g(x,u), x ∈ ∂Ω,
(2.8)

belongs to Lq(Ω)∩Lq(∂Ω) for all q � 1 .
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Proof. We are showing that |u|s+1 ∈W 1,p(Ω) under the assumption that |u|p(s+1) ∈
L1(Ω)∩L1(∂Ω) . Since the latter fact holds for s = 0 and we are of course supposing
that p < N , we get that u ∈ Lqm(Ω)∩Lq̂m(∂Ω) for all m ∈ N with

qm =
(

N
N− p

)m

and q̂m =
(

N−1
N− p

)m

,

what shows the Lemma. To prove the former assertion we choose, as usual,

v = u(|u| ∧L)ps,

as a test function in the weak formulation of (2.8), where L > 0 and |u|∧L := min{|u|,L} .
Then, we get

∫
Ω
|∇u|p−2∇u∇v �

∫
Ω

a(1+ |u|p−1)|v|+
∫
∂Ω

b(1+ |u|p−1)|v|

� c+4
∫
Ω

a{|u|(|u| ∧L)s}p +4
∫
∂Ω

b{|u|(|u| ∧L)s}p := A, (2.9)

where constant c depends on ‖a‖L1(Ω) and ‖b‖L1(∂Ω) . We now choose K > 0 and
continuing the estimate in (2.9) we obtain

A � c+4
∫
{a�K}

a{|u|(|u| ∧L)s}p +4
∫
{b�K}

b{|u|(|u| ∧L)s}p, (2.10)

c depending now in addition on the norms ‖u‖Lp(s+1)(Ω) and ‖u‖Lp(s+1)(∂Ω) . Taking

into account the embeddings W 1,p(Ω)⊂ Lp∗(Ω) and W 1,p(Ω)⊂ Lp∗(∂Ω) , where p∗ =
p(N−1)/(N− p) , we observe that

∫
{a�K}

a{|u|(|u| ∧L)s}p �
(∫

{a�K}
a

N
p

) p
N

(∫
Ω
{|u|(|u| ∧L)s}p∗

) p
p∗

� c+C‖a‖
L

N
p ({a�K})

‖∇(|u|(|u| ∧L)s)‖p
Lp(Ω),

and similarly,

∫
{b�K}

b{|u|(|u| ∧L)s}p �
(∫

{b�K}
b

N−1
p−1

) p−1
N−1

(∫
∂Ω

{|u|(|u| ∧L)s}p∗
) p

p∗

� c+C‖b‖
L

N−1
p−1 ({a�K})

‖∇(|u|(|u| ∧L)s)‖p
Lp(Ω),

where constant c has the same status as in (2.10).
By combining the latter estimates with (2.10) we arrive to∫

Ω
|∇u|p−2∇u∇v � c+ ε‖∇(|u|(|u| ∧L)s)‖p

Lp(Ω), (2.11)
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where ε can be chosen as small as desired by choosing K large enough, and constant
c does not depend on L . On the other hand we easily find that∫

Ω
|∇u|p−2∇u∇v � ‖ (|u| ∧L)s∇|u| ‖p

Lp(Ω)

+
p

sp−1 ‖ |u|∇((|u| ∧L)s) ‖p
Lp(Ω)

� η‖∇(|u|(|u| ∧L)s)‖p
Lp(Ω),

with a non depending on L constant η . This estimate, together with (2.11) ensure us
that |u|(|u|∧L)s is bounded in W 1,p(Ω) as L→∞ . Therefore, |u|s+1 ∈W 1,p(Ω) . This
finishes the proof. �

LEMMA 2.2. Let Ω⊂ R
N be a bounded Lipschitz domain, while p < N together

with
1 < r � p∗ and 1 < q � p∗ , (2.12)

where p∗ = (N − 1)/(N − p) . Then, every possible weak solution u ∈ W 1,p(Ω) to
problem (1.6) satisfies u ∈ L∞(Ω) .

