
D ifferential
Equations

& Applications
Volume 3, Number 4 (2011), 503–525

WAVE EQUATION WITH p(x,t)–LAPLACIAN AND

DAMPING TERM: EXISTENCE AND BLOW–UP

STANISLAV ANTONTSEV

Dedicated to Professor Jesús Ildefonso Dı́az
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Abstract. In this work, we consider the Dirichlet problem for equation

utt = div
(
a(x,t)|∇u|p(x,t)−2∇u

)
+αΔut +b(x,t)|u|σ(x,t)−2u+ f (x,t).

Under suitable conditions on the functions a , b , f , p , σ the local, global and blow up solutions
have been discussed.

1. Introduction

Let Ω ⊂ R
n be a bounded domain with Lipschitz-continuous boundary Γ and

QT = Ω× (0,T ] . We consider the following initial boundary value problem

utt = Lu+ f (x,t), (x,t) ∈ QT = Ω× (0,T), (1)

Lu = div
(
a(x,t) |∇u|p(x,t)−2∇u+α∇ut

)
+b(x, t) |u|σ(x,t)−2 u,

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈Ω, (2)

u|ΓT
= 0, ΓT = ∂Ω× (0,T). (3)

Here α > 0 is a constant. The coefficients a(x,t), b(x,t), the exponents p(x,t) , σ(x,t)
and the source term f (x,t) are given measurable functions of their arguments. We
assume that

u0 ∈ L2(Ω)∩W 1,p(·,0), u1 ∈ L2(Ω), f ∈ L2(QT ). (4)

We discuss existence and blow up of solutions to problem (1)-(3), concentrating
our attention on difficulties caused by variable exponents p(x,t), σ(x, t) . It should be

Mathematics subject classification (2010): 35B40, 35L70, 35L45.
Keywords and phrases: nonlinear wave equations, energy estimates, global existence, blow up, non-

standard growth conditions.
This work was partially supported by the Research Project PTDC/MAT/110613/2009, FCT, Portugal and by the

Research Project MTM2011-26119, MICINN, Spain.

c© � � , Zagreb
Paper DEA-03-32

503



504 STANISLAV ANTONTSEV

mentioned that questions of existence, uniqueness and regularity of weak solutions for
parabolic and elliptic equations in the forms

ut =
(
ai(x,t,u)|uxi |pi(x,t)−2uxi +bi(x,t,u)

)
xi

+d(x,t,u), (5)(
ai(x,u)|uxi |pi(x)−2uxi +bi(x,u)

)
xi

+d(x,u) = 0, (6)

have been studied by many authors under various conditions on the data and by dif-
ferent methods- (see, e.g., [4, 8, 9, 10, 11, 12, 13, 32, 37], and the further references
therein). These equations are usually referred to as parabolic and elliptic equations with
nonstandard growth conditions. Also the localization (vanishing) and blow up proper-
ties of energy weak solutions for elliptic and parabolic equations of the type (5) and (6)
have been investigated sufficiently completely ( see, e.g., [4, 6, 7, 12]).

Such elliptic, parabolic and hyperbolic equations occur in the mathematical mod-
elling of various physical phenomena, e.g., the flows of electro-rheological fluids or
fluids with temperature-dependent viscosity, nonlinear viscoelasticity, processes of fil-
tration through a porous media and the image processing (see, e.g., [5, 6, 8, 35, 36] )
and the further references therein).

For hyperbolic equations in the form (1) with constant exponents p,σ local and
global existence and blow up have been investigated in many papers - see, e.g.,[18, 19,
20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 37, 40, 41, 42, 43, 44, 45, 46, 47] and the
further references therein.

The hyperbolic equations with nonstandard growth conditions, to the best of our
knowledge, were considered only in papers [14, 15, 22, 34].

In [22], the existence result was proved for the problem (1)-(3) with a ≡ 1, p ≡
p(x), b ≡ 0. In the paper [34], the existence and blow of solutions were studied for
the problem (1)-(3) with a ≡ 1, p ≡ 2, b ≡ 0 and the source term either is a power,
f (u) = b(x)up(x), or is nonlocal f (u) = b(x)

∫
Ω uq(y)(y,t)dy. Existence and blow-up

results for complete equation (1) were announced in [1, 2, 3].

The present paper is organized as follows. In Section 2 we introduce the function
spaces of Orlicz-Sobolev type and a brief description of their main properties. Section
3 is devoted to proof the existence of local and global energy weak solutions to problem
(1)-(3). The weak solution is obtained as the limit of the sequence of Galerkin’s ap-
proximations. First we derive estimates for an energy functional. As in last section we
will consider the blow-up for energy weak solutions with nonpositive energy functional.

Next under suitable conditions we obtain estimates for Galerkin’s approximations
in any finite time or only for small time. Further, we pass to the limit, using a standard
monotonicity argument. Finally we prove existence theorems for small and any finite
time. Section 4 is devoted to the investigation of the blow up of energy weak solutions.
We consider separately two cases. First, we take p(x,t) = p(x), σ(x,t) = σ(x), α > 0.
Second, we take p = p(x,t), σ = σ(x,t) and α > 0. Also we consider the case α =
0, p = p(x), σ = σ(x) and establish conditional results, assuming that the problem (1)-
(3) has at least one local energy solution for suitable initial data.
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2. The function spaces

2.1. Spaces Lp(·)(Ω) and W 1,p(·)
0 (Ω)

The definitions of the function spaces used throughout the paper and a brief de-
scription of their properties follow [17].

Let Ω ⊂ R
n be a bounded domain, ∂Ω be Lipschitz-continuous, and let p(x) ∈

[p−, p+] ⊂ (1,∞) be log-continuous in Ω : ∀x,y ∈Ω such that |x− y|< 1
2 ,

|p(x)− p(y)|� ω(|x− y|), (7)

where

limτ→0+ω(τ) ln
1
τ

= C < ∞.

