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Abstract. We investigate the following quasilinear parabolic and singular equation,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut −Δpu =
1

uδ
+ f (x,u) in (0,T )×Ω,

u = 0 on (0,T )×∂Ω, u > 0 in (0,T )×Ω,

u(0,x) = u0(x) in Ω,

(Pt )

where Ω is an open bounded domain with smooth boundary in R
N , 1 < p < ∞ , 0 < δ and

T > 0 . We assume that (x,s) ∈ Ω×R
+ → f (x,s) is a bounded below Caratheodory function,

asymptotically sub-homogeneous, i.e.⎧⎪⎪⎨
⎪⎪⎩

if p � 2, 0 � limsup
t→+∞

f (x,t)
t p−1 = α f < λ1(Ω),

if p > 2, 0 � limsup
t→+∞

f (x,t)
t

= α f < ∞,

(0.1)

(where λ1(Ω) is the first eigenvalue of −Δp in Ω with homogeneous Dirichlet boundary con-

ditions) and u0 ∈W 1,p
0 (Ω) . Then, for any δ ∈ (0,1) , we prove for any T > 0 the existence of

a weak solution u ∈ V(QT ) to (Pt) . The proof involves a semi-discretization in time approach
and the study of the stationary problem associated to (Pt) . The key points in the proof is to
show that the approximated solutions remain (uniformly) positive in any compact K of Ω and
from energy estimates converges to a weak solution to (Pt) . Next, under additional assumptions
on the initial data, δ and the nonlinearity f , we prove long time convergence of global weak
solutions in W 1,p

0 (Ω) . This stabilization property is established by proving an additional energy
estimate and by using the regularity result in Simon [23]. These results extend with a different
approach a previous work of the authors ([3]) regarding the problem (Pt) where existence and
uniqueness of solutions are proved under a cone condition on the initial data and via the theory
of nonlinear accretive operators.
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1. Introduction

In the present paper we investigate the following quasilinear and singular parabolic
problem : ⎧⎪⎪⎨

⎪⎪⎩
ut −Δpu =

1

uδ
+ f (x,u) in QT ,

u = 0 on ΣT , u > 0 in QT ,

u(0,x) = u0(x) in Ω,

(Pt)

where Ω is an open bounded domain with smooth boundary in R
N (with N � 2),

1 < p <∞ , 0 < δ , T > 0, QT = (0,T )×Ω and ΣT = (0,T )×∂Ω . We assume that f is
a bounded below Caratheodory function and satisfying (0.1) and u0 ∈W 1,p

0 (Ω) . Such a
problem arises in the study of non-Newtonian fluids (in particular pseudoplastic fluids),
boundary-layer phenomena for viscous fluids (see [9], [17], [18]), in the Langmuir-
Hinshelwood model of chemical hetereogeneous catalyst kinetics (see [2], [21]), in
enzymatic kinetics models (see [4]), as well as in the theory of heat conduction in
electrically conducting materials (see [16]) and in the study of guided modes of an
electromagnetic field in nonlinear medium (see [11]). Problem (Pt) with p �= 2 arises
specifically in the study of turbulent flow of a gas in porous media (see [19]). We refer
to the survey Hernández-Mancebo-Vega [15], the book Ghergu-Radulescu [12] and the
bibliography therein for more details about the corresponding models.

We are particularly interested to discuss existence of weak solutions and the be-
haviour of global weak solutions. The notion of weak solutions is stated below: First,
we introduce

DEFINITION 1.1. V(QT ) def=
{
u∈L2(QT ) : u∈L∞(0,T ;W 1,p

0 (Ω)), ut ∈L2(QT )
}
.

Then, we define

DEFINITION 1.2. A weak solution to (Pt ) is a function u ∈ V(QT ) satisfying:

1. for any compact K ⊂ [0,T ]×Ω , ess inf
K

u > 0,

2. for every test function φ ∈C∞
c ([0,T ]×Ω) ,∫

QT

(
φ
∂u
∂ t

+ |∇u|p−2∇u∇φ −φ(
1

uδ
+ f (t,u))

)
dxdt = 0, (1.1)

3. u(0,x) = u0(x) a.e in Ω .

To prove existence of weak solutions, we use a semi-discretization in time. Pre-
cisely, taking advantage of the study of an auxiliary quasilinear and singular elliptic
equation and energy estimates, we are able to prove existence of weak solutions to (Pt)
for u0 ∈W 1,p

0 (Ω) and positive in Ω . We state this result below:

THEOREM 1.3. Let T > 0 , p > 2N/(N +2) , 0 < δ < 1 and u0 ∈W 1,p
0 (Ω) such

that for any compact K ⊂ Ω , ess inf
K

u0 > 0 . Assume that f is a bounded below

caratheodory function, satisfying (0.1). Then, there exists a weak solution to (Pt) .
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We stress that this result does not require any control of u0 near the boundary in con-
trast with [Theorem 1.4, [3]] and existence results in [15] and in [24]. In our knowledge,
Theorem 1.3 is the first result (even for p = 2) showing existence of (very) weak so-
lutions to this class of quasilinear singular parabolic equations with intial data only
positive in Ω . Regarding Theorem 1.4, the proof of Theorem 1.3 follows a different
approach based on convexity arguments (see the beginning of the proof of Theorem 1.3
pages 6-7) whereas the proof of Theorem 1.4 uses strongly the construction of suitable
”uniform” sub- and supersolutions which control the singular term along the flow. We
emphasize that the existence of such sub- and supersolutions is guaranteed by u0 in
the conical shell C defined below. Consequently, to establish Theorem 1.3, we have to
face an important difficulty, that is to show that the discrete solutions uΔt , ũΔt are well
defined and satisfy (2.5) in the sense of distributions.