Proof. As a first remark, observe that we fall under the assumptions of Lemma 2.1
since

|u|r−1 � a(x)(1+ |u|p−1), |u|q−1 � b(x)(1+ |u|p−1)

where a(x) = max{1, |u(x)|p∗−p} and b(x) = max{1, |u(x)|p∗−p} . Thus a ∈ L
N
p (Ω) ,

b ∈ L
N−1
N−p (∂Ω) and then, it follows from Lemma 2.1 that u ∈ Lq(Ω)∩Lq(∂Ω) for all

q > 1.
We show now that u+ ∈ L∞(Ω) . By employing Lemma 5.1 of Chapter 2 in [14] it

suffices with getting an estimate of the form∫
Ω
(u− k)+ � C|Ak|1+ε , (2.13)

for all k > 0 large and certain constant C , where Ak = {x∈Ω : u � k} . To this purpose
if u ∈ W 1,p(Ω) is a weak solution to (1.6) we set v = (u− k)+ and use it as a test
function. Thus we obtain∫

Ω
|∇v|p + |v|p � c

{∫
Ω
|u|r−1v+

∫
∂Ω

|u|q−1v

}
, (2.14)

where in the sequel c will stand for a certain constant whose explicit value is not rele-
vant for the proof. We now regard |u|r−1 as a function in Ls1(Ω) and |u|q−1 as belong-
ing to Ls1(∂Ω) where s1 > 1 is chosen so large as to have,

1
s1

1
p−1

<
1
p
− 1

p∗
. (2.15)

By setting s = s1/(s1−1) we deduce from (2.14),

‖v‖p
W1,p(Ω) � c

{‖v‖Ls(Ω) +‖v‖W1,s(Ω)
}



A CONVEX-CONCAVE ELLIPTIC PROBLEM 477

� c
{|Ak|

1
s − 1

p∗ + |Ak|
1
s− 1

p
}‖v‖W1,p(Ω)

� c|Ak|
1
s − 1

p ‖v‖W1,p(Ω), (2.16)

since |Ak| → 0 as k → ∞ . Thus,

‖v‖W1,p(Ω) � c|Ak|
1

p−1

(
1
s− 1

p

)
,

for k � k0 and certain positive constants k0,c .
On the other hand,∫

Ω
v � |Ak|1−

1
p∗ ‖v‖W1,p(Ω) � c|Ak|1−

1
p∗ + 1

p− 1
s1(p−1) .

Taking into account (2.15) the proof of relation (2.13) is completed and so u+ ∈ L∞(Ω) .
That u− ∈ L∞(Ω) is shown in a entirely similar way. Thus, the proof of the Lemma is
finished. �

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We proceed separately on
each of the several statements of the theorem.

PROOF OF THEOREM 1.1–i). We are showing the existence of a positive number
Λ∗ so that no nonnegative nontrivial solutions to (1.1) exist for λ > Λ∗ .

Assume u ∈ W 1,p(Ω) , u � 0, is a nontrivial solution to (1.1). Then, in view of
Lemma 2.2 one has that u ∈ L∞(Ω) while Theorem 2 in [15] implies that u ∈C1,β (Ω)
for a certain 0 < β < 1. In addition, it follows from the strong maximum principle
([19]) that u > 0 in Ω .

On the other hand u = u defines a strict positive supersolution to (2.1). Since the
solution ũλ to (2.1) satisfies ũλ → 0 in C1(Ω) as λ → 0+ , some 0 < λ̂ � λ can
be found so that ũλ̂ � u in Ω . Therefore, u = ũλ̂ constitutes a subsolution to (2.1)
comparable with u = u . Thus, we have shown that every nonnegative and nontrivial
solution u ∈W 1,p(Ω) to (1.1) must satisfy

ũλ (x) � u(x), x ∈Ω. (3.1)

We can now consider u as solving the auxiliary eigenvalue problem (2.6) under
the choices μ = 1, a = ur−p and b = λuq−p . The uniqueness assertion concerning the
main eigenvalue to (2.6) in Theorem 2.2 shows that μ1 = 1 is the first eigenvalue to
(2.6) meanwhile, the variational characterization of μ1 entails that

1 �
∫
Ω |∇w|p + |w|p− ∫

b|w|p∫
Ω a|w|p , (3.2)

for every w ∈W 1,p(Ω) . By combining this relation with (3.1) and (2.2) we conclude
that

λ
r−p
p−q �

∫
Ω |∇w|p + |w|p∫
Ω |ũ1|r−p|w|p ,
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for all w ∈W 1,p(Ω) . Therefore,

λ � μ∗ p−q
r−p , (3.3)

where μ = μ∗ is the first eigenvalue to the eigenvalue type problem,⎧⎪⎨⎪⎩
−Δpu+ϕp(u) = μ |ũ1|r−pϕp(u), x ∈Ω,

|∇u|p−2 ∂u
∂ν

= 0, x ∈ ∂Ω.
(3.4)

The existence, uniqueness and positiveness of such an eigenvalue are a consequence of
Theorem 2.2.

