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TRAJECTORY ATTRACTORS OF ENERGY BALANCE

CLIMATE MODELS WITH BIO–FEEDBACK

GEORG HETZER

Abstract. Motivated by coupling an energy balance climate model and a two-species competition
model for the bio-sphere, one is led to the study of functional reaction-diffusion equations with
memory and a nonlocal Volterra operator. The existence of a trajectory attractor is established.
The work is motivated by similar studies in [12] for a energy balance model with latent heat flux
and uses techniques developed in [11] and [12]. It is a continuation of [18], where an abstract
global existence and boundedness result was established.
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[11] J.I. DÍAZ AND G. HETZER, A quasilinear functional reaction-diffusion equation arising in climatol-
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[14] J.I. DÍAZ, AND S. SHMAREV, Lagrangian approach to the study of level sets: application to a free
boundary problem in climatology, Arch. Ration. Mech. Anal., 194 (2009), 75–103.

c© � � , Zagreb
Paper DEA-03-35



566 GEORG HETZER
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