
D ifferential
Equations

& Applications
Volume 3, Number 4 (2011), 487–502

ON ABSTRACT BARENBLATT EQUATIONS

CAROLINE BAUZET AND GUY VALLET

Dedicated to Professor Jesús Ildefonso Dı́az
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Abstract. In this paper we are interested in abstract problems of Barenblatt’s type. In a first part,
we investigate the problem f (∂t u)+Au = g where f and A are maximal monotone operators
and by assuming that A derives from a potential J . With general assumptions on the operators,
we prove the existence of a solution. In the second part of the paper, we examine a stochastic
version of the above problem: f [∂t (u−

∫ t
0 hdw)]+Au = 0 , with some restrictive assumptions on

the data due principally to the framework of the Itô integral.

1. Introduction

In this paper we are interested in the deterministic and the stochastic abstract prob-
lems of Barenblatt’s type:

(P1) :

{
f (∂t u)+Au = g,

u(t = 0) = u0,
(P2) :

{
f
(
∂t(u−

∫ t
0 hdw)

)
+Au = 0,

u(t = 0) = u0.

In the deterministic case, such a problem has been investigated by G. Dı́az and
J. I. Dı́az in [9], where the authors were interested in the asymptotic behavior of the
solution of the problem ∂t u−Δβ (u) = 0 where β is a maximal monotone graph in
R

2 . The essential tool was to consider the ”dual” problem ∂t v+β (−Δv) = 0 of type
(P1) : f (∂t v)− Δv = 0 where f = [−β (−·)]−1 . The study of such a problem was
based on the work of K. S. Ha [12] where the author was interested in the existence of
solutions to a class of quasilinear Barenblatt equations of type f ∈ ∂t u+βA(u) when
A is assumed to be a m-accretive operator in L∞(Ω) . Let us also mention the work of
H. Konishi where the author studies in [15] the properties of the nonlinear semi-groups
associated with f (∂t u) = Δu .

Next, more recently, G. Schimperna et al. [18] have been interested in the differen-
tial inclusion: f ∈ α(∂t u)−div(b(x,∇u))+W ′(u) where, among other things, α ⊂R

2
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was a maximal monotone graph, W a λ -convex function and f ∈W 1,1(0,T,H) . Pre-
sented in an abstract way, this work was in connection with the modeling of phase
change phenomena and gas flow in porous media.

Concerning such kind of modelings, problems of type (P1) were originally con-
sidered by G. I. Barenblatt in [4] in the theory of fluids in elasto-plastic porous medium.
Written in following way: F(∂t u)−Δu = 0 where F(x) = x+ γ|x| (0 < |γ| < 1), ex-
istence of regular and self-similar solutions have been investigated by S. Kamin - L.
A. Peletier - J. L. Vázquez in [14]. Formal solutions given by expansions of a suitable
new variable χ = χ(t,x) is also proposed in [7] concerning nonlinear diffusive process
with a non-conservative mass.

For nonlinear operators A , the existence of self-similar solutions has been pro-
posed by J. Hulshof - J. L. Vázquez in [13] for the so called ”modified porous medium
equation”: F(∂t u)−Δum = 0. For the ”modified p -Laplace equation”: F(∂t u)−Δpu =
0, a result of existence of self-similar solutions has been proposed by N. Igbida in [16],
and the existence of weak solutions by C. Bauzet et al. in [5]. Then, in an abstract
setting, our approach revisit the one of P. Colli in [8].

A first approach of the stochastic case has been proposed by Adimurthi et al. in
[2] concerning the existence of a solution to the stochastic pseudoparabolic Barenblatt
problem:

f

(
∂t(u−

∫ t

0
hdw)

)
−Δu− εΔ∂tu = 0, ε > 0.

Then, C. Bauzet et al. in [5] has envisaged the case ε = 0, where strong solutions are
considered, see also J. I. Dı́az et al. [10].

In the present work, we propose to extend the previous cited results concerning
(P1) by weakening the assumptions on the data and we propose to study the abstract
stochastic parabolic-Barenblatt problem (P2) with additive noise, then with a multi-
plicative one.