Estimate (3.3) shows that the set

S := {λ > 0 : (1.1) admits a positive solution} (3.5)

is bounded above. In other words, the existence of the announced value Λ∗ . We are
next showing that an optimum election Λ of Λ∗ can be performed. �

PROOF OF THEOREM 1.1)–ii). We begin by showing the existence of a small λ
so that a positive solution to (1.1) exists for all 0 < λ � λ . We are employing sub and
supersolutions (see [12] for and adaptation of such technique to problems in the format
(2.8)).

First observe that for all λ > 0, problem (1.1) possesses subsolutions which are
as small as desired. In fact u = ũλ ′ is a subsolution to (1.1) for all 0 < λ ′ � λ . On
the other hand, this fact together with estimate (3.1) entail that, whenever (1.1) admits
a positive solution u ∈W 1,p(Ω) , then a minimal positive solution uλ exists and so

uλ � u.

In fact, one can take u = ũλ and u = u as a comparable pair of sub and supersolutions
to (1.1) and then uλ is the limit in C1(Ω) of the sequence un ∈W 1,p(Ω) , being v = un

the solution to the scheme⎧⎪⎨⎪⎩
−Δpv+ϕp(v) = ur−1

n−1, x ∈Ω,

|∇v|p−2 ∂v
∂ν

= λuq−1
n−1, x ∈ ∂Ω,

(3.6)

with u0 = u .
To get a supersolution we consider the parameterized eigenvalue problem (see [11]

for related ideas) ⎧⎪⎨⎪⎩
−Δpu+ϕp(u) = θϕp(u), x ∈Ω,

|∇u|p−2 ∂u
∂ν

= λϕp(u), x ∈ ∂Ω,
(3.7)

whose principal eigenvalue θ = θ (λ ) is furnished by, say, Theorem 2.2. Proceeding by
arguments similar to those in Lemma 8 in [11] for the linear case p = 2, it can be shown
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that θ (λ ) is concave, decreasing, θ (0) > 0 (θ (0) being the first Neumann eigenvalue
for −Δp +ϕp(·) in Ω) and θ (λ1) = 0 for a unique positive λ = λ1 (the first Steklov
eigenvalue for −Δp +ϕp(·) in Ω).

Choose 0 < λ0 < λ1 and set φ1 := φ1(λ0) the positive eigenfunction associated to
θ0 := θ (λ0) which is normalized so that supΩφ1 = 1. Then,

u = Aφ1, A = θ
1

r−p
0 ,

defines a supersolution to the equation in (1.1). On the other hand,

|∇u|p−1 ∂u
∂ν

� λ |u|q−1, 0 < λ � λ ,

where

λ = λ0θ
p−q
r−p

0 inf
∂Ω

φ p−q
1 .

Therefore, (1.1) admits a positive solution for all 0 < λ � λ . In particular, the minimal
positive solution uλ satisfies

uλ � u = θ
1

r−p
0 φ1.

We notice now that choosing λ0n → λ1 then θ0n → 0 and the corresponding λ n →
0. Therefore,

uλ → 0,

uniformly in Ω as λ → 0 what shows (1.8).
At this level, we can already assert that the set S in (3.5) is nonempty. In fact, in

view of part i) Λ = supS is finite meanwhile, by the previous remarks (0,Λ) ⊂ S .
This completes the proof of ii). �

PROOF OF THEOREM 1.1–iii). That the minimal solution uλ is increasing with λ
follows from the fact that uλ ′ defines a supersolution to (1.1) for values λ lesser than
λ ′ and the existence of subsolutions to (1.1) with an amplitude as small as desired.