By Lp(·)(Ω) we denote the space of measurable functions f (x) on Ω such that

Ap(·)( f ) =
∫
Ω

| f (x)|p(x) dx < ∞.

The space Lp(·)(Ω) equipped with the norm

‖ f‖p(·),Ω ≡ ‖ f‖Lp(·)(Ω) = inf
{
λ > 0 : Ap(·) ( f/λ ) � 1

}
becomes a Banach space. The Banach space W 1, p(·)

0 (Ω) with p(x) ∈ [p−, p+]⊂ (1,∞)
is defined by ⎧⎨

⎩W 1, p(·)
0 (Ω) =

{
u ∈W 1,1

0 (Ω) : (|u|, |∇u|) ∈ Lp(·)(Ω)
}
,

‖u‖
W1,p(·)

0 (Ω)
= ‖∇u‖p(·),Ω+‖u‖p(·),Ω.

(8)

An equivalent norm of W 1, p(·)
0 is given by

‖u‖
W

1,p(·)
0 (Ω)

= ‖∇u‖p(·),Ω.

• If condition (7) is fulfilled, then C∞
0 (Ω) is dense in W 1, p(·)

0 (Ω) . The space

W 1, p(·)
0 (Ω) can be defined then as the closure of C∞

0 (Ω) with respect to the norm (8) –
see [17, 38, 48].

• The space W 1,p(·)(Ω) is separable and reflexive provided that p(x) ∈C0(Ω) .
• Let

1 < q(x) � sup
Ω

q(x) < inf
Ω

p∗(x),

with p∗(x) =

⎧⎨
⎩

p(x)n
n− p(x)

if p(x) < n,

∞ if p(x) > n.
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Then
‖u‖Lq(·)(Ω) � C‖∇u‖Lp(·)(Ω)

and the embedding W 1,p(·)
0 (Ω) ↪→ Lq(·)(Ω) is continuous and compact.

• It follows directly from the definition that

min
(
‖ f‖p−

p(·), ‖ f‖p+

p(·)
)

� Ap(·)( f ) � max
(
‖ f‖p−

p(·),‖ f‖p+

p(·)
)
.

• Hölder’s inequality. For all f ∈ Lp(·)(Ω) , g ∈ Lp′(·)(Ω) with

p(x) ∈ (1,∞), p′ =
p

p−1
,

the following inequality holds:

∫
Ω

| f g|dx �
(

1
p−

+
1

(p)′−

)
‖ f‖p(·) ‖g‖p′(·) � 2‖ f‖p(·) ‖g‖p′(·) .

2.2. Spaces Lp(·, ·)(QT ) and W(QT )

Let us assume that the exponent p(x,t) ∈ [p−, p+] ⊂ (1,∞) is continuous in QT
with logarithmic module of continuity:

|p(x,t)− p(y,τ)| � ω(|x− y|+ |t− τ|), (9)

where

lim
s→+0

ω(s) ln
1
s

� C < ∞.

Under condition (9) the space C∞(0,T,C∞
0 (Ω)) is dense in Lp(·)(QT ) and the last one

can be defined then as the closure of C∞(0,T,C∞
0 (Ω)) (see, [17, 38, 48]).

We introduce the Banach space

Vt(Ω) =
{

u : u ∈ L2(Ω)∩W 1,p−
0 (Ω)∩W 1,2

0 (Ω), |∇u|p(·,t) ∈ L1(Ω)
}

,

‖u‖Vt(Ω) = ‖u‖2,Ω+‖∇u‖p(·,t),Ω,

and denote by V′
t(Ω) it’s dual. For every t ∈ [0,T ] the inclusion

Vt(Ω) ⊂ X = W 1,p−
0 (Ω)∩L2(Ω)∩W1,2

0 (Ω)

holds, which is why Vt(Ω) is reflexive and separable as a closed subspace of X .
By W(QT ) we denote the Banach space

W(QT ) =
{

u : [0,T ] �→ Vt(Ω)| u,ut , |∇u|p(·)/2 ∈ L2(QT ), u = 0 on ΓT

}
,

‖u‖W(QT ) = ‖∇u‖p(·),QT
+‖u‖2,QT +‖ut‖2,QT

+‖∇ut‖2,QT
.
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W′(QT ) is the dual of W(QT ) . Set

V+(Ω) =
{

u| u ∈ L2(Ω)∩W 1,1
0 (Ω), |∇u| ∈ Lp+

(Ω)
}

.

By analogy with [11] we prove the following propositions.
(a) Let us prove first that every function u∈C∞(0,T ;C∞

0 (Ω)) can be approximated
in the norm of W(QT ) by the functions ∑m

k=1 dk(t)ψk(x) with dk(t) ∈ C2[0,T ] . We
denote the set of such functions by Pm .

Let us take for {ψk} the orthonormal basis of the Hilbert space Hs
0(Ω) with s � 1

so big that Hs
0(Ω) is dense in V+(Ω) . According to ([27], Ch.6), we can take a special

basis ψk(x) such that

(v, ψk)Hs
0(Ω) = λk(v,ψk), ∀v ∈ Hs

0(Ω), λk > 0.