In the first part of the paper, H is a Hilbert space and V is a reflexive separable
Banach space such that V is embedded in H with a dense and compact injection and
one will identify H with its dual space H ′ . One denotes by (., .) , resp. |.| , the scalar
product of H , resp. the norm in H , by 〈., .〉 the dual product V ′ −V and by ‖.‖ the
norm in V .

f : H →H ′ ≡H and A :V →V ′ are maximal monotone operators, A derives from
a potential J , and general assumptions are made to prove the existence of a solution.
In particular, we assume neither strong monotonicity for f , nor a control from bellow
of J(u) by a power of the norm of u in V . This allows us to apply our results in the
case of Orlicz spaces (See [1], Chap. VIII, p. 227) when the problem allows easily a
control of the modulus given by the N-function, rather than the Luxembourg norm. One
can cite for example the case of the Musielak-Orlicz spaces Lp(x)(Ω) and W 1,p(x)(Ω)
spaces (See [11]).

In the second part of the paper, we will be interested in stochastic problems. Be-
cause of the theory of the stochastic integration, V needs to be a Hilbert space and for
technical reasons, one assumes that (u,v) 
→ 〈Au,v〉 is a scalar product whose associ-
ated norm is equivalent to the one of V .
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This paper is organized as follows. The next section contains some classical nota-
tions used throughout the paper and the statements of our main results. The determin-
istic case is established in Section 3 and the stochastic one in Section 4.

2. Notations, assumptions and results

Denote by (P1) the following problem:

(P1) :

{
f (∂t u)+Au = g,
u(t = 0) = u0,

and assume that:

• H is a Hilbert space and V is a reflexive separable Banach space such that V ↪→ H
with a dense and compact injection. Thus, one has the classical Gelfand-Lions triplet:
V ↪→ H ≡ H ′ ↪→V ′ ;

• f : H → H ′ ≡ H is a demicontinuous (univoque) maximal monotone operator.

REMARK 2.1. This is the case for example if f is the subdifferential ∂F of a
continuous, Gâteaux differentiable and proper convex function F : H → R .

Assume moreover that:

− ∃α > 0,λ ∈ R, ∀x ∈ H, ( f (x),x) � α|x|2 −λ ,
− ∃C1,C2 � 0, ∀x ∈ H, | f (x)| � C1|x|+C2;

• J :V → R is a continuous, Gâteaux differentiable and proper convex function. Since
J can be defined modulo a constant value, assuming that J(0) = 0 does not affect the
generality. One denotes by A its subdifferential ∂J : V → V ′ . We recall that it is a
demicontinuous (univoque) maximal monotone operator.
One assumes moreover that:
− J is bounded above on bounded subsets of V (therefore, A maps bounded subsets
of V into bounded nonempty subsets of V ′ (e.g. [6] Prop. 4.1.25),
− either ∃δ > 0, ϕ1 : u 
→ δ |u|2 + J(u) is coercive over V in the sense:

δ |un|2 + J(un)
‖un‖ goes to +∞ if ‖un‖ goes to +∞ .

Or, f derives from the potential F (see Remark 2.1), and ϕ2 : u 
→ F(u) + J(u) is
coercive over V ;
• u0 ∈V and g ∈ L2(0,T,H) .

The main results in that case are the following.

THEOREM 2.2. There exists u ∈W 1,∞,2(0,T,V,H)1 solution of (P1) . Moreover,
for a.e. t ,

Au(t) = g(t)− f (∂tu(t)) ∈ H, J(u) ∈W 1,1(0,T )
1 W 1,p,q(0,T,V,H) denotes the space of functions u ∈ Lp(0,T,V ) such that ∂t u ∈ Lq(0,T,H) .
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and, for any t , ∫ t

0
( f (∂t u),∂t u)ds+ J(u(t)) = J(u0)+

∫ t

0
(g,∂t u)ds,

α
∫ t

0
|∂tu|2ds+2J(u(t)) � 2J(u0)+

1
α

∫ t

0
|g|2ds+2λ .

COROLLARY 2.3. The following three statements hold.

i) If A is linear and f strictly monotone, then the solution is unique.

ii) If A is linear and J(0) < J(w) for any w = 0 , then the solution is unique and
it belongs to C([0,T ],V ) . Moreover, the application (u0,g) 
→ u is continuous from
V ×L2(0,T,H) to C([0,T ],V ) .

iii) If A is linear and f strongly monotone, the application (u0,g) 
→ ∂t u is continuous
from V ×L2(0,T,H) to L2(0,T,H) .

Denote by (P2) the following problem:

(P2) :

{
f
(
∂t(u−

∫ t
0 hdw)

)
+Au = 0,

u(t = 0) = u0.