Next, we investigate the long time behaviour of weak solutions. In this regard,
we recall some results proved for problem (Pt) in [3] where under a cone condition
which prescribes the behaviour of the initial data near the boundary, the existence and
the uniqueness of a weak solution is proved. Precisely, let C be the set of functions
v ∈ L∞(Ω) such that there exists c1 > 0 and c2 � c1 satisfying

⎧⎪⎪⎨
⎪⎪⎩

c1d(x) � v � c2d(x) if δ < 1,

c1d(x)log
1
p

( k
d(x)

)
� v � c2d(x)log

1
p

( k
d(x)

)
if δ = 1,

c1d(x)
p

δ+p−1 � v � c2
(
d(x)

p
δ+p−1 +d(x)

)
if δ > 1,

where d(x) def= dist(x,∂Ω) and k > 0 is large enough. Then, we have

THEOREM 1.4. (Badra-Bal-Giacomoni) [3] Let 0 < δ < 2+1/(p−1) . Assume
that f is a bounded below Caratheodory function, and that f is locally Lipschitz with
respect to the second variable uniformly in x ∈Ω and satisfying

0 � limsup
t→+∞

f (x,t)
t p−1 < λ1(Ω).

Let u0 ∈W 1,p
0 (Ω)∩C . Then, for any T > 0 , there exists a unique weak solution, u , to

(Pt) such that u(t)∈ C uniformly for t ∈ [0,T ] , u∈C([0,T ],W 1,p
0 (Ω)) and u satisfies

for any t ∈ [0,T ]:

∫ t

0

∫
Ω

(∂u
∂ t

)2
dxds+

1
p

∫
Ω
|∇u(t)|pdx− 1

1− δ

∫
Ω

u1−δ (t)dx

=
∫
Ω

F(x,u(t))dx+
1
p

∫
Ω
|∇u0|pdx

− 1
1− δ

∫
Ω

u1−δ
0 dx−

∫
Ω

F(x,u0)dx, (1.2)

where F(x,w) def=
∫ w
0 f (x,s)ds.
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The control of the singular term is given by the cone condition and the following Hardy
Inequality (see for instance [6, chapter 9]):

THEOREM 1.5. Let Ω be a bounded open set of class C1 and let 1 < p < ∞ .
There exists a constant C > 0 such that∥∥∥ u

d

∥∥∥
Lp(Ω)

� C‖∇u‖Lp(Ω), ∀u ∈W 1,p
0 (Ω).

Conversely,

u ∈W 1,p(Ω) and (u/d) ∈ Lp(Ω) ⇒ u ∈W 1,p
0 (Ω).

The restriction δ < 2+1/(p−1) is optimal since it can be proved that for δ beyond
2+1/(p−1) stationary solutions do not belong to W 1,p

0 (Ω) . Notice that the solution
given by Theorem 1.4, namely u , satisfies

1

uδ
∈ L∞(0,T ; W−1,p′

0 (Ω)) with p′ def=
p

p−1

and then (1.1) is verified by any φ ∈ V(QT ) .
Under additional conditions on f , the uniqueness of the stationary solution can be

derived:

THEOREM 1.6. [3] Let 0 < δ < 2+1/(p−1) and f : Ω×R
+ →R be a bounded

below Caratheodory function, locally Lipschitz with respect to the second variable uni-
formly in x ∈Ω , satisfying

0 � limsup
t→+∞

f (x,t)
t p−1 < λ1(Ω)

and such that f (x,s)/sp−1 is a decreasing function in R
+ for a.e. x ∈ Ω . Then there

exists a unique u∞ in W 1,p
0 (Ω)∩C ∩C0(Ω) satisfying

(Q)

⎧⎨
⎩−Δpu∞− 1

uδ∞
= f (x,u∞) in Ω,

u∞ = 0 on ∂Ω.

The proof of the above theorem given in [3] uses strongly the Dı́az-Saa inequality (see

[10]). From m-accretivity of the operator A defined by Au
def= −Δpu− 1

uδ
in L∞(Ω)

and from Theorem 1.6, it follows that

THEOREM 1.7. [3] Let hypothesis in Theorem 1.4 satisfied and assume that

f (x,s)
sp−1 is decreasing in (0,∞) for a.e. x ∈Ω.

Then, the solution to (Pt) is defined in (0,∞)×Ω and satisfies

u(t) → u∞ in L∞(Ω) as t → ∞, (1.3)

where u∞ is defined in Theorem 1.6.
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From maximal regularity Lp -Lq results for the heat equation, Sobolev interpolation
theory and Hardy type inequalities (see [25, Par. 3.2.6, Lem. 3.2.6.1, p.259]) of the
form given by:

THEOREM 1.8. Let s ∈ [0,2] such that s �= 1/2 and s �= 3/2 . Then the following
generalisation of Hardy’s inequality holds:

‖d−sg‖L2(Ω) � C‖g‖Hs(Ω) for all g ∈ Hs
0(Ω); (1.4)

we get in the case p = 2 stabilization in the energy space H1
0 (Ω) . Precisely, one

has

THEOREM 1.9. [3] Let p = 2 , δ < 3 , u0 ∈ C ∩H1
0 (Ω) . Assume that f satisfies

the hypothesis in Theorem 1.7. Then, the solution to (Pt ) , u , defined in (0,∞)×Ω
satisfies the following asymptotic behaviour: u(t)→ u∞ as t →+∞ in L∞(Ω)∩H1

0 (Ω) .