Let us represent

u =
∞

∑
i=1

ui(t)ψi(x), ui(t) = (u(x,t), ψi(x))Hs
0(Ω). (10)

For every t ∈ [0,T ] ,

‖ut‖2
Hs

0(Ω)(t)+‖∇ut‖2
Hs

0(Ω)(t)+‖u‖2
Hs

0(Ω)(t)

=
∞

∑
i=1

((u′i(t))
2(1+λi)+u2

i (t)) < ∞. (11)

Let us consider the sequence {u(m)} , u(m) = ∑m
i=1 ui(t)ψi(x) . For every t ∈ [0,T ] ,

‖ut −u(m)
t ‖2

Hs
0(Ω)(t)+‖∇ut −∇(m)ut‖2

Hs
0(Ω)(t)+‖u−u(m)‖2

Hs
0(Ω)(t)

=
∞

∑
i=m+1

((u′i(t))
2(1+λi)+u2

i (t)) → 0

as m → ∞ , because of (11). Since for every t ∈ [0,T ] the sequence

φm(t) ≡ ‖u−u(m)‖2
Hs

0(Ω)(t)+‖ut −u(m)
t ‖2

Hs
0(Ω)(t)+‖∇ut −∇(m)ut‖2

Hs
0(Ω)(t)

is monotone decreasing, nonnegative, and tends to zero as m → ∞ , by the Beppo Levi
theorem ∫ T

0
φm(τ)dτ → 0 as m → ∞ .

Thus,

‖u−u(m)‖W(Q) � C
(
‖(|u−u(m)|+ |ut −u(m)

t |

+ |∇(ut −u(m)
t )|)‖2

L2(0,T ;Hs
0(Ω))

)
→ 0
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as m → ∞ .

(b) Let now u ∈ W(Q) and {uδ} be the sequence of mollifiers such that uδ ∈
C∞(0,T ;C∞

0 (Ω)) . Given ε , we take δ such that ‖u− uδ‖W(Q) < ε and approximate
uδ using (a): ∥∥∥u−u(m)

δ

∥∥∥
W(Q)

� ‖u−uδ‖W(Q) +‖uδ −u(m)
δ ‖W(Q) < 2ε,

with

u(m)
δ =

m

∑
i=1

di(t)ψi(x), di(t) = (uδ ,ψi)Hs
0(Ω) ∈C∞[0,T ].

PROPOSITION 2.1. For every u ∈ W(QT ) there is a sequence {dk(t)} , dk(t) ∈
C2[0,T ] , such that

‖u−
m

∑
k=1

dk(t)ψk(x)‖W(QT ) → 0 as m → ∞ .

We introduce also a subset of functions u ∈W (QT ) such that

W∞ =
{

u : u ∈W (QT ),
(
u,ut , |∇u|p/2 , |u|σ/2 ) ∈ L∞(0,T ;L2(Ω))

}
.

3. Local and global existence

3.1. Definition. Main results

DEFINITION 3.1. A function u : ΩT → R is called a energy weak solution to (1)-
(3) if:

u ∈W (QT )∩W∞(QT ); (12)

u(·, t) → u0 in W 1,2
0 (Ω)∩W 1,p(·,0)(Ω), ut(·, t) → u1 in L2(Ω); (13)

∫
QT

(
−utϕt +

(
a |∇u|p(·)−2∇u+α∇ut

)
·∇ϕ−b |u|σ(·)−2 uϕ

)
dxdt

=
∫
Ω

u1ϕ(·,0)dx+
∫
QT

fϕdx, (14)

for all ϕ ∈C∞ (0,T ;C∞
0 (Ω)) , ϕ(x,T ) = 0, x ∈Ω.

Let us assume that the coefficients of the problem (1)-(3), in addition to (9), satisfy

0 < a− � a(x,t) � a+ < ∞, |at | � Ca, 0 < α, (15)
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1 < p− � p(x,t) � p+ < ∞, |pt | = −pt � Cp, (16)

1 < σ− � σ(x,t) � σ+ < ∞, 0 � σt � Cσ , (17)

and that one of the following conditions be true: either

0 < b− � −b(x,t) � b+ < ∞, 0 � bt , (18)

or
0 < b− � b(x,t) � b+ < ∞, 0 � bt and σ+ � 2 or σ+ < p−. (19)

Also it is assumed that

u0 ∈ L2(Ω)∩W1,2
0 (Ω)∩W 1,p(·,0)(Ω), u1 ∈ L2(Ω), f ∈ L2(QT ). (20)

In this section we prove global and local in time existence theorems.

THEOREM 3.1. (Global existence in time) Under conditions (9), (15)-(20), the
problem (1)-(3) has at least one energy weak solution in the sense of Definition 3.1
which is global in time (for any t ∈ [0,T ], T < ∞).

Let us assume that

0 < a− � a(x,t) � a+ < ∞, |at | � Ca, (21)

0 < b− � b(x,t) = b(x,t) � b+ < ∞, |bt | � Cb, (22)

pt � 0, |pt | � Cp, 0 � σt � Cσ , (23)

and

2 < σ− � σ+ <
n+2

n
p−,

2n
n+2

< p−. (24)

THEOREM 3.2. (Local existence in a small time) Under conditions (9), (21)-(24),
the problem (1)-(3) has at least one weak solution in the sense of Definition 3.1 for a
small time t ∈ [0,T0) , (T0 > 0 is small).

3.2. Step 1. Galerkin’s approximations

The Galerkin’s approximations of solutions to problem (1)-(3) are sought in the
form

u(m) ≡
m

∑
k=1

uk(t)ψk(x), uk(t) = (u(x,t), ψk(x))Hs
0(Ω). (25)

We assume also

u(m)
1 → u1 strongly in L2(Ω), u(m)

0 → u0 strongly in W 1,2
0 (Ω). (26)

The coefficients uk(t) are defined from the relations∫
Ω
(u(m)

tt −Lu(m)− f )ψk = 0, k = 1, ...,m. (27)
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Last equalities and the initial conditions lead us to the Cauchy problem for the system
of m ordinary differential equations of the second order for the coefficients uk(t)

u′′k = Fk(t,u1(t), ...,um(t)), (28)

uk(0) =
∫
Ω

u0ψk, u′k(0) =
∫
Ω

u1ψk, k = 1, ...,m, (29)

where

Fk =
∫
Ω

[
−

((
a
∣∣∇u(m)(·,t)∣∣p(·,t)−2)∇u(m) +α∇u(m)

t

)
∇ψk

]
dx

+
∫
Ω

[
b
∣∣u(m)∣∣σ(·,t)−2

u(m)ψk + fψk

]
dx.

