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SINGULAR PARABOLIC EQUATION
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Abstract. We investigate the following quasilinear parabolic and singular equation,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut −Δpu =
1

uδ
+ f (x,u) in (0,T )×Ω,

u = 0 on (0,T )×∂Ω, u > 0 in (0,T )×Ω,

u(0,x) = u0(x) in Ω,

(Pt )

where Ω is an open bounded domain with smooth boundary in R
N , 1 < p < ∞ , 0 < δ and

T > 0 . We assume that (x,s) ∈ Ω×R
+ → f (x,s) is a bounded below Caratheodory function,

asymptotically sub-homogeneous, i.e.
⎧⎪⎪⎨
⎪⎪⎩

if p � 2, 0 � limsup
t→+∞

f (x,t)
t p−1 = α f < λ1(Ω),

if p > 2, 0 � limsup
t→+∞

f (x,t)
t

= α f < ∞,

(0.1)

(where λ1(Ω) is the first eigenvalue of −Δp in Ω with homogeneous Dirichlet boundary con-

ditions) and u0 ∈W 1,p
0 (Ω) . Then, for any δ ∈ (0,1) , we prove for any T > 0 the existence of

a weak solution u ∈ V(QT ) to (Pt) . The proof involves a semi-discretization in time approach
and the study of the stationary problem associated to (Pt) . The key points in the proof is to
show that the approximated solutions remain (uniformly) positive in any compact K of Ω and
from energy estimates converges to a weak solution to (Pt) . Next, under additional assumptions
on the initial data, δ and the nonlinearity f , we prove long time convergence of global weak
solutions in W 1,p

0 (Ω) . This stabilization property is established by proving an additional energy
estimate and by using the regularity result in Simon [23]. These results extend with a different
approach a previous work of the authors ([3]) regarding the problem (Pt) where existence and
uniqueness of solutions are proved under a cone condition on the initial data and via the theory
of nonlinear accretive operators.
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