In our present paper, we further consider stabilization properties of solutions to
(Pt) and we show the following result:

THEOREM 1.10. Let conditions in Theorem 1.7 be satisfied and assume either
p > 2 and δ < (p− 1)/p or the following conditions N � 3 , N/2 � p < 2 and δ <
1/2 . Then,

u(t) → u∞ in L∞(Ω)∩W 1,p
0 (Ω) as t → ∞. (1.5)

According to our knowledge, Theorem 1.10 is the first result which gives the asymptotic
convergence of solutions to (Pt) to a stationary solution in W 1,p

0 (Ω) for p �= 2. Re-
garding Theorem 1.7 where stabilization is proved in L∞(Ω) , the proof of Theorem 1.10
relies on a different approach based on a regularity result in Besov spaces implying the
compactness of trajectories in W 1,p

0 (Ω) whereas the proof of Theorem 1.7 uses fully
the maximal accretivity of A in L∞(Ω) that gives the continuity and monotonicity (for
suitable initial data) of trajectories. To establish Theorem 1.10, we then need to prove
additional energy estimates on the approximated solutions compared to [3]. Precisely,
in the present paper, we establish the following new result:

PROPOSITION 1.11. Let conditions in Theorem 1.4 be satisfied. Then, for any
t0 > 0 , the solution u verifies:

∂u
∂ t

∈ L2(]0,∞[, L2(Ω))∩L∞([t0,+∞[, L2(Ω)).

We stress that Proposition 1.11 holds for δ in (0,2+ 1/(p− 1) . We combine propo-
sition 1.11 with regularity results for p -Laplace equations in Besov spaces due to J.
Simon [23] (see Theorem 3.3) to get compactness of solutions to (Pt) for large time t
in W 1,p

0 (Ω) . Precisely, we show the following new result:
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PROPOSITION 1.12. Let the conditions in Theorem 1.4 be satisfied. Then for any
t0 > 0 , the solution u to (Pt ) verifies:

i) If p > 2 and δ < (p−1)/p, then for any t0 > 0 ,

u ∈ L∞([t0,+∞),B
1+ 1

(p−1)2
,p

∞ (Ω)),

where

B
1+ 1

(p−1)2
,p

∞
def= [W 2,p(Ω),W 1,p(Ω)]1− 1

(p−1)2
,∞

is the Besov space obtained by the real interpolation method.

ii) If N � 3 , δ < 1/2 and N/2 � p < 2 , then

u ∈ L∞([t0,+∞),B1+(p−1)2,p
∞ (Ω)),

where
B1+(p−1)2,p
∞ (Ω) def= [W 2,p(Ω),W 1,p(Ω)]1−(p−1)2,∞.

We now give briefly the state of art concerning parabolic quasilinear singular equa-
tions. The corresponding stationary equation was studied intensively in the litterature.
In particular the case p = 2, mostly when δ < 1 and under different assumptions on the
asymptotic behaviour of f was considered in detail (see the pionniering work Crandall-
Rabinowitz-Tartar [7], the bibliography in Hernández-Mancebo [14]). The quasilinear
case, namely p �= 2, was not considered so far. We mention the work Aranda-Godoy
[1] where existence results are obtained via the bifurcation theory for 1 < p � 2 and
f (x,u) = g(u) satisfying some growth conditions. In Giacomoni-Schindler-Takáč [13]
the existence and multiplicity results when 1 < p < ∞ f (x,u) = uq with p−1 < q �
p∗ − 1 and 0 < δ < 1 are proved by using variational methods and regularity results
in Hölder spaces. In Perera-Silva [20], other kinds of singularities are investigated (for
instance e

1
u instead of 1/uδ ). In Boccardo-Orsina [5], nonexistence results are proved

for quasilinear equations involving singular terms in the form q(x)/uδ where q belongs
to a certain class of bounded Radon measure (for instance a Dirac mass). Concerning
the parabolic case, avalaible results mostly concern the case p = 2. Namely, we first
quote the result in Hernandez-Mancebo-Vega [15] where properties of the linearised
operator (in C1

0(Ω)) and the validity of the strong maximum principle are given, that
induce the asymptotic stability of a certain class of stationary solutions in the range
0 < δ < 1

2 . In Takáč [24], a stabilization result in C1 is proved for a similar class of
parabolic singular problems via a clever use of weighted Sobolev spaces. Notice that
the common feature of these two works is that solutions belong to

[
C1

0(Ω)
]+

, the inte-
rior of the positive cone of C1

0(Ω) , that gives an implicit control of the singular terms
near the boundary ∂Ω . However, in the context of Problem (Pt) this approach fails for
large δ (that is for δ � 1) since weak solutions do not belong to C1(Ω) . In [3], we
overcome this difficulty by showing the invariance of a conical shell, namely C , along
the flow associated to (Pt) . In the present paper (Theorem 1.3), we show that this cone
condition can be removed when δ < 1. However, we obtain weaker solutions in this
case.
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We also mention the work Davila-Montenegro [8] still concerning the case p = 2
and with singular absorption term. In this nice work, the authors achieved uniqueness
within the class of functions satisfying u(x,t) � cdist(x,∂Ω)γ for suitable γ and c > 0
and discuss the asymptotic behaviour of solutions. Finally, we would like to quote the
nice paper Winkler [26], where the author shows that uniqueness is violated in case of
non homogeneous boundary Dirichlet condition.

Our present paper is organized as follows. In the next section (Section 2), we prove
Theorem 1.3. In Section 3, we focus on stabilization of solutions to (Pt ) in W 1,p

0 (Ω)
and give the proof of propositions 1.11 and 1.12 and finally Theorem 1.10.