In addition to the above hypotheses, assume moreover that:

• H and V are separable Hilbert spaces;

• W = {wt ,Ft ;0 � t � T} denotes a standard adapted one-dimensional continuous
Brownian motion, defined on some complete probability space (Ω,F ,P) , with the
property that w0 = 0;

• A = ∂J is a linear operator, J(u) > 0 = J(0) if u = 0 and f is strongly monotone;

• u0 ∈ V and h ∈ N2
w(0,T,V ) where, for a separable Hilbert space X , N2

w(0,T,X)
denotes the set of predictable processes of L2((0,T )×Ω,X) (Cf. [17] for example).

The main result in that case is:

THEOREM 2.4. There exists a unique u∈N2
w(0,T,V ) , such that ∂t(u−

∫ t
0 hdw)∈

L2
(
(0,T )×Ω,H

)
, solution of (P2) . Moreover, u ∈ C([0,T ],L2(Ω,V )) and, for any

u0, û0 ∈V , any h, ĥ ∈ N2
w(0,T,V ) and any t ,

E
∫ t

0

(
f (∂tU)− f (∂tÛ),∂t [U(t)−Û(t)]

)
ds+E‖(u− û)(t)‖2

A

� E‖u0− û0‖2
A +

∫ t

0
E‖h− ĥ‖2

Ads,

where U (resp. Û ) denotes u− ∫ t
0 hdw (resp. û− ∫ t

0 ĥdw).
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COROLLARY 2.5. Assume that H : V → V is a Lipschitz-continuous mapping.
Then there exists a unique u ∈ N2

w(0,T,V ) such that

∂t [u−
∫ t

0
H (u)dw] ∈ L2((0,T )×Ω,H)

solution of Problem

(PH ) : f
(
∂t [u−

∫ t

0
H (u)dw]

)
+Au = 0, with u(0, .) = u0.

3. The deterministic case

The aim of this section is to prove Theorem 2.2 and Corollary 2.3. We propose to
prove the existence of a solution by passing to the limit in a time-discretization scheme.
For any positive integers N and any n � N , we denote by

Δt =
T
N

, tn = nΔt and gn =
1
Δt

∫ tn+1

tn
g(s)ds.

3.1. Existence of the approximation sequence

LEMMA 3.1. For any sequence (gn) ⊂ H , there exists a sequence (un) ⊂V such
that u0 = u0 and

f
(un+1−un

Δt

)
+Aun+1 = gn+1. (3.1)

Proof. Since H ′ ↪→V ′ , M : u ∈V 
→ f ( u−un

Δt ) ∈V ′ is a monotone operator.
If one denotes by S a bounded subset of V , then, for any s ∈ S ,

‖M(s)‖V ′ � C
∣∣∣ f( s−un

Δt

)∣∣∣ � C
∣∣∣ s−un

Δt

∣∣∣+C � C
∥∥∥ s−un

Δt

∥∥∥+C

and M is a bounded operator.
If one considers that uk converges weakly to u in V , then, it converges to u in H

and Mun converges weakly to Mu in H since f is demicontinuous in H . Thus, for
any v ∈V , limk(Muk,uk − v) = (Mu,u− v) and M is pseudomonotone in V .

For any u ∈V , one has that(
f
(u−un

Δt

)
,u

)
= Δt

(
f
(u−un

Δt

)
,
u−un

Δt

)
+

(
f
(u−un

Δt

)
,un

)
� αΔt

∣∣∣u−un

Δt

∣∣∣2−C(Δt)(|u|+ c(un))

� α
Δt

|u|2−C(Δt)(|u|+ c(un)).

Thus, for small values of Δt , one gets that

( f ( u−un

Δt ),u)+ 〈Au,u〉
‖u‖ �

α
Δt |u|2−C(Δt)(|u|+ c(un))+ J(u)− J(0)

‖u‖
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� δ |u|2 + J(u)
‖u‖ −C(Δt,un).

Then, since by assumption ϕ1 is coercive, the result of the lemma holds thanks to clas-
sical arguments on pseudomonotone operators (Cf. [19] : Cor. 7.1 p.84 for example).

If one assumes that f derives form a potential F (see Remark 2.1).
Then, the convex function ϕ3 : V 
→ R , defined for any u ∈V by

ϕ3(u) = ΔtF
(u−un

Δt

)
+ J(u)− (gn+1,u),

is continuous and Gâteaux differentiable. Moreover,

〈dϕ3(u),v〉 =
(

f
(u−un

Δt

)
,v

)
+ 〈Au,v〉− (gn+1,v),

F(u) = F
(
Δt

u−un

Δt
+un

)
� ΔtF

(u−un

Δt

)
+(1−Δt)F

( un

1−Δt

)
and

ϕ3(u) � F(u)+ J(u)− (gn+1,u)− (1−Δt)F
( un

1−Δt

)
� F(u)+ J(u)−|gn+1|.|u|−C(Δt)

=
[
F(u)+ J(u)

|u| − |gn+1|
]
|u|−C(Δt).