By Peano’s Theorem, for every finite m the problem (28), (29) has a solution
uk(t) , k = 1, ...,m on an interval (0,Tm) for each m. The estimates below allow one to
take Tm = T for all m.

3.3. Step 2. A priori estimates

Here we derive estimates for an energy functional and for approximated solutions
which do not depend on m.

3.3.1. Energy relation

Multiplying each of equations (28) by c′k(t) and summing over k = 1, ...,m, we
arrive at the relation

d
dt

∫
Ω

[∣∣u(m)
t

∣∣2
2

+
a
∣∣∇u(m)

∣∣p

p
− b|u(m)|σ

σ

]
dx+α

∫
Ω

∣∣∇u(m)
t

∣∣2dx

=
∫
Ω

[
at
|∇u(m)|p

p
+

a|∇u(m)|p
p2

(
1− p ln

∣∣∇u(m)∣∣)∣∣pt
∣∣]dx

−
∫
Ω

(
bt |u(m) |σ

σ
+

b|u(m) |σ
σ2

(
1−σ ln |u(m) |)σt

)
dx+

∫
Ω

f u(m)
t dx. (30)

Omitting the index m for simplicity and introducing the energy functional

E(t) =
∫
Ω

[ |ut(·,t)|2
2

+a(·,t) |∇u|p(·,t)

p(·,t) −b(·, t) |u|
σ(·,t)

σ(·,t)
]
dx, (31)

we can rewrite (30) in the form

E ′(t)+α
∫
Ω
|∇ut(·,t)|2 dx = Λ, (32)

where
Λ(t) = Λ1 +Λ2 +Λ3, (33)
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Λ1 =
∫
Ω

[
at
|∇u |p

p
+

a|∇u |p
p2 (1− pln |∇u |) |pt |

]
dx, (34)

Λ2 = −
∫
Ω

(
bt |u |σ
σ

+
b|u |σ
σ2 (1−σ ln |u |)σt

)
dx, (35)

Λ3 =
∫
Ω

f utdx . (36)

3.3.2. Estimates of the energy functional

In this Section we analyze different conservation laws for energy functional and
solution estimates which do not depend on m .

In particular, we derive some estimates for energy functional which will be impor-
tant to prove the blow-up.

Let us assume that

1 < p− � p(x,t) � p+ < ∞, 1 < σ− � σ(x,t) � σ+ < ∞, (37)

0 < a− � a(x,t) � a+ <∞, |at | � Ca, (38)

0 < b− � b(x,t) = b(x,t) < b+ <∞, |bt | � Cb, (39)

at � 0, 0 � bt , pt � 0, 0 � σt , |pt | � Cp, |σt | � Cσ . (40)

LEMMA 3.1. Let (37)-(39) be fulfilled and in addition

pt = σt = f = 0. (41)

Then

E(t)+α
∫ t

0

∫
Ω
|∇ut(x,s)|2 dxds � E(0), ∀t � 0. (42)

The inequality (42) transforms to the equality if at = bt = 0 .

Proof. To prove this Lemma it is enough to apply the formulas (32)-(35). �

LEMMA 3.2. Let (37)-(40) be fulfilled and f = 0. Then

E(t)+
∫ t

0

∫
Ω
α |∇ut(x,s)|2 dxds � E(0)+Ct, (43)

with the constant C = e(a+Cp +b+Cσ )|Ω| .
Proof. We evaluate Λ1,Λ2 in the following way:

Λ1 =
∫
Ω

[
at
|∇u |p

p
+

a|∇u |p
p2

(
1− p ln |∇u |)|pt |

]
dx

�
∫
Ω∩(pln|∇u|�1)

a|∇u |p
p2

(
1− p ln|∇u |)|pt |dx
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� ea+Cp|Ω| = C1, (44)

and

Λ2 = −
∫
Ω

[bt |u |σ
σ

+
b|u |σ
σ2

(
1−σ ln |u |)σt

]
dx

�
∫
Ω∩(σ ln|u|�1)

b|u |σ
σ2

(
1−σ ln |u |)σtdx

� eb+Cσ |Ω| = C2. (45)

Integrating the energy relation (32) with respect to t, we obtain that

E(t)+
∫ t

0

∫
Ω
α |∇ut |2 dxds � E(0)+ tC,C = C1 +C2. (46)

�

3.3.3. A priori estimates of solutions

LEMMA 3.3. (Global estimates of solutions (b(x,t) � 0)). Let the conditions (9),
(15)-(20) be fulfilled. Then for any finite T < ∞ ,

Ψ(T ) = sup 0�t�T

∫
Ω

[
|ut |2 + |∇u|p(·) + |u|σ(·)

]
dx

+α
∫ T

0

∫
Ω
|∇ut |2dxds � C (47)

with a constant C which depends on:

‖ f‖2
2,QT

, ‖u1‖L2(Ω) , ‖u0‖Lσ(·,0)(Ω) , ‖u0‖W1,2(Ω) , |Ω| , T

and does not depend on m.

Proof. Recall that in this case all terms of the energy functional E are nonnegative.
Then we obtain

Λ1 =
∫
Ω

[
at
|∇u |p

p
+

a|∇u |p
p2 (1− p ln |∇u |)|pt |

]
dx

� Ca

a−
E(t)+

∫
Ω∩(p ln|∇u|�1)

a|∇u |p
p2

(
1− p ln |∇u |)|pt |dx

� Ca

a−
E(t)+

a+

p2−
e |Ω| � C(E(t)+1),

and

Λ2 = −
∫
Ω

(bt |u |σ
σ

+
b|u |σ
σ2

(
1−σ ln |u |)σt

)
dx
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� Cb

σ−
E(t)+

∫
Ω∩(σ ln|u|�1)

b|u |σ
σ2

(
1−σ ln |u |)σt dx

� Cb

σ−
E(t)+

b+

σ2−
e |Ω| � C(E(t)+1),

and
|Λ3| � E(t)+‖ f‖2

2,Ω .