We define,
u∗(x) = lim

λ→Λ
uλ (x)

and are first showing that u∗ ∈W 1,p(Ω) . To this purpose it is enough with proving that
uλ keeps bounded in W 1,p(Ω) as λ → Λ . Define

Ẽλ (u) =
1
p

∫
Ω
{|∇u|p + |u|p}− λ

q

∫
∂Ω

|u|q, u ∈W 1,p(Ω),

the energy functional associated to the auxiliary problem (2.1). Since the solution ũλ
to (2.1) satisfies, ∫

Ω
{|∇ũλ |p + |ũλ |p} = λ

∫
∂Ω

|ũλ |q.
Then,

Ẽλ (ũλ ) =
(
λ
p
− λ

q

)∫
∂Ω

|ũλ |q < 0,
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for every λ > 0. Thus,

Eλ (ũλ ) =
1
p

∫
Ω
{|∇ũλ |p + |ũλ |p}−

λ
q

∫
∂Ω

|ũλ |q −
1
r

∫
Ω
|ũλ |r

= Ẽλ (ũλ )− 1
r

∫
Ω
|ũλ |r < 0, (3.8)

for every λ > 0. If we define

H = {u ∈W 1,p(Ω) : ũλ � u(x) � uλ (x) a. e. in Ω},
then we know from the variational version of the method of sub and super solutions
provided in [12] that

Eλ (uλ ) = inf
v∈H

E(v). (3.9)

Hence,
Eλ (uλ ) < 0 for all 0 < λ < Λ . (3.10)

By taking into account (3.10) together with

‖uλ‖p
W1,p(Ω) =

∫
Ω
{|∇uλ |p + |uλ |p} = λ

∫
∂Ω

|uλ |q +
∫
Ω
|uλ |r,

then we achieve (
1
p
− 1

r

)∫
Ω
|uλ |r �

(
λ
q
− λ

p

)∫
∂Ω

|uλ |q.

Thus, there exists a constant C > 0 such that

‖uλ‖p
W1,p(Ω) � C

∫
∂Ω

|uλ |q � C|∂Ω|1−
1
p

N−1‖uλ‖q
Lp(∂Ω) � C|∂Ω|1−

1
p

N−1‖uλ‖q
W1,p(Ω)

for 0< λ <Λ (in previous relations C stands for a generic constant whose precise value
is irrelevant for the proof). This implies that ‖uλ‖W1,p(Ω) � M for a certain M > 0 as
λ → Λ .

Since there exists λn → Λ so that uλn → u∗ weakly in W 1,p(Ω) we find that
u∗ ∈ W 1,p(Ω) (in particular, u∗(x) keeps finite a. e. in Ω). Furthermore, since for
every λn → Λ it is possible to extract a subsequence λn′ such that uλn′ → u∗ weakly in

W 1,p(Ω) , then we conclude that the whole uλ → u∗ weakly in W 1,p(Ω) and strongly
in Lp(Ω)∩Lp(∂Ω) . Thus uλ → u∗ strongly in Lq(∂Ω) (q satisfying (1.2)).

We are further showing that uλ → u∗ in Lr(Ω) as λ → Λ . This is in fact clear if
r < p∗ due to Sobolev’s embedding. In the case of r = p∗ we observe that∫

Ω
up∗
λ � ‖uλ‖p

W1,p(Ω) � Mp.

Thus, by monotone convergence, ‖u∗‖Lp∗ (Ω) � Mp/p∗ . Moreover, that u∗ ∈ Lp∗(Ω)
permits concluding in addition (see [3]) that

uλ → u∗ in Lp∗(Ω),
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as λ → Λ .
Our next step is proving that u∗ solves (1.1) for λ = Λ . For this goal we choose

λn → Λ , put un = uλn and are showing that un → u∗ (strongly) in W 1,p(Ω) . After this
fact is achieved, that u∗ solves (1.1) with λ = Λ follows immediately by taking limits
in the equality ∫

Ω
|∇un|p−2∇un∇v+up−1

n v = λn

∫
∂Ω

uq−1
n v+

∫
Ω

ur−1
n v, (3.11)

for v ∈W 1,p(Ω) arbitrary.
We now employ an argument which is standard in the theory of monotone op-

erators (see the so called condition S+ in [8]). First recall that, for u,v ∈ W 1,p(Ω)
arbitrary, the following inequalities hold

〈−Δpu− (−Δpv),u− v〉� Cp

∫
Ω
|∇u−∇v|p, (3.12)

if p � 2, and

〈−Δpu− (−Δpv),u− v〉�

Cp

{
‖∇u−∇v‖Lp(Ω)