2. Proof of Theorem 1.3

In this section, we prove Theorem 1.3.

Proof. Consider φ1,K the normalised positive eigenfunction associated to λ1,K ,
the first eigenvalue of −Δp in (the interior of) a compact and smooth set K (⊂ Ω)
with Dirichlet boundary Conditions. We have for η = η(K) > 0 small enough that
u0 � ηφ1,K in K and

ηφ1,K −u0

Δt
−Δpηφ1,K − 1

(ηφ1,K)δ
− f (x,u0) < 0 in K.

We use the following iterative scheme to define approximated solutions, namely uΔt

and ũΔt . More specifically, let N ∈ N\{0} and denote Δt
def= T/N and for any t ∈ R ,

t+
def= max{t,0} . We construct a sequence (un)n∈N\{0} ⊂W 1,p

0 (Ω) , verifying

un−Δt

(
Δpu

n +
1

(un)δ

)
= Δt f (x,un−1)+un−1 in Ω, (2.1)

and we define u0 def= u0 ∈W 1,p
0 (Ω) . Let us show the existence of un for any n ∈ N\{0}

satisfying (2.1) that means that for any φ ∈W 1,p
0 (Ω) ,

∫
Ω

(
φ(

un−un−1

Δt
)+ |∇un|p−2∇un∇φ −φ(

1

unδ + f (x,un−1))
)
dx = 0. (2.2)

For that, assuming that

un−1 ∈W 1,p
0 (Ω) and un−1 � ηφ1,K on K ,

we consider the following energy functional En defined by

En(u) def=
1
Δt

(∫
Ω

u2

2
dx−

∫
Ω

uun−1dx

)
+

1
p

∫
Ω
|∇u|pdx−

∫
Ω

(u+)1−δ

1− δ
dx

−
∫
Ω

f (x,un−1)u+dx,
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for any u ∈W 1,p
0 (Ω) . Notice that from Sobolev imbeddings and since f is bounded

below and satisfies (0.1) (that both imply that f (x,un−1) ∈ L2(Ω)), En is bounded
by below, coercive, weakly lower semicontinuous in W 1,p

0 (Ω) and strictly convex in

the positive cone of W 1,p
0 (Ω) . Then, from the fact that En(u+) � En(u) for any u ∈

W 1,p
0 (Ω) , En admits a unique global minimizer, we denote by un , in W 1,p

0 (Ω) and
un � 0 a.e. in Ω . We now prove that

un � ηφ1,K on K.

For that, let us consider

ψk = (ηφ1,K −un)+ ∈W 1,p
0 (Ω)

after extending φ1,K by 0 in Ω\K . Let us notice that ψk has a compact support in-
cluded in K . Since un is the global minimizer of En ,

ξ (t) = En(un + tψk) � E(un) ∀t � 0.

Moreover, since φ1,K satisfies φ1,K � η0dist(x,∂K) for some η0 > 0 small enough and
δ < 1, we have by Lebesgue theorem that

lim
t→t0

1
t− t0

[∫
Ω

(un + tψk)1−δ

1− δ
dx−

∫
Ω

(un + t0ψk)1−δ

1− δ
dx

]

=
∫

K
(un + t0ψk)−δψkdx

for t0 ∈ (0,1] and then ξ is differentiable in (0,1] . From the convexity of ξ and the
variational nature of un , we obtain that

∀t ∈ (0,1), 0 � ξ ′(t) � ξ ′(1). (2.3)

Furthermore,

ξ ′(1) =
〈ηφ1,K −un−1

Δt
−Δp(ηφ1,K)− 1

(ηφ1,K)δ
− f (x,un−1),ψk

〉
.

If the measure of the support of ψk is different from zero, we get that ξ ′(1) < 0 and
thereby a contradiction with (2.3). Thus,

ηφ1,K � un in K for every n � 0.

Then, for φ ∈C∞
c (Ω) ,

lim
t→0

En(un + tφ)−En(un)
t

= 0.

Consequently, un satisfies the Euler-Lagrange equation, namely (2.1), in the sense of
distributions, that is (2.2) is satisfied for any φ ∈ C∞

c (Ω) . By a density argument and
since un ∈W 1,p

0 (Ω) , we get that (2.2) is satisfied for any φ ∈W 1,p
0 (Ω) .
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So consequently, uΔt , ũΔt set by: for all n ∈ {1, . . . ,N} ,

∀t ∈ [(n−1)Δt,nΔt),

⎧⎨
⎩

uΔt (t)
def= un,

ũΔt (t)
def=

(t− (n−1)Δt)
Δt

(un−un−1)+un−1,
(2.4)

are well defined and satisfied in addition uΔt , ũΔt � ηφ1,K on each compact K of Ω . In
addition, we have that

∂ ũΔt

∂ t
−ΔpuΔt −

1

uΔt
δ = f (x,uΔt (·−Δt)) (2.5)

which implies that for any φ ∈C∞
c ([0,T ]×Ω)

∫ T

0

∫
Ω

∂ ũΔt

∂ t
φdxdt +

∫ T

0

∫
Ω
|∇uΔt |p−2∇uΔt∇φdxdt−

∫ T

0

∫
Ω

1

uΔt
δ φdxdt

=
∫ T

0

∫
Ω

f (x,uΔt (·−Δt))φdxdt. (2.6)

We have that
∂ ũΔt

∂ t
∈ L∞(0,T ; W 1,p

0 (Ω))

and from p > 2N/(N +2) and (0.1), we obtain that

∂ ũΔt

∂ t
, ΔpuΔt , f (x,uΔt (·−Δt)) belong to Lp′(0,T ; W−1,p′(Ω)).