Finally,
Λ � C(E(t)+‖ f‖2

2,Ω +1).

Hence we arrive at the inequality

E ′(t)+α
∫
Ω
|∇ut(·,t)|2 dx � C(E(t)+‖ f‖2

2,Ω +1).

Applying Gronwall’s lemma, we conclude the proof of the Lemma. �

LEMMA 3.4. (Global estimates of solutions (0 � b(x,t), σ+ � 2 or 2 < σ+ <
p− .)) The estimate (47) remains valid if the condition b(x,t) � 0 is replaced by the
following

0 � b(x,t), σ+ � 2 or 2 < σ+ < p−.

Proof. In this case, we rewrite the energy relation (32) in the form

Ẽ ′(t)+α
∫
Ω
|∇ut(·,t)|2 dx =

(∫
Ω

b
|u|σ
σ

dx

)′
+Λ,

where

Ẽ(t) =
∫
Ω

[ |ut |2
2

+a(·,t) |∇u|p(·,t)

p(·,t)
]
dx.

Integrating last one with respect to t, we obtain

Ẽ(t)+α
∫ t

0

∫
Ω
|∇ut(·,s)|2 dxds =

(∫
Ω

b
|u|σ
σ

)
dx

∣∣∣t
0
+

∫ t

0
Λds+ Ẽ(0), (48)

with ∣∣∣∣(
∫
Ω

b
|u|σ
σ

dx
)∣∣∣t

0

∣∣∣∣ � C
(∫

Ω
|u|σ dx+1

)
, |Λ| � CẼ(t)+C

∫
Ω
|u|σdx.

Now it is enough to evaluate the term
∫
Ω |u|σ dx. If σ+ � 2 we use the chain of

inequalities

∣∣∣∫
Ω

b(·, t) |u|
σ

σ
dx

∣∣∣ � C
∫
Ω
|u|σ dx

� C
(
1+

∫
Ω
|u|2 dx

)
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� 2C

(
1+ t

∫ t

0

∫
Ω
|ut |2 dxds+

∫
Ω
|u0|2 dx

)

� C̃

(
1+ t

∫ t

0
Ẽ(s)ds

)
.

If 2 < σ+ < p− we use the embedding inequality

∫
Ω
|u |σ+dx � C

(∫
Ω
|∇u |p−dx

) σ+
p−

� C

(∫
Ω
|∇u |pdx

) σ+
p−

+C

� εẼ(t)+C(ε), ε ∈ (0,1), σ+ < p− < np−/(n− p−).

For suitable ε > 0 we come to the inequality

Ẽ(t)+α
∫ t

0

∫
Ω
|∇ut(·,s)|2 dxds � C

(∫ t

0
Ẽ(s)ds+1

)

and Gronwall’s lemma and (48) lead us to the desired estimate.

LEMMA 3.5. (Local estimates 2 < σ− � σ+ < n+2
n p−, 2n

n+2 < p− ) Let the condi-
tions (21)-(24) be fulfilled. Then there exists a small T0 > 0 such that

Ψ(t) = sup0�s�t

∫
Ω

[
|ut(x,s)|2 + |∇u|p(·) + |u|σ(·)

]
dx

+α
∫ t

0

∫
Ω
|∇ut |2 dxds � C, 0 � t < T0 (49)

with a constant C which depends on:

T0, ‖ f‖2
2,QT

, ‖u1‖L2(Ω) , ‖u0‖Lσ(·,0)(Ω) , ‖u0‖W 1,p(·,0)(Ω)

but does’nt depend on m.

Proof. We will use the energy relation (48) and inequalities∣∣∣∣
∫ t

0
Λ

∣∣∣∣ � C
∫ t

0

(
Ẽ(s)+

∫
Ω
|u|σ dx

)
ds, (50)

∫
Ω
|u|σ(·,t) dx �

∫
Ω
|u|σ+ dx+ |Ω|,

∫
Ω
|∇u|p− dx �

∫
Ω
|∇u|p dx+ |Ω|, (51)

∫
Ω
|u|σ+ dx � C

(∫
Ω
|∇u|p− dx

) σ+
p− θ (∫

Ω
|u|2 dx

) σ+
2 (1−θ)

� ε
∫
Ω
|∇u|p(·,t) dx+Cε

(∫
Ω
|u|2 dx

)γ
+C, ε ∈ (0,1), (52)
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where
σ+

p−
θ =

(σ+−2)n
np−−2(n− p−)

< 1, if σ+ <
n+2

n
p−,

γ =
σ+p−

2(p−−θσ+)
> 1.

On the other hand we have that∫
Ω
|u|2 dx � C

(∫ t

0

∫
Ω
|ut |2 dxds

)
+

∫
Ω
|u0|2 dx � C

(∫ t

0
Ẽ(s)ds+1

)
.

Combining (48), (50)-(52) with a suitable ε , we come to the inequality

Ẽ(t) � C

((∫ t

0
Ẽ(s)ds

)γ
+1

)
, γ > 1,

which gives the estimate

Ẽ(t)+1 �
(
Ẽ(0)+1

)(
1− tC(Ẽ(0)+1)γ−1(γ−1)

)− 1
γ−1

< ∞,

t < T0 =
(
C(Ẽ(0)+1)γ−1(γ−1)

)−1
.

The Lemma is proved. �

REMARK 3.1. The estimates of the Lemmas 3.3 and 3.4 imply that

Λ(T ) = sup
t∈[0,T ]

∫
Ω

(
|u|2 + |u| 2n

n−2 +|u|q
)

dx � C, (53)

where q � np−/(n− p−) if p− < n and q < ∞ if p− � n.