The coercivity of ϕ2 yields the existence a critical point to ϕ3 which corresponds to a
solution un+1 for the lemma.

REMARK 3.2. Note that if f , or A , is strictly monotone, then the solution is
unique. Indeed, if u and û are two given solutions, one has

Δt

(
f
(u−un

Δt

)
− f

( û−un

Δt

)
,
u−un

Δt
− û−un

Δt

)
+ 〈Au−Aû,u− û〉 = 0.

3.2. A priori estimates

Let us test Equation (3.1) with v = un+1−un

Δt . Then,(
f
(un+1−un

Δt

)
,
un+1−un

Δt

)
+

〈
Aun+1,

un+1−un

Δt

〉
=

(
gn+1,

un+1−un

Δt

)
,

yields

Δt
α
2

∣∣∣∣un+1−un

Δt

∣∣∣∣2 + J(un+1) � J(un)+
Δt
α
|gn+1|2 +λΔt.
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Thus, there exists a constant C such that

n

∑
k=0

Δt
α
2

∣∣∣∣uk+1−uk

Δt

∣∣∣∣2 + J(un+1) � J(u0)+Tλ +
Δt
α

n

∑
k=0

|gk+1|2 � C,

and

LEMMA 3.3. There exists a constant C such that∥∥∂t ũ
Δt

∥∥
L2(0,T,H) +

∥∥J(uΔt)
∥∥

L∞(0,T ) +
1
Δt2

‖ũΔt −uΔt‖2
L2(0,T,H) � C.

Since, ∣∣∣∣ f (
uk+1−uk

Δt

)∣∣∣∣ � C1

∣∣∣∣uk+1−uk

Δt

∣∣∣∣+C2,

one has that

LEMMA 3.4. There exists a constant C such that
∥∥ f

(
∂t ũΔt

)∥∥
L2(0,T,H) � C.

If one assumes that f derives form a potential F (see Remark 2.1), then

F(un+1) � F(u0)+ | f (un+1)||u0−un+1|
� F(u0)+ [C1|un+1|+C2]|u0−un+1|
� Cte

and there exists a constant C such that ϕ2(un) � C .
Since ϕ1 (resp. ϕ2 ) is coercive, this yields

LEMMA 3.5. There exists a constant C such that∥∥uΔt
∥∥

L∞(0,T,V ) +
∥∥ũΔt

∥∥
L∞(0,T,V ) � C.

Finally, since for any v ∈V ,

〈Aun+1,v〉 =
(
gn+1− f

(un+1−un

Δt

)
,v

)
,

one gets that

sup
v=0

〈Aun+1,v〉
‖v‖ � C

∣∣∣gn+1− f
(un+1−un

Δt

)∣∣∣
and

LEMMA 3.6. There exists a constant C such that
∥∥AuΔt

∥∥
L2(0,T,V ′) � C.
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3.3. At the limit

Let us recall that, by construction, almost everywhere in (0,T ) , one has the dis-
cretization:

∀v ∈V,
(
f (∂t ũ

Δt),v
)
+ 〈AuΔt,v〉 =

(
gΔt ,v

)
. (3.2)

As the sequence ũΔt is bounded in W 1,∞,2(0,T,V,H) , up to a subsequence denoted
similarly, Simon’s compactness argument ensures the existence of u∈W1,∞,2(0,T,V,H)
such that ũΔt convergesweakly to u in L∞(0,T,V) weak-* and strongly in C([0,T ],H) .
Moreover, uΔt converges to u in L∞(0,T,V ) weak-* and strongly in L2(0,T,H) , and
∂t ũΔt converges weakly to ∂t u .

Concerning the nonlinear terms, one denotes by fu and Au the weak limits, re-
spectively in L2(0,T,H) and L2(0,T,V ′) , of f

(
∂t ũΔt

)
and AuΔt . Thus,∫ T

0
〈AuΔt ,uΔt −u〉dt =

∫ T

0

(
gΔt − f (∂t ũ

Δt),uΔt −u
)
dt → 0 when Δt → 0,

and, ∫ T

0
〈AuΔt ,uΔt〉dt →

∫ T

0
〈Au,u〉dt when Δt → 0.