Then, (2.5) holds in (Lp(0,T,W 1,p
0 (Ω)))′ . Therefore, for any φ ∈ Lp(0,T,W 1,p

0 (Ω)) ,

∫ T

0

∫
Ω

∂ ũΔt

∂ t
φdxdt +

∫ T

0

∫
Ω
|∇uΔt |p−2∇uΔt∇φdxdt

−
∫ T

0

∫
Ω

1

uΔt
δ φdxdt

=
∫ T

0

∫
Ω

f (x,uΔt (·−Δt))φdxdt. (2.7)

We now derive some energy estimates on uΔt , ũΔt .
Multiplying (2.1) by Δtun , summing from n = 1 to N and integrating over Ω we

obtain

Δt

N

∑
n=1

∫
Ω

un−un−1

Δt
undx+Δt

N

∑
n=1

∫
Ω
|∇un|pdx−Δt

N

∑
n=1

∫
Ω

un1−δdx

= Δt

N

∑
n=1

∫
Ω

f (x,un−1)undx.
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The above expression implies

N

∑
n=1

1
2

∫
Ω
(|un|2 −|un−1|2 + |un−un−1|2)dx

+Δt

N

∑
n=1

∫
Ω
|∇un|pdx−Δt

N

∑
n=1

∫
Ω
(un)1−δdx

= Δt

N

∑
n=1

∫
Ω

f (x,un−1)undx.

Now since f is bounded by below and satisfies (0.1), ∃ C = C(α) > 0 large
enough such that

f (x,t) � αt p−1 +C, (2.8)

where α < λ1(Ω) .
Then, the term Δt ∑N

n=1
∫
Ω f (x,un−1)undx in the right hand side can be estimated

as follows:

Δt

N

∑
n=1

∫
Ω

f (x,un−1)undx � Δt

N

∑
n=1

[α
∫
Ω
(un−1)p−1undx+C

∫
Ω

undx].

Now, applying Young’s Inequality on the two last terms in the right-hand side we obtain
for any ε > 0

Δt

N

∑
n=1

∫
Ω

f (x,un−1)undx � αΔt

N

∑
n=1

[
p−1

p

∫
Ω
(un−1)pdx+

1
p

∫
Ω
(un)pdx

]

+Δtε
N

∑
n=1

∫
Ω
(un)pdx+CεT |Ω|.

for a constant Cε > 0 large enough depending only on ε and α .
Using again the Young inequality, we estimate the last term in the left-hand side

in the following way

Δt

N

∑
n=1

∫
Ω
(un)1−δdx � Δtε

N

∑
n=1

∫
Ω
(un)pdx+Cε

′T |Ω|,

where C′
ε > 0 is large enough and depends only on ε and δ .

Now using Poincaré inequality we get,

1
2

N

∑
n=1

∫
Ω
(|un|2 −|un−1|2 + |un−un−1|2)dx+Δt

(
1− α +2ε

λ1(Ω)

) N

∑
n=1

∫
Ω
|∇un|pdx

� C̃|Ω|T +αΔt

∫
Ω
(u0)pdx,

where C̃ > 0 is a large constant depending on ε and δ .
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Taking ε > 0 small enough such that α +2ε < λ1(Ω) , it follows that

uΔt , ũΔt is bounded on L∞(0,T ;L2(Ω)), (2.9)

uΔt , ũΔt is bounded on Lp(0,T ;W 1,p
0 (Ω)). (2.10)

We now derive the second energy estimates. Multiplying (2.1) by (un − un−1) ,
summing from n = 1 to N and integrating over Ω , we get

Δt

N

∑
n=1

∫
Ω
(
un−un−1

Δt
)2dx+

N

∑
n=1

∫
Ω
|∇un|p−2∇un ·∇(un−un−1)dx

−
N

∑
n=1

∫
Ω

un−un−1

(un)δ
dx

�
N

∑
n=1

∫
Ω

f (x,un−1)(un −un−1)dx. (2.11)

Therefore, (2.11) together with (2.9) and (0.1) yield

Δt

2

N

∑
n=1

∫
Ω
(
un −un−1

Δt
)2dx

+
N

∑
n=1

∫
Ω
|∇un|p−2∇un ·∇(un−un−1)dx

−
N

∑
n=1

∫
Ω

un−un−1

(un)δ
dx � Δt

2

N

∑
n=1

∫
Ω

f (x,un−1)2dx � C. (2.12)

From the convexity of the expressions
∫
Ω |∇u|pdx and − 1

1−δ
∫
Ω u1−δdx we get the

following inequalities:

1
2

[∫
Ω
|∇un|pdx−

∫
Ω
|∇un−1|pdx

]
�

∫
Ω
|∇un|p−2∇un∇(un −un−1)dx

and
1

1− δ

[∫
Ω
(un−1)1−δdx−

∫
Ω
(un)1−δdx

]
� −

∫
Ω

un−un−1

(un)δ
dx,

which imply together with (2.12) and (2.10) that

∂ ũΔt

∂ t
is bounded on L2(QT ) uniformly in Δt . (2.13)

From (2.13),

max
[0,T ]

‖ũΔt(t)−uΔt(t)‖L2(Ω) � max
1�n�N

‖un−un−1‖L2(Ω) � C(Δt)
1
2 (2.14)

and

uΔt , ũΔt is bounded on L∞(0,T ;W 1,p
0 (Ω)) uniformly in Δt . (2.15)

We now use the compactness result of Aubin-Simon (see [23]):
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THEOREM 2.1. Consider p ∈]1,+∞[ , q ∈ [1,+∞] and V,E and F three Banach
spaces such that V ↪→→ E ↪→ F . Then, if A is a bounded subset of W 1,p(0,T ; F) and
of Lq(0,T ; V ) , A is relatively compact in C([0,T ],F) and in Lp(0,T ; E) .