Also we have that∫
Ω
|∇u(x,t)|2 dx � 2

(∫
Ω
|∇u0(x)|2 dx+ t

∫ T

0

∫
Ω
|∇ut |2 dxds

)
,

∫ T

0

(∫
Ω
|ut |q dx

) 2
q

dt � C
∫

QT

|∇ut |2 dxdt,

1 � q � 2n
n−2

, n > 2, 1 � q <∞, n = 2.

Finally we arrive at the estimate

Λ(T )+ sup
0�s�T

∫
Ω

[|ut(x,s)|2 + |∇u|2 + |∇u|p + |u|σ]
dx

+
∫ T

0

∫
Ω
|∇ut |2dxds+

∫ T

0

(∫
Ω
|ut |qdx

) 2
q

dt � K (54)

with a constant K independent on m . Last estimate is valid for any finite interval
[0,T ] (under conditions of Lemmas 3.3 and 3.4) or only for a small interval of the time
[0,T0) (under conditions of Lemma 3.5).
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3.3.4. Compactness of u(m)
t

LEMMA 3.6. Assume that the estimate (54) is valid. Then∣∣∣∣
∫

QT

u(m)
tt ϕdxdt

∣∣∣∣ � C||ϕ ||W (QT ), T < T0 (55)

with a constant C independent of m.

Proof. Let dk(t) ∈ C2(0,T ) be arbitrary functions. Multiplying (27) by dk(t) ,
integrating over [0,T ] and summing with respect to k, we arrive at the identity

∫
QT

(
u(m)
tt ϕ+

(
a|∇u(m)|p(x,t)−2∇u(m) +α∇u(m)

t

)
∇ϕ

)
dxdt

−
∫
QT

(
b|u(m)|σ−2u(m) + f

)
ϕdxdt = 0 (56)

which is valid for any function

ϕ =
N

∑
k=1

dk(t)ψk(x), N � m. (57)

We introduce

−→
G m =

(
a
∣∣∇u(m)∣∣p(·)−2∇u(m) +α∇u(m)

t

)
.

Then (56) takes the form∫
QT

u(m)
tt ϕdxdt =

∫
QT

(
−−→

G m∇ϕ +
(
b|u(m)|σ−2u(m) + f

)
ϕ

)
dxdt = J.

Using results of Section 2 it’s easy to verify that

|J| � a+
∥∥|∇u(m)∣∣p(·)−1∥∥

p(·)
p(·)−1 ,QT

‖∇ϕ‖p(·),QT

+α
∥∥∇u(m)

t

∥∥
2,QT

∥∥∇ϕ∥∥
2,QT

+b+
∥∥|u(m)|σ−1

∥∥ σ(·)
σ(·)−1 ,QT

||ϕ ||σ(·),QT

+ || f ||2,QT ||ϕ ||2,QT

� C(K)||ϕ ||W (QT ).

The Lemma is proved. �

REMARK 3.2. Applying the known inequality

∫
Ω

∣∣∣w(x+h)−w(x)
h

∣∣∣2dx � C||∇w||2L2(Ω), ∀w ∈W 1
0 (Ω)
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to the function w = u(m)
t , we derive from (54),

∫ T

0

∫
Ω

∣∣u(m)
t (x+h,t)−u(m)

t (x,t)
∣∣2dxdt � C(K)|h|2. (58)

According to results of [39], Lemma 3.6 and estimate (58) we can conclude the com-
pactness of the sequence umt in the following sense

u(m)
t → ut strongly in L2(QT )∩L2(Ω). (59)

In certain papers (see, for example [43, 44]) to prove the compactness u(m)
t , they

used the following

LEMMA 3.7. ([16]) Let Ω be any bounded domain in R
n , {wk}∞k=1 be an orthog-

onal basis in L2(Ω) . Then for every ε > 0 , there exists a positive number N1ε such
that

‖u‖2,Ω = ‖u‖ �
( Nε

∑
k=1

(u,wk)2
Ω

) 1
2

+ ε‖u‖1,q

for all u ∈W 1,q
0 (Ω) , (2 � q < ∞) .

By this Lemma and estimates (54), for every ε > 0, there exist positive constants
N1ε and N2ε independent of m such that, as m → ∞ ,

‖u(m)(t)−u(t)‖�
( N1ε

∑
k=1

(
u(m)−u,wk

)2
Ω

)1/2

+ ε‖u(m)(t)−u(t)‖1,2 � C(T )ε, t ∈ [0,T ], (60)

and

∫ T

0
‖u(m)

t −ut‖2 � 2

( N2ε

∑
k=1

∫ T

0

(
u(m)
t −ut,wk

)2
Ω

)

+2ε2
∫ T

0
||u(m)

t −ut‖2
1,2 � Cε2. (61)

Since ε is arbitrary, we obtain

u(m) → u strongly in L∞(0,T ;L2(Ω) and a.e. in QT , (62)

u(m)
t → ut strongly in L2(QT ) and a.e. in QT . (63)
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3.4. Step 3. Passage to the limit as m → ∞

A weak solution of problem (1)-(3) will be obtained as the limit of the sequence of
Galerkin’s approximations u(m) as m → ∞. Let us establish the passage to the limit as
m→∞ on the intervals of the time when the estimate (54) is valid. Last estimate allows
us conclude that there exist u and a subsequence of

{
u(m)} , still denoted by

{
u(m)} ,

such that (see also, e.g., [39, 42, 43]).

u(m) → u strongly in L∞(0,T ;L2(Ω)), a.e. on QT

u(m)
t → ut strongly in L2(QT ), a.e. on QT

u(m)
t ⇀ ut weakly in L∞(0,T ;L2(Ω)), a.e. t ∈ [0,T ]

∇u(m)⇀ ∇u weakly in Lp(·)(QT )∩L∞(0,T ;L2(Ω)), (64)

∇u(m)
t ⇀ ∇ut weakly in L2(QT ),

u(m)
tt ⇀utt weakly in W ′(QT ),

a|∇u(m)|p−2∇u(m) ⇀ η weakly in Lp′(·)(QT ).