By assumption, the application u ∈V 
→ 〈Au,v〉 is continuous. Thus, if w : (0,T ) →V
is a measurable function, Aw is a weak-* measurable one. Since by assumption V is a
separable reflexive Banach space, Aw is firstly weakly measurable, then measurable.

Set v∈ L∞(0,T,V) and |λ |� 1. By monotonicity of A and thanks to the previous
convergence, one gets that

0 � λ
∫ T

0
〈Au−A(u−λv),v〉dt.

For t ∈ (0,T ) a.e., one gets that

‖u(t)−λv(t)‖� C = ‖u‖L∞(0,T,V ) +‖v‖L∞(0,T,V ).

Since J is bounded above on bounded subsets of V , A(BV (0,C)) is bounded (e.g. [6]
Prop. 4.1.25 p.137) and M exists such that,

‖A(u(t)−λv(t))‖V ′ � M , t a.e. in (0,T ) .

Since A is demi-continuous, < Au−A(u−λv),v > converges to < Au−Au,v > when
λ goes to 0. Then, Lebesgue’s theorem yields:∫ T

0
〈Au−A(u−λv),v〉dt →

∫ T

0
〈Au−A(u),v〉dt when λ → 0

and one concludes that

0 =
∫ T

0
< Au −A(u),v > dt and Au = Au.
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By passing to the limit, one gets that fu + Au = g in L2(0,T,H) , or similarly, that
∂t u+Au = h := g− fu + ∂tu where h ∈ L2(0,T,H) and u0 ∈V .
Then, thanks to Section 5, for any t , the following equality holds:∫ t

0
( fu,∂t u)ds+ J(u(t)) = J(u0)+

∫ t

0
(g,∂t u)ds.

Coming back to the discrete formulation, adding(
f
(un+1−un

Δt

)
,
un+1−un

Δt

)
+ < Aun+1,

un+1−un

Δt
>=

(
gn+1,

un+1−un

Δt

)
over n , yields

Δt
N−1

∑
n=0

(
f
(un+1−un

Δt

)
,
un+1−un

Δt

)
+ J(uN)

� J(u0)+Δt
N−1

∑
n=0

(
gn+1,

un+1−un

Δt

)
,

that is, ∫ T

0
( f (∂t ũ

Δt),∂t ũ
Δt)dt + J(ũΔt(T )) � J(u0)+

∫ T

0
(gΔt ,∂t ũ

Δt)dt.

Since ũΔt converges to u in C([0,T ],H) and as ũΔt(T ) is bounded in V , one gets
that ũΔt(T ) converges weakly to u(T ) in V (Note that the same can be told for any
t , i.e. ũΔt(t) converges weakly to u(t) in V ), and we get back the initial condition
u(t = 0) = u0 in V . Thus,

limsup
Δt

∫ T

0
( f (∂t ũ

Δt),∂t ũ
Δt)dt + J(u(T))

� limsup
Δt

∫ T

0
( f (∂t ũ

Δt),∂t ũ
Δt)dt + liminf

Δt
J(ũΔt(T ))

� limsup
Δt

[∫ T

0
( f (∂t ũ

Δt),∂t ũ
Δt)dt + J(ũΔt(T ))

]
� J(u0)+

∫ T

0
(g,∂t u)dt =

∫ T

0
( fu,∂t u)ds+ J(u(T)).

Then, an argument of Minty’s type in L2(0,T,H) , similar to one used above with
A , leads to fu = f (∂t u) and to the existence of a solution.

Note in particular that Au = g− f (∂tu) ∈ H and that, for any t ,∫ t

0
( f (∂t u),∂t u)ds+ J(u(t)) = J(u0)+

∫ t

0
(g,∂t u)ds (3.3)

and

α
∫ t

0
|∂tu|2ds+2J(u(t)) � 2J(u0)+

1
α

∫ t

0
|g|2ds+2λ . (3.4)
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3.4. If A is linear

If A is a linear operator and if u and û are given solutions associated to the initial
conditions u0, û0 and the right hand side members g, ĝ , one gets that

( f (∂t u)− f (∂t û),v)+ 〈A(u− û),v〉 = (g− ĝ,v),
(u− û)(t = 0) = u0− û0,

that is, by denoting w = u− û ,

(∂tw,v)+ 〈Aw,v〉 = ([g− ĝ]− [ f (∂t u)− f (∂t û)]+ ∂tw,v) ,

(u− û)(t = 0) = u0− û0.