From Theorem 2.1, (2.13), (2.14) and (2.15), it follows that there exists u ∈
C([0,T ],Lq(Ω)) such that up to a subsequence

uΔt and ũΔt converge to u in L∞(0,T ; Lq(Ω)) for any 1 � q < Np/(N− p) .

Notice that from p > 2N/(N +2) , we get 2 < Np/(N− p) and then

uΔt and ũΔt converge to u in L∞(0,T ; L2(Ω)). (2.16)

From (2.13) and (2.15), it follows that

uΔt , ũΔt

∗
⇀ u in L∞(0,T ;W 1,p

0 (Ω)) and
∂ ũΔt

∂ t
⇀

∂u
∂ t

in L2(QT )

and from (2.14), (0.1) and (2.16), f (x,uΔt (t −Δt)) → f (x,u) in L2(QT ) .
We now show that u is indeed a solution in the weak sense given in the definition

1.2. From (2.7), multiplying (2.5) by (uΔt −u) and using (2.16), we get by straightfor-
ward calculations:∫ T

0

∫
Ω

[
∂ ũΔt

∂ t
− ∂u

∂ t

]
(ũΔt −u)dxdt−

∫ T

0

〈
ΔpuΔt ,uΔt −u

〉
dt

−
∫ T

0

∫
Ω

u−δΔt
(uΔt −u)dxdt

=
∫ T

0

∫
Ω

f (x,uΔt (·−Δt))(uΔt −u)dxdt +oΔt(1)

where oΔt (1) → 0 as Δt → 0+ . From the convexity of the term −∫
Ω u1−δdx and since

uΔt ⇀ u in Lp(0,T ; W 1,p
0 (Ω)) , we get that

∫
Ω
|ũΔt (T )−u(T )|2dx−

∫ T

0

〈
ΔpuΔt −Δpu,uΔt −u

〉
dt

− 1
1− δ

∫ T

0

∫
Ω

(
u1−δ
Δt

−u1−δ
)

dxdt

�
∫ T

0

∫
Ω

f (x,uΔt (·−Δt))(uΔt −u)dxdt +oΔt(1),

and from (2.16) we have

∫ T

0

∫
Ω

f (x,uΔt (·−Δt))(uΔt −u)dxdt = oΔt (1)

and since δ < 1 ∫ T

0

∫
Ω

∣∣∣u1−δ
Δt

−u1−δ
∣∣∣dxdt = oΔt (1).
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Then,

1
2

∫
Ω
|ũΔt −u|2(T )dx−

∫ T

0
< ΔpuΔt −Δpu,uΔt −u > dt = oΔt (1).

Thus,
uΔt → u in Lp(0,T ; W 1,p

0 (Ω)) as Δt → 0+

and consequently
ΔpuΔt → Δpu in Lp′(0,T ; W−1,p′(Ω)).

Notice that u � ηφ1,K in K which implies by Lebesgue theorem that

∫ T

0

∫
Ω

1

(uΔt )δ
wdxdt →

∫ T

0

∫
Ω

1

uδ
wdxdt as Δt → 0+

for any w ∈C∞
c ([0,T ]×Ω) . Then, passing to the limit as Δt → 0+ in (2.6), we get from

above compactness properties of {uΔt}Δt and {ũΔt}Δt that

∫ T

0

∫
Ω

∂u
∂ t

wdxdt +
∫ T

0

∫
Ω
∇u|p−2∇u∇wdxdt−

∫ T

0

∫
Ω

1

uδ
wdxdt

=
∫ T

0

∫
Ω

f (x,u)wdxdt.

for any w ∈C∞
c ([0,T ]×Ω) . This completes the proof. �

3. Stabilization in W 1,p
0 (Ω)

In this section we prove mainly Theorem 1.7. We start with a lemma which gives
additional a priori estimates on uΔt and ũΔt defined in Section 2.

LEMMA 3.1. Let assumptions in Theorem 1.4 be satisfied. Let u be the weak and
global solution to (Pt) prescribed at t = 0 by u0 , given by Theorem 1.4. Then:

1. there exists u and u belonging to C , independent of Δt such that for all t � 0 ,
u � uΔt (t), ũΔt (t) � u;

2. 1/uδΔt
and 1/ũδΔt

are bounded in L∞(0,∞; W−1,p′(Ω));

3.
∂ ũΔt
∂ t is bounded in L2(0,∞; L2(Ω)) independently of Δt ;

4. uΔt , ũΔt are bounded in L∞(0,∞; W 1,p
0 (Ω)) .

Proof. We omit the proof of assertion (1) which is contained in the proof of
Theorem 1.4 in [3] and assertion (2) follows from assertion (1) and the definiton of
C . We need to prove assertions (3) and (4) to complete the proof of lemma 3.1.

Multiplying (2.1) by (un−un−1) and summing from 1 to N′ and integrating over
Ω , we have
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1
Δt

N′

∑
n=1

||un−un−1||2L2(Ω) −
N′

∑
n=1

〈
Δpu

n,un−un−1〉

−
N′

∑
n=1

∫
Ω

1

(un)δ
(un−un−1)dx

= Δt

N′

∑
n=1

∫
Ω

f (x,un−1)
(un−un−1

Δt

)
dx.