Integrating by parts in the first term in (56), we can rewrite last one in the form

∫
Qt

(
−u(m)

t ϕt +
(
a||∇u(m)||p(x,t)−2∇u(m) +α∇u(m)

t

)
∇ϕ

)
dxdτ

−
∫

Qt

(
b||u(m)||σ−2u(m) + f

)
ϕdxdτ− (

u(m)
t ,ϕ

)
Ω

∣∣∣t
0
= 0, t ∈ [0,T ]. (65)

Taking into account (64) and passing to the limit in (65) as m → ∞, we obtain for
any ϕ ∈ Pm ,

∫
Qt

(−utϕt +(η+α∇ut)∇ϕ
)
dxdτ

−
∫

Qt

(
b||u||σ−2u+ f

)
ϕdxdτ− (ut ,ϕ)Ω

∣∣∣t
0
= 0, a.e. t ∈ [0,T ]. (66)

Now we prove that

∫ t

0
(η ,∇ϕ)Ωdτ =

∫ t

0

(
a |∇u|p(·)−2∇u,∇v

)
Ω
dτ.

Substituting ϕ in (65) by u(m) and by u in (66) and integrating by parts in the terms
with α we obtain

∫
Qt

(
− (

u(m)
t

)2 +a||∇u(m)||p(x,t)−2∇u(m)∇u(m)
)
dxdτ

+α
(
∇u(m),∇u(m))

Ω

∣∣∣t
0
−

∫
Qt

(
b||u(m)||σ−2u(m) + f

)
u(m)dxdτ
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− (
u(m)
t ,u(m))

Ω

∣∣∣t
0
= 0, (67)

and

∫
Qt

(−u2
t +η∇u

)
dxdτ+α

(
∇u,∇u)Ω

∣∣∣t
0

−
∫
Qt

(
b||u||σ−2u+ f

)
udxdτ− (

ut ,u
)
Ω

∣∣∣t
0
= 0, a.e. t ∈ [0,T ]. (68)

According to the monotonicity of the operator A(u) = a |∇u|p(·)−2∇u , we have that

0 �
∫ t

0

(
A(u(m))−A(v),∇u(m)−∇v

)
Ω
dτ. (69)

Taking into account (64), (67) and (68), (69), we derive that

0 �
∫ t

0
(η−A(v),∇u−∇v)Ω dτ, ∀v ∈W (QT ). (70)

Choosing v = u−λw, where λ > 0 is a real number and w ∈W (QT ), and substituting
it into (70), we have

0 �
∫ t

0
(η−A(u−λw),∇w)Ω dτ.

Letting λ → 0 in last inequality and using (70), we come at the inequality

0 �
∫ t

0
(η−A(u),∇w)Ω dτ.

Taking into account the density of the functions w , we conclude the proof of the Theo-
rems 3.1 and 3.2. �

4. Blow up of solutions

First we consider equation (1) with α > 0, assuming that conditions of Lemma
3.1 are fulfilled. Assume that

E(0) � 0, 0 < (u0,u1)L2(Ω), 2 � p− � p+ < σ−. (71)

THEOREM 4.1. Let u be an energy weak solution to problem (1)-(3). Let the
conditions of the Lemma 3.1 be fulfilled and (71) hold. Then there exists a finite time
tmax < ∞ such that

Φ(t) = ‖u(t)‖2
2,Ω+α

∫ t

0

∫
Ω
|∇u|2 dxds → ∞ if t → tmax. (72)
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Proof. It’s easy to verify that

Φ′ = 2(u,ut)Ω +α
∫
Ω
||∇u||2dx,

Φ′′ = 2||ut ||22,Ω +2
∫
Ω

(−a||∇u||p +b||u||σ)
dx.

Using the inequality (42) of the Lemma 3.1, we calculate

Φ′′ � 2‖ut(t)‖2
2,Ω+2

∫
Ω

(−a |∇u|p +b |u|σ)
dx

+2λ
(

E(t)+α
∫ t

0

∫
Ω
|∇ut |2 dxds

)
= (2+λ )‖ut(t)‖2

+2
∫
Ω

((λ
p
−1

)
a||∇u||p +b

(
1− λ

σ

)
||u||σ

)
dx

+2λα
∫ t

0

∫
Ω
||∇ut ||2dxds > 0 (73)

for some λ > 2 and p+ < λ < σ−.
It follows that

Φ′(t) > 0, if Φ′(0) � 2(u0,u1)L2(Ω) > 0 .

Thus we can conclude that 0 <Φ(t) 0 <Φ′(t) , 0 <Φ′′(t) and Φ(t) →∞ as t → tmax.
Assume in contrast that tmax =∞. Using properties the Orlicz-Sobolev spaces (see

Section 2), we derive the following inequalities (for any fixed t )

||u(·, t)||2,Ω � C||u(·,t)||Lσ(·,t)(Ω)

� Cmax

[(∫
Ω
||u(·,t)||σ(·,t)

dx

) 1
σ−

,

(∫
Ω
||u(·, t)||σ(·,t)

dx

) 1
σ+

]
, (74)

||∇u(·, t)||2,Ω

� C||∇u(·,t)||Lp(·)(Ω)

� Cmax

[(∫
Ω
||∇u(·,t)||p(·,t)dx

) 1
p−

,

(∫
Ω
||∇u(·,t)||p(·,t)dx

) 1
p+

]
. (75)

Notice that, according to (73),∫
Ω
|ut |2dx � CΦ′′,

∫
Ω
|∇u(·,t)|p(·,t)dx � CΦ′′,

∫
Ω
|u(·, t)|σ(·,t)dx � CΦ′′.