Then, thanks to Section 5, for any t ,

∫ t

0
|∂tw|2ds+ J(w(t)) = J(u0− û0)

+
∫ t

0

(
[g− ĝ]− [ f (∂tu)− f (∂t û)]+ ∂tw,∂tw

)
ds,

and ∫ t

0
( f (∂t u)− f (∂t û),∂tw)ds+ J(w(t)) = J(u0− û0)+

∫ t

0
(g− ĝ,∂tw)ds. (3.5)

Since A is linear, A(0) = 0 and 0 ∈ ∂J(0) , i.e. J(0) = min J (Prop. 4.1.8 p.130 [6] et
al., for example), and

PROPOSITION 3.7. If moreover A is a linear operator and assuming that either
f is strictly monotone, or the optimal value of J is only satisfied at 0 , then the solution
is unique.

If A is linear and J(0) = 0, then, for any u,v ∈V , one gets that J(u) = 1
2〈Au,u〉 ,

〈Au,v〉 = 〈Av,u〉 and ‖.‖A : u ∈V 
→ √〈Au,u〉 is a norm on V associated to the scalar
product (u,v) 
→ 〈Au,v〉 .

Note that assuming that J(v) > 0 if v = 0 yields that ‖·‖ and ‖·‖A are equivalent
norms over V . Indeed, the first inequality holds since A is bounded on the bounded
sets, A is a continuous linear operator.

Assume that the second one doesn’t hold. Then, there exists a sequence (vn) ∈ V
such that ‖vn‖ = 1, vn converges weakly (resp. strongly) to a given v in V (resp. H )
and J(vn) = 2‖vn‖2

A goes to 0. Since J is a continuous convex function, one gets that
0 = J(0) � J(v) � 0, and since J(v) > 0 if v = 0, one concludes that v = 0.

As ϕ1 is a bilinear coercive mapping, there exists a positive constant α such that,
for any u ∈ V , ϕ1(u) = δ |u|2 +‖u‖2

A � α‖u‖2 . Since ϕ1(vn) tends to 0, one has that
vn goes to 0 in V , one gets a contradiction and the norms are equivalent.

The solution u belongs to W 1,∞,2(0,T,V,H) . Then, it belongs to Cw([0,T ],V ) , the
V -valued scalar continuous functions. Since (3.3) yields the continuity of the norm, u
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is a V -valued continuous function. Since (3.5) and (3.4) yield the existence of a positive
constant C = C(u0, û0,g, ĝ) such that, for any t ,∫ t

0
( f (∂t u)− f (∂t û),∂tw)ds+

1
2
‖w(t)‖2

A � J(u0− û0)+C‖g− ĝ‖L2(0,T,H),

one gets the continuity of the infinity-norm of the solution with respect to u0 and g .
If f is assumed to be strongly monotone, then the time derivative of the solution

is continuous with respect to u0 and g in L2(0,T,H) . This finishes the proof of the
corollary.

4. The stochastic case

In this section, we are interested in the stochastic version of Barenblatt’s equa-
tions. So, we need first to precise the sense we wish to give to the stochastic version of
an equation with such a nonlinear term. For this, remark that the homogeneous deter-
ministic equation writes : ∂tu∈ f−1(−Au) . Then, the stochastic version of the problem
would be: du∈ f−1(−Au)dt +hdw where W = {wt ,Ft ;0 � t � T} denotes a standard
adapted one-dimensional continuous Brownian motion, defined on a complete proba-
bility space (Ω,F ,P) , with the property that w0 = 0; and h ∈ N 2

w (0,T,V ) , the set of
predictable functions of L2((0,T )×Ω,V) ([17] p.28 for example).

Following [2], [3] section 44 p. 183, G. Vallet [20] or G. Vallet and P. Wittbold
[21] for example, the equation can be understood in the following way:

∂t

[
u−

∫ t

0
hdw(s)

]
∈ f−1(−Au), i.e. f

(
∂t

[
u−

∫ t

0
hdw(s)

])
+Au = 0,

where
∫ t
0 hdw(s) denotes the Itô integration of h . Then U = u−∫ t

0 hdw(s) is a solution
to the random equation

f (∂tU)+A(t)U = 0, where A(t)U = A
[
U +

∫ t

0
hdw(s)

]
.

Since we are interested in strong solutions, standard argumentations do not suit and
additional assumptions are needed.

In the sequel, A is assumed to be linear and J(v) > J(0) = 0 for any v = 0. Thus,
as explained in the end of the previous section, J(u) = 1

2〈Au,u〉 and (., .)A : (u,v) 
→
〈Au,v〉 is a scalar product. One denotes by ‖ · ‖A the associated norm; it is equivalent
to the one of V .

