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ON THE STOKES EQUATIONS WITH THE

NAVIER–TYPE BOUNDARY CONDITIONS

CHERIF AMROUCHE AND NOUR EL HOUDA SELOULA

Abstract. In a possibly multiply-connected three dimensional bounded domain, we prove in the
Lp theory the existence and uniqueness of vector potentials, associated with a divergence-free
function and satisfying non homogeneous boundary conditions. Furthermore, we consider the
stationary Stokes equations with nonstandard boundary conditions of the form u · n = g and
curlu×n = h×n on the boundary Γ . We prove the existence and uniqueness of weak, strong
and very weak solutions. Our proofs are mainly based on In f −Sup conditions.
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