Set F(x,s) def=
∫ s
0 f (x,τ)dτ . Since f is locally lipchitz with respect to the second vari-

able uniformly in x ∈ Ω , there exists R > 0 such that t → F(x,t)+ Rt2
2 is convex in

[0,‖u‖L∞(Ω)] uniformly in x ∈Ω . Then,

N′

∑
n=1

∫
Ω

f (x,un−1)(un −un−1)dx

=
N′

∑
n=1

∫
Ω
[ f (x,un−1)+Run−1](un−un−1)dx−

N′

∑
n=1

∫
Ω

Run−1(un−un−1)dx

�
N′

∑
n=1

∫
Ω

[
F(x,un)−F(x,un−1)+

R
2
(|un|2−|un−1|2)

]
dx

−
N′

∑
n=1

∫
Ω

Run−1(un −un−1)dx.

Using the fact that a(a−b) = 1
2 (|a|2−|b|2)+ 1

2 |a−b|2 for all a,b ∈ R we have

N′

∑
n=1

∫
Ω

Run−1(un−1−un) =
R
2

∫
Ω
[|u0|2 −|uN′ |2]dx+

R
2

N′

∑
n=1

∫
Ω
|un−un−1|2dx.

From the convexity of the terms
∫
Ω |∇u|pdx and − 1

1−δ
∫
Ω u1−δdx we derive the follow-

ing estimates:

1
p

[∫
Ω
|∇un|pdx−

∫
Ω
|∇un−1|pdx

]
�

∫
Ω
|∇un|p−2∇un∇(un−un−1)dx,

1
1− δ

[∫
Ω
(un−1)1−δdx−

∫
Ω
(un)1−δdx

]
� −

∫
Ω

un−un−1

(un)δ
dx.

Gathering the above inequalities, we deduce that

1
Δt

N′

∑
n=1

||un−un−1||2L2(Ω) +
∫
Ω

[ |∇uN′ |p
p

− |∇u0|p
p

]
dx

� 1
1− δ

∫
Ω
[|uN′ |1−δ −|u0|1−δ ]dx+

∫
Ω

[
F(x,uN′

)−F(x,u0)
]
dx

−
N′

∑
n=1

R
2

∫
Ω
|un−un−1|2dx.



A QUASILINEAR SINGULAR PARABOLIC EQUATION 623

From the definition of C and the fact that δ < 2+ 1
p−1 , notice that

∫
Ω

u1−δdx < ∞ and
∫
Ω

u1−δdx < ∞.

Consequently, rearranging the terms we have,

1
Δt

N′

∑
n=1

||un−un−1||2L2(Ω) +
∫
Ω

[ |∇uN′ |p
p

− |∇u0|p
p

]
dx

� 1
1− δ

∫
Ω

uN′ 1−δ
dx+

∫
Ω

[
F(x,uN′

)−F(x,u0)
]
dx

�
∫
Ω

[
F(x,u)+Ru2]dx+

1
|1− δ |max

(∫
Ω

u1−δdx,
∫
Ω

u1−δdx

)
� C,

where C =C(u,u,δ ) > 0 is independent of N′ and Δt . Thus, we have by the above es-

timate that ũΔt and
∂ ũΔt
∂ t are bounded respectively in L∞(0,T ; W 1,p

0 (Ω)) and in L2(QT )

independently of Δt and T . Therefore, ũΔt and
∂ ũΔt
∂ t are bounded respectively in

L∞(0,∞; W 1,p
0 (Ω)) and in L2(0,∞; L2(Ω)) independently of Δt . �

Now we give the proof of proposition 1.11.

Proof. The fact that

∂u
∂ t

belongs to L2(0,∞; L2(Ω))

is a consequence of assertion (3) in Lemma 3.1. We now prove that

∂u
∂ t

∈ L∞(t0,∞; L2(Ω)) for any t0 > 0.

Set

ξn
def=

un−un−1

Δt
for n � 1.

For n � 2, we subtract equation (2.1) with n from the equation (2.1) substituting n by
n− 1. Multiplying by ξn the corresponding equation and integrating on Ω and sum
from N′ � 2 to N′ ′ > N′ we get:

N′ ′

∑
n=N′

∫
Ω
(ξn − ξn−1)ξndx−

N′ ′

∑
n=N′

< Δpu
n−Δpu

n−1,ξn >

−
N′ ′

∑
n=N′

∫
Ω
((

1
un )δ − (

1
un−1 )δ )ξndx

=
N′ ′

∑
n=N′

∫
Ω

[
f (x,un−1)− f (x,un−2)

]
ξndx.
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Now, by the monotonicity of the operator A , it follows that

N′ ′

∑
n=N′

∫
Ω
(ξn− ξn−1)ξndx � Δt

N′ ′

∑
n=N′

∫
Ω

[ f (x,un−1)− f (x,un−2)
Δt

]
ξndx.

Using the lipschitz property of f in [0, |u|∞] and assertion (3) in lemma 3.1, we have
that for a constant C > 0 large enough,

1
2

N′ ′

∑
n=N′

∫
Ω
(|ξn|2 −|ξn−1|2)dx+

N′ ′

∑
n=N′

∫
Ω

|ξ n− ξ n−1|2
2

dx

� Δt

N′ ′

∑
n=N′

ω
∫
Ω
[|ξn−1|2 + |ξn|2]dx � C

(ω being the lipchitz constant of f in [0, |u|∞]). So finally we have,

1
2

∫
Ω
[|ξN′ ′ |2−|ξN′−1|2]dx � C.