Thanks to the continuity and the linearity of A , the problem is equivalent to

(P̃1) : f (∂tU)+AU = −A
∫ t

0
hdw = −

∫ t

0
Ahdw, U(t = 0) = u0,

where Ah ∈ N2
w(0,T,V ′) .

LEMMA 4.1. There exists at most one solution of Problem (P1) .
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Indeed, if u and û are two solutions, associated with U = u− ∫ t
0 hdw and Û = û−∫ t

0 hdw and if one denotes by w = u− û = U −Û , one gets:

∂tw+Aw = G := ∂tw+ f (∂tÛ)− f (∂tU), w(t = 0) = 0.

Then, thanks to Section 5, the following energy equality holds for any t :∫ t

0
|∂tw|2ds+ J(w(t)) = J(0)+

∫ t

0
(G,∂tw)ds,

that is, ∫ t

0

(
f (∂tU)− f (∂tÛ),∂t [U −Û ]

)
ds+ J(w(t)) = 0,

and the solution is unique.
We wish, in the sequel, to use the previous section. So, in a first step, we assume

that h∈ N2
w(0,T,V ) and Ah∈N2

w(0,T,H) . Thus, a.s. in Ω ,
∫ t
0 Ahdw∈ L2(0,T,H) and

there exists a unique solution to (P̃1) . Moreover, the result of continuity of Corollary
2.3 ensures that U ∈ N2

w(0,T,V) , thus u ∈ N2
w(0,T,V ) as well, and that ∂tU ∈ L2(Ω×

(0,T ),H) . In particular, for any t ,∫ t

0
( f (∂tU),∂tU)ds+

1
2
‖U(t)‖2

A =
1
2
‖u0‖2

A−
∫ t

0

(∫ s

0
Ahdw,∂tU

)
ds,

and

α
∫ t

0
|∂tU |2ds+‖U(t)‖2

A � ‖u0‖2
A +

1
α

∫ T

0

∣∣∣∫ s

0
Ahdw

∣∣∣2ds+2λ .

The same corollary asserts that, a.s., U ∈C([0,T ],V ) . Thus, for any fixed time t
and any sequence (tn) ∈ [0,T ] such that tn converges to t , one gets that ‖U(tn)−U(t)‖
goes to 0 a.s.

Thanks to the above inequality, Lebesgue’s theorem yields E‖U(tn)−U(t)‖2 goes
to 0 and leads to the continuity of U from [0,T ] to L2(Ω,V ) . Then, thanks to the
properties of the Ito integral, it is the same for u .

Consider two solutions u and û , associated with

U = u−
∫ t

0
hdw and Û = û−

∫ t

0
ĥdw

and with the initial conditions u0 and û0 . For convenience, set

W = u− û−
∫ t

0
[h− ĥ]dw and w = u− û

and note that for any t > Δt > 0,(
f (∂tU)− f (∂tÛ),W (t)−W(t−Δt)

)
+(w(t),w(t)−w(t−Δt))A

=
(
w(t),

∫ t

t−Δt
(h− ĥ)dw

)
A
.
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Then, an integration from Δt to t gives :∫ t

Δt

(
f (∂tU)− f (∂tÛ),

W (s)−W(s−Δt)
Δt

)
ds

+
1

2Δt

∫ t

Δt
‖w(s)−w(s−Δt)‖2

Ads

+
1

2Δt

∫ t

t−Δt
‖w(s)‖2

Ads

� 1
2Δt

∫ Δt

0
‖w(s)‖2

Ads

+
1
Δt

∫ t

Δt

(
w(s)−w(s−Δt),

∫ s

s−Δt
(h− ĥ)dw

)
A
ds

+
1
Δt

∫ t

Δt

(
w(s−Δt),

∫ s

s−Δt
(h− ĥ)dw

)
A
ds

and, by taking the expectation, the following inequalities hold

E
∫ t

Δt

(
f (∂tU)− f (∂tÛ),

W (s)−W (s−Δt)
Δt

)
ds

+
1

2Δt
E

∫ t

t−Δt
‖w(s)‖2

Ads

� 1
2Δt

E
∫ Δt

0
‖w(s)‖2

Ads+
1

2Δt

∫ t

Δt
E‖

∫ s

s−Δt
(h− ĥ)dw‖2

Ads

� 1
2Δt

E
∫ Δt

0
‖w(s)‖2

Ads+
1

2Δt

∫ t

Δt

∫ s

s−Δt
E‖(h− ĥ)(σ)‖2

Adσds.