‖∇u−∇v‖Lp(Ω) +‖∇v‖Lp(Ω)

}2−p ∫
Ω
|∇u−∇v|p, (3.13)

for 1 < p < 2, being Cp a positive constant only depending on p .
Thanks to (3.11) sequence un satisfies

〈−Δpun,un−u∗〉 =
∫
Ω
|∇un|p−2∇un∇(un−u∗)

= λn

∫
∂Ω

uq−1
n (un−u∗)+

∫
Ω

ur−1
n (un−u∗)−

∫
Ω

up−1
n (un−u∗).

So we obtain that 〈−Δpun,un −u∗〉 → 0. Since un → u∗ weakly in W 1,p(Ω) we addi-
tionally find that 〈−Δpu∗,un−u∗〉 → 0. Thus,

〈−Δpun− (−Δpu
∗),un −u∗〉 → 0.

In view of relations (3.12) and (3.13) this means that ∇un → ∇u∗ in Lp(Ω) and so
un → u∗ in W 1,p(Ω) . Furthermore, being un arbitrary we conclude that the whole
uλ → u∗ in W 1,p(Ω) .

To complete the proof we observe that the continuity from the left of uλ in λ
(when observed as taking values in W 1,p(Ω)) is a consequence of the minimality of
uλ . On the other hand, since 0 < uλ � u∗ and u∗ ∈ L∞(Ω) (Lemma 2.2) then uλ is
uniformly bounded in L∞ and both the C1,β smoothness of uλ and the uniform bound
(1.7) follow from Theorem 2 in [15]. �

REMARKS 1. a) Proof of assertion i) in Theorem 1.1 somehow simplifies the
corresponding one in the case p = 2 given in [10] (see Theorem 1.2). In fact, our
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argument avoids reasoning with the associated evolution problem (see Section 5 in
[10]). On the other hand, such approach is less transparent and harder to carry out in
the case of the p -Laplacian operator.

b) It should be pointed out that the Gidas-Spruck approach employed in [10] to obtain
uniform L∞ estimates can not be used here in the context of the p -Laplacian. It should
be also remarked that a uniform bound for uλ in H1(Ω) as λ → Λ is achieved in [1]
in the linear case p = 2 and Dirichlet conditions by getting (3.10). To this purpose,
authors linearize around u = uλ and show that the first eigenvalue associated to the
linearized problem is always nonnegative. This treatment is, of course, out of use in
the present framework. In fact, the linearization of the p -Laplacian at uλ becomes
singular ( p < 2) or degenerate ( p > 2) at the critical points of uλ . Here, we succeed in
showing (3.10) by both employing the energy associated to the auxiliar problem (2.1)
and the variational side of the method of sub and super solutions.

c) For every fixed 0 < λ0 � Λ and 0 < β ′ < β arbitrary, it can be shown, via the
estimates in [15], that uλ → uλ0

in C1,β ′
(Ω) as λ → λ0+ .

4. A related problem

In the case of linear diffusion p = 2, the following alternative version of problem
(1.1), ⎧⎨⎩−Δu+u = uq−1, x ∈Ω,

∂u
∂ν

= λur−1, x ∈ ∂Ω,

was also addressed in [10]. Its p -Laplacian counterpart reads as follows⎧⎪⎨⎪⎩
−Δpu+ϕp(u) = ϕq(u), x ∈Ω,

|∇u|p−2 ∂u
∂ν

= λϕr(u), x ∈ ∂Ω,
(4.1)

where λ > 0 and q,r still fall in the regime (1.2). Problem (4.1) is just (1.1) but terms
ϕr(u) and ϕq(u) have been interchanged.

In the present section it will be proved that all conclusions in Theorem 1.1 hold
also true for (4.1). We are reviewing step by step, the arguments leading to the proof of
Theorem 1.1 and we are proceeding to the required adaptations when necessary.