We now fix t0 > 0 and denote by E(t) the integer part of the real number t . We choose
N′ � E( t0

Δt
)+1 such that

∫
Ω
|ξN′−1|2 =

∫
Ω
|u

N′−1−uN′−2

Δt
|2

def= min
n∈[1,....,E( t0

Δt
)]

∫
Ω
|u

n−un−1

Δt
|2

� Δt

t0−Δt

E( t0
Δt

)

∑
1

∫
Ω
|u

n−un−1

Δt
|2 � C

for Δt << t0 and by assertion (3) in Lemma 3.1. So for N′′ > t0
Δt

and Δt > 0 small
enough we get,

∫
Ω

∣∣∣uN′ ′ −uN′′−1

Δt

∣∣∣2 � C̃

where C̃ is independent of Δt . Then we have that

∂ ũΔt

∂ t
is bounded in L∞(t0,∞;L2(Ω)) for t0 > 0 .�

From the above estimates, we immediately get the following proposition.

PROPOSITION 3.2. Let conditions in theorem 1.4 be satisfied. Then, for any t0 >
0 , up to a subsequence, we have:

uΔt , ũΔt

∗
⇀ u in L∞(0,∞; W 1,p

0 (Ω))
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and
∂ ũΔt

∂ t
∗
⇀

∂u
∂ t

in L∞(t0,∞;L2(Ω)).

Next, we have to show the compactness properties of {u(t)}t�t0 for t0 > 0. Pre-
cisely, we prove Proposition 1.12. For that, we recall the following result of J. Simon
given in [22] about the problem (3.1) below.

THEOREM 3.3. ([22]) Let u be the unique solution to{
−∇(d|∇v|p−2∇v) = h in Ω,

v = g on ∂Ω,
(3.1)

where Ω is a bounded domain in R
N with C3 regularity, 0 < d ∈ W 1,∞(Ω) , h ∈

W−1,p′(Ω) and g ∈ W 1− 1
p ,p(∂Ω) . Then, there exist M > 0 and C > 0 independent

of h such that:

(i) if p > 2 , h ∈ Lp′(Ω) and g ∈W 2− 1
p ,p(∂Ω) , then

v ∈ B
1+ 1

(p−1)2
,p

∞ (Ω) and ‖v‖
B

1+ 1
(p−1)2

,p

∞ (Ω)

� M‖h‖Lp′ (Ω) +C;

(ii) if 1 < p < 2 , h ∈ Bp−2,p′
∞ (Ω) and g ∈ B

p− 1
p ,p

∞ (∂Ω) , then

v ∈ B1+(p−1)2,p
∞ (Ω) and ‖v‖

B
1+(p−1)2,p
∞ (Ω)

� M‖h‖
Bp−2,p′
∞ (Ω)

+C.

We now prove proposition 1.12.

Proof. Let t0 > 0. Let us consider first the case p > 2. Since

∂u
∂ t

∈ L∞(t0,∞; L2(Ω)) and p > 2

we have
∂u
∂ t

∈ L∞(t0,∞;Lp′(Ω))

and since
1

uδ
∈ L∞(0,∞; Lp′(Ω)) for δ ∈

(
0,1− 1

p

)
(which follows from δ < (p− 1)/p and the fact that u is uniformly in C ) together
with Theorem 3.3 we have for t � t0 :

‖u(.,t)‖
B

1+ 1
(p−1)2

,p

∞ (Ω)

� M
∥∥∥ f (.,u)− ∂u

∂ t
(.,t)+

1

uδ

∥∥∥
Lp′ (Ω)

+C < ∞,

where M and C are constants independent of t given in Theorem 3.3. This concludes
the result for p > 2. Let us consider finally the case 1 < p < 2. From the fact that N � 3
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and N/2 � p < 2, we get by Sobolev imbedding and basic Besov spaces properties that
L2(Ω) is continuously imbedded in W p−2,p′(Ω) and that W p−2,p′(Ω) is continuously
imbedded in Bp−2,p′

∞ (Ω) . Since

∂u
∂ t

∈ L∞(t0,∞; L2(Ω)) and
1

uδ
∈ L∞(t0,∞; L2(Ω))

(which follows from δ < 1
2 and the fact that u is uniformly in C ) we get by applying

assertion (ii) of Theorem 3.3, for t � t0 :

‖u(.,t)‖
B

1+(p−1)2,p
∞ (Ω)

� M
∥∥∥ f (.,u)− ∂u

∂ t
(.,t)+

1

uδ

∥∥∥
L2(Ω)

+C < ∞. �

Finally, we give the proof of Theorem 1.10.

Proof. Using Proposition 1.12 and the compact imbeddings of

B1+(p−1)2,p
∞ (Ω) and B

1+ 1
(p−1)2

,p

∞ (Ω) in W 1,p(Ω),

we get that trajectories are relatively compact in W 1,p(Ω) for large t . Combining this
compactness property and Theorem 1.7, we obtain (1.5). �
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[8] J. DÁVILA AND M. MONTENEGRO, Existence and asymptotic behavior for a singular parabolic
equation, Trans. Amer. Soc., 357 (5) (2005), 1801–1828.
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tiques quasilinéaires, C.R. Acad. Sci. Paris Sér. I. Math., 305 (12) (1987), 521–524.

[11] M. GHERGU AND V.D. RADULESCU, Multi-parameter bifurcation and asymptotics behavior for the
singular Lane-Emden-Fowler equation with a convection term, Proc. Roy. Soc. Edinburgh Sect. A,
135, (1) (2005), 61–83.

[12] M. GHERGU AND V.D. RADULESCU,Singular elliptic problems: bifurcation and asymptotic analysis,
volume 37 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford
University Press, Oxford, 2008.



A QUASILINEAR SINGULAR PARABOLIC EQUATION 627
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