At the limit, one gets that for any t

E
∫ t

0

(
f (∂tU)− f (∂tÛ),∂t [U(t)−Û(t)]

)
ds+

1
2
E‖(u− û)(t)‖2

A

� 1
2
E‖u0− û0‖2

A +
1
2

∫ t

0
E‖h− ĥ‖2

Ads. (4.1)

Consider h∈ N2
w(0,T,V ) and (hn)⊂N2

w(0,T,V) such that Ahn ∈N2
w(0,T,H) and (hn)

converges to h in N2
w(0,T,V) . Thanks to the previous inequality, the sequence (un) of

the corresponding solutions is a Cauchy sequence in C([0,T ],L2(Ω,V )) . As the same
kind of calculations leads to the boundedness of (∂t(un −

∫ t
0 hndw)) in L2((0,T )×

Ω,H) , the uniqueness of the possible limit-point for the weak convergence yields the
weak convergence of the sequence to ∂t(u−

∫ t
0 hdw) in L2((0,T )×Ω,H) . Moreover,

up to a subsequence, f (∂t (unk −
∫ t
0 hnkdw)) converges weakly to a given element χ in

L2((0,T )×Ω,H) . Using again (4.1), one gets that

limsup
n,m

E
∫ T

0

(
f (∂tU

n)− f (∂tÛ
m),∂t [Un(t)−Ûm(t)]

)
dt � 0,

and thanks to the assumptions on f , one concludes that χ = f (∂t (u−
∫ t
0 hdw)) , that a

solution exists and that (4.1) holds for any h and ĥ ∈ N2
w(0,T,V ) .
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4.1. The multiplicative case

Assume in this section that H : V → V is a Lipschitz-continuous mapping. Then
H(h) ∈ N 2

w (0,T,V) if h ∈ N 2
w (0,T,V ) ([17] lemma 2.41 p.35), and the result of this

section is the following.
Denote by

Φ : N 2
w (0,T,V) → N 2

w (0,T,V)

the map defined for any h ∈ N 2
w (0,T,V ) by Φ(h) = u where u is the solution of the

Barenblatt’s problem

f
(
∂t [u−

∫ t

0
H(h)dw]

)
+Au = 0

for the initial condition u(0, .) = u0 . Then, u is a solution to Problem (PH) , if and only
if, u is a fixed point to Φ . Then, for any positive α , (4.1) yields∫ T

0
e−αtE‖[Φ(h)−Φ(ĥ)](t)‖2

Adt � 2
∫ T

0
e−αt

∫ t

0
E‖[H(h)−H(ĥ)](s)‖2dsdt

� C
α

∫ T

0
e−αsE‖[h− ĥ](s)‖2

Ads.

Since the exponential weight in time provides an equivalent norm in N 2
w (0,T,V) , if

α >C , Φ is a contractive mapping, it has un unique fixed-point and the result holds.

5. Annexe

Let us consider the following nonlinear parabolic problem:

(P) :

{
∂t u+Au = h ∈ L2(0,T,H),
u(t = 0) = u0 ∈V.

It is a classical result that there exists a unique weak solution u and that this solution is
the mild solution.

With the hypothesis on the data, u ∈W 1,∞,2(0,T,V,H) and for any t ,∫ t

0
|∂t u|2ds+ J(u(t)) � J(u0)+

∫ t

0
(h,∂t u)ds.

Moreover, following [3] p.158 for example, one gets that for t in (0,T ) a.e.,
u(t)∈D(A) and J(u) ∈W 1,1(0,T ) . By testing the equation with u(.+Δt)−u , one has
that (

∂t u(s),u(s+Δt)−u(s)
)
+ 〈Au(s),u(s+Δt)−u(s)〉

=
(
h(s),u(s+Δt)−u(s)

)
and,
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∂t u(s),u(s+Δt)−u(s)

)
+ J(u(s+Δt))

� J(u(s))+
(
h(s),u(s+Δt)−u(s)

)
.

By dividing by Δt > 0 and integrating in time from 0 to t − Δt , the continuity of
s 
→ J(u(s)) yields ∫ t

0
|∂t u|2ds+ J(u(t)) � J(u0)+

∫ t

0
(h,∂t u)ds.

In conclusion, for any t ,∫ t

0
|∂t u|2ds+ J(u(t)) = J(u0)+

∫ t

0
(h,∂t u)ds.
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