By a simple scaling, problem (4.1) can be transformed in the equivalent version⎧⎪⎨⎪⎩
−Δpu+ϕp(u) = λϕq(u), x ∈Ω,

|∇u|p−2 ∂u
∂ν

= ϕr(u), x ∈ ∂Ω.
(4.2)

As exponents q,r lie in range (1.2), Lemma 4 and Lemma 5 show that any weak
nonnegative solution u ∈W 1,p(Ω) belongs to L∞(Ω) . Then, provided u is nontrivial,
it is positive and satisfies u ∈C1,β (Ω) for some 0 < β < 1.
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Auxiliary problem (2.1) must be now replaced with⎧⎪⎨⎪⎩
−Δpu+ϕp(u) = λϕq(u), x ∈Ω,

|∇u|p−2 ∂u
∂ν

= 0, x ∈ ∂Ω,
(4.3)

where 1 < q < p . The same kind of arguments as those employed in Theorem 2.1
allows showing that (4.3) admits, for each λ > 0, a unique positive solution u = ûλ ∈
C1,α(Ω) for some 0 < α < 1 which satisfies in addition

ûλ = λ
1

p−q û1, λ > 0.

Such solutions furnish a family of subsolutions to (4.2) that can be chosen as small
as desired. By arguing as in Section 3 one finds that if u ∈ W 1,p(Ω) , u �= 0, is a
nonnegative solution to (4.2), then necessarily

ûλ (x) � u(x), x ∈Ω.

Two consequences can be extracted from this estimate. First, the existence of a positive
solution to (4.2) is ensured by the mere existence of a positive supersolution. Second,
once one has a solution u then a minimal solution uλ � u can be obtained as uλ =
limun , u = un being defined by the iterative scheme⎧⎪⎨⎪⎩

−Δpu+ϕp(u) = λuq−1
n−1, x ∈Ω,

|∇u|p−2 ∂u
∂ν

= ur−1
n−1, x ∈ ∂Ω,

beginning at u0 = ûλ .
Next step consists in achieving the existence of some Λ∗ > 0 such that no positive

solutions to (4.2) exist when λ � Λ∗ . A proof of this fact was given in [10], for the
case p = 2, by recurring to the associated evolution problem. A direct argument, in the
lines of Section 3, is given now. In the present case, the relevant eigenvalue problem is⎧⎪⎨⎪⎩

−Δpu+ϕp(u) = b(x)ϕp(u), x ∈Ω,

|∇u|p−2 ∂u
∂ν

= μa(x)ϕp(u), x ∈ ∂Ω,
(4.4)

which is the p -Laplacian version of an eigenvalue problem of Steklov-type. Here it is
assumed that a ∈ L∞(∂Ω) , a(x) � a0 > 0 a. e. on ∂Ω , while b ∈ L∞(Ω) .

By a variational approach entirely similar to the one in Theroem 2.2 (see Lemma
9 in [11] for the linear case p = 2) it can be shown that (4.4) admits an eigenvalue μ1

with a positive associated eigenfunction φ ∈W 1,p(Ω) , if and only if, the first eigenvalue
λ̃ = λD

1 to the Dirichlet eigenvalue problem⎧⎨⎩−Δpu+ϕp(u) = b(x)ϕp(u)+ λ̃ϕp(u), x ∈Ω,

u = 0, x ∈ ∂Ω,
(4.5)
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satisfies

λD
1 > 0. (4.6)

Under this condition μ1 is unique and fulfills similar properties as those in Theorem
2.2 for problem (2.6). Particularly,

μ1 = inf
w∈W1,p(Ω)

‖w‖p
W1,p(Ω) −

∫
Ω b|w|p∫

∂Ω a|w|p .

If the existence of a positive solution u ∈ W 1,p(Ω) to (4.2) is assumed, then u
can be regarded as a positive eigenfunction to (4.4) with b = λuq−p , a = ur−p and
μ = 1. Therefore, by uniqueness μ1 = 1. It should be remarked that condition (4.6) is
fulfilled since, under the elections of a and b performed before, the own solution u has
the status of strict positive supersolution to (4.5) with λ̃ = 0 (see Theorem 2 in [13]).
Thus,

1 � inf
w∈W 1,p(Ω)

‖w‖p
W1,p(Ω)∫

∂Ω a|w|p � inf
w∈W1,p(Ω)

‖w‖p
W 1,p(Ω)

λ
r−p
p−q

∫
∂Ω ûr−p

1 |w|p
.