Then we can rewrite (74), (75) in the forms

||u(·,t)||2,Ω � Cmax
[(
Φ′′ ) 1

σ− ,
(
Φ′′ ) 1

σ+

]
,
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||∇u(·,t)||2,Ω � Cmax
[(
Φ′′) 1

p− ,
(
Φ′′ ) 1

p+

]
.

Hence we arrive at the inequality

0 � Φ′ = 2
∫
Ω

u utdx+
α
2

∫
Ω
|∇u|2 dx

� 2‖u(·,t)‖2,Ω ‖ut(·,t)‖2,Ω++
α
2

∫
Ω
|∇u|2 dx

� C

(
max

[(
Φ′′) 1

σ− + 1
2 ,

(
Φ′′) 1

σ+
+ 1

2
]
+max

[(
Φ′′) 2

p− ,
(
Φ′′) 2

p+

])
.

Taking into account that 0 <Φ′′(t) , we assume, without loss of generality, that Φ′ � 1
and come at the ordinary differential inequality

C
(
Φ′)μ � Φ′′, (76)

where
1
μ

= max
( 1
σ−

+
1
2
,

2
p−

)
< 1 if σ− > 2, p− > 2.

The last inequality leads us to estimate

Φ′(t) � Φ′(0)
(
1− t(μ−1)

C

(
Φ′(0)

)μ−1
)− 1

μ−1 → ∞ , (77)

as

t → tmax =
C

μ−1

(
Φ′(0)

)−μ+1
<∞.

The theorem is proved. �

REMARK 4.1. Let us notice that constants μ and C (and respectively tmax ) in
(77) depend only on |Ω|, n, a±, b±, p±, σ± .

Now we assume that the exponents p,σ weakly dependent on t , that is, the con-
stants Cp,Cσ are small. The proof the blow up is the same as in the previous Theorem
if we guarantee that

E(t)+α
∫ t

0

∫
Ω
|∇ut |2 dxds � 0, 0 � t � tmax (78)

with tmax already defined in Theorem 4.1. According to the Lemma 3.2 (see inequality
(43)), we have that

E(t)+α
∫ t

0

∫
Ω
|∇ut |2 dxds � E(0)+ tmaxe(a+Cp +b+Cσ )|Ω|.

Assuming that

δ = max(Cp,Cσ ) � |E(0)|(tmaxe(a+ +b+)|Ω|)−1, E(0) < 0, (79)

we arrive at (78). Then we come to
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THEOREM 4.2. Let u be an energy weak solution to problem (1)-(3). Let the
conditions of Lemma 3.2 and (79) (with tmax defined in Theorem 4.1) be fulfilled. Let
the conditions

E(0) < 0, 0 < (u0,u1)L2(Ω), 2 � p− � p+ < λ < σ−

hold. Then the solution u blows up (in the sense that Φ(t) becomes unbounded) on the
finite interval (0, tmax).

Now we consider equation (1) with α = 0, assuming that the problem (1)-(3) has
at least one local energy solution. Here we follow the paper [19], where the authors
proved the blow up for an abstract hyperbolic equation in a Banach space which in-
cludes, as an example, the equation of the type (1) with the a = b = 1, p = const. ,
σ = const.

We assume that

E(0) � 0, 0 < (u0,u1)L2(Ω), σ− > max{2, p+}. (80)

Repeating the arguments of the paper [19], we prove the following theorems.

THEOREM 4.3. Let u be an energy weak solution to problem (1)-(3) with α = 0 .
Let conditions of the Lemma 3.1 be satisfied and assume that (80) holds. Then u blows
up (in the sense that ‖u(t)‖2

2,Ω becomes unbounded) on the finite interval (0,tmax) with

tmax = 2‖u0‖2
2,Ω /(λ −2)(u0,u1)Ω.

Proof. Let us introduce the function

G(t) = ‖u(t)‖2 = ‖u(t)‖2
2,Ω .

It is very easy to verify that

G′(t) = 2(u,ut)Ω , G′′(t) = 2‖ut(t)‖2 +2
∫
Ω

(−a |∇u|p +b |u|σ)
dx. (81)

Taking into account (80), we evaluate G′′(t) in the following way

G′′(t) � 2‖ut(t)‖2 +2
∫
Ω

(−a |∇u|p +b |u|σ)
dx+2λE(t)

= (2+λ )‖ut(t)‖2 +2
∫
Ω

((
λ
p
−1

)
a |∇u|p +b

(
1− λ

σ

)
|u|σ

)
dx

� (2+λ )‖ut(t)‖2 (82)

for some λ , p+ � λ � σ− . Then we literally repeat the arguments of the paper [19].
From the first identity (81) we conclude that

G′2(t) � 4‖ut‖2 ‖u‖2 = 4G‖ut‖2 ⇒‖ut‖2 � G′2

4G
. (83)
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Combining (82) and (83), we come to the following ordinary differential inequality

G′′(t) � (2+λ )
G′2

4G
⇔ G′′

G′2 � (2+λ )
4G

� 0. (84)

Then (80), (84) imply that G′(t) > 0 for all t > 0. Integrating (84) twice as above,
we come to the inequality

‖u0‖2
2,Ω

[
1− t

λ −2
2

(u0,u1)Ω
‖u0‖2

2

]− 4
λ−2

� ‖u(t)‖2
2,Ω .

�

Now we assume that the exponents p,σ weakly dependent on t , that is, the con-
stants Cp,Cσ are small.

Repeating the above mentioned arguments (see (78), (79)), we prove

THEOREM 4.4. Let u be an energy weak solution to problem (1)-(3) with α = 0 .
Let conditions of the Lemma 3.2 be fulfilled and (79) (with tmax defined in previous
Theorem) and (80) hold. Then the solution u blows up on the finite interval (0,tmax).
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