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Abstract. Let Ω = {x ∈ R
N : r0 � |x| < 1} with N � 2 and r0 ∈ (0,1) . We study a kind of

geometric oscillatory and asymptotic behaviour near |x| = 1 of all radially symmetric solutions
u = u(x) of the p -Laplace partial differential equation (P) : −div(|∇u| p−2∇u) = f (|x|)|u|p−2u
in Ω , u = 0 on |x| = 1 for p > 1 . Necessary and sufficient conditions on the coefficient
f (|x|) are given such that u(x) oscillates near |x| = 1 and the surface area of graph Γ(u) ⊆
R

N+1 of u(x) is finite-rectifiable oscillations, and infinite-nonrectifiable oscillations. The L1 -
integrability and Lp -nonintegrability of |∇u| on Ω for p > 1 are also considered.

1. Introduction and statement of the main results

Let Ω = {x ∈ R
N : r0 � |x| < 1} with N � 2 and r0 ∈ (0,1) . Let u = u(x) be a

solution of the p -Laplace partial differential equation,⎧⎪⎨
⎪⎩
−div(|∇u|p−2∇u) = f (|x|)|u|p−2u in Ω,

u = 0 on |x| = 1,

u ∈C1(Ω)∩C(Ω) and |∇u|p−2∇u ∈C1(Ω),

(1.1)

where p > 1. The coefficient f = f (r) is supposed to be a real function satisfying

f ∈C2([r0,1)), f (r) > 0 on (r0,1) and lim
r→1

f (r) = ∞. (1.2)

For p = 2, equation (1.1) becomes the appropriate linear Laplace equation −Δu =
f (|x|)u in Ω .

DEFINITION 1.1. A function u ∈ C(Ω) is said to be oscillatory near |x| = 1,
if there is a sequence xn ∈ Ω such that u(xn) = 0 for all n ∈ N and corresponding
sequence of real numbers |xn| is increasing and |xn| → 1 as n → ∞ .
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DEFINITION 1.2. A function u = u(x) , u∈C1(Ω)∩C(Ω) , is said to be rectifiable
oscillatory near |x| = 1, if u(x) oscillates near |x| = 1 and the surface area of graph
Γ(u) of u , denoted by |Γ(u)|S , is finite, where:

Γ(u) = {(x,y) ∈ R
N ×R : x ∈Ω, y = u(x)} and |Γ(u)|S =

∫
Γ(u)

dS.

However, if |Γ(u)|S is infinite, then u = u(x) is said to be nonrectifiable oscillatory
near |x| = 1.

Figure 1: u(x) is a radially symmetric function which oscillates near |x| = 1.

In the paper, we study the rectifiable oscillations of all radially symmetric solutions
u(x) of equation (1.1) , where u(x) = y(r) and r = |x| . We see that y = y(r) is a
solution of the following one-dimensional singular problem:{(

rN−1|y′|p−2y′
)′ + rN−1 f (r)|y|p−2y = 0, r ∈ (r0,1),

y(1) = 0.
(1.3)

In order to simplify the notation, we adopt the following definition.

DEFINITION 1.3. Equation (1.1) is said to be rectifiable (resp. nonrectifiable)
oscillatory near |x| = 1 if all radially symmetric solutions u(x) of (1.1) are rectifiable
(resp. nonrectifiable) oscillatory near |x| = 1.

On the rectification and rectifiability of plane curves we refer reader to [2] and
[16]