Hence,

λ
r−p
p−q � μ∗

1 ,

where μ = μ∗
1 is the first eigenvalue of the Steklov-type problem,⎧⎪⎨⎪⎩

−Δpu+ϕp(u) = 0, x ∈Ω,

|∇u|p−2 ∂u
∂ν

= μ ûr−p
1 ϕp(u), x ∈ ∂Ω.

Therefore, no positive solutions to (4.2) are possible for λ > μ∗
1

p−q
r−p .

We now prove the existence of λ > 0 such that a minimal positive solution to
(4.2) exists for all 0 < λ � λ . Indeed, it is enough with finding λ > 0 such that
(4.2) with λ = λ possesses a positive supersolution u . This is accomplished by taking
0 < λ0 < λ1 , θ0 and φ1 (θ0 = θ (λ0) , φ1 = φ1(λ0)) as in Section 3, by defining

u = λ
1

r−p
0 φ1,

and choosing λ = θ0λ
p−q
r−p

0 infΩ φ p−q
1 . Similarly, since the minimal solution uλ satisfies

0 < uλ � u as 0 < λ � λ and both u and λ vanish as λ0 → 0, then uλ → 0 uniformly
in Ω as λ → 0.

Finally, by reasoning as in Section 3 one finds 0 < Λ1 � Λ∗ such that a minimal
positive solution uλ to (4.2) exists for 0 < λ < Λ1 and no positive solution is possible
when λ > Λ1 . The same argument as that employed in Section 3 yields the existence
of a further minimal solution u∗ corresponding to λ = Λ1 .
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5. Final remarks

In this section we collect together some reflections on the existence of a second
positive solution to (1.1) for all values of 0 < λ <Λ , Λ given in Theorem 1.1 (“global”
multiplicity of positive solutions).

According to the plan to achieve global multiplicity in [1] (see also [10]) a first
step would consist in finding a pair of positive sub and supersolutions u , u so that
0 < u(x) < uλ (x) < u(x) for all x ∈Ω , where uλ in the minimal solution to (1.1). This
would mean that uλ becomes a local minimizer for the energy functional Eλ in the
C(Ω) topology.

In the context of our problem (1.1), natural candidates are u = uλ1
, u = uλ2

where
0 < λ1 < λ < λ2 . By taking λ1 small the inequality u < uλ is easily obtained. On
the other hand, due to the fact that none of the gradients ∇uλ , ∇uλ2

vanish near the
boundary, it can be checked that the difference w = uλ2

− uλ satisfies an inequality
L (x,w,∇w) � 0 in an inner neighborhood of ∂Ω together with B(x,w,∇w)∇w > 0
on ∂Ω , where L stands for a nondegenerate elliptic operator and B is the conormal
outer field associated to L on ∂Ω . Therefore, Hopf’s principle implies that the strict
inequality uλ (x) < uλ2

(x) holds for all x such that dist(x,∂Ω) � δ for some δ > 0.
However, the problem arises when trying to propagate the strict inequality to the whole
of Ω , specially when p > 2 in the diffusion operator. Recall that the strong comparison
principle for operators involving the p -Laplacian only holds true under quite restricted
circumstances ([5], [6]).

Provided that one succeeds in getting u < uλ < u in Ω for all 0 < λ <Λ , a second
step is showing that uλ constitutes a local minimizer of Eλ in the W 1,p topology.
To show this fact, the existence of a sequence un ∈ W 1,p(Ω) , un → uλ in W 1,p(Ω) ,
satisfying Eλ (un) < Eλ (uλ ) must be discarded. To this purpose, a uniform Cα estimate
of the sequence un should be obtained. Then, after passing to a subsequence, it follows
that un → uλ in C(Ω) what would contradict that uλ is a local minimum in C(Ω) . The
experience in the Dirichlet problem (1.4) reveals that proving the Cα estimate is also a
delicate enterprise (see [9]).

In a future work we will come back to these questions, in special the issue of uni-
form estimates. Nevertheless, the problem of “global” multiplicity of positive solutions
to (1.1) when Ω is a ball of R

N and we restrict ourselves to radial solutions, can be
answered affirmatively. Author’s results on this case will be soon published.

RE F ER EN C ES

[1] A. AMBROSETTI, H. BREZIS, G. CERAMI, Combined effects of concave and convex nonlinearities
in some elliptic problems, J. Funct. Anal., 122 (1994), 519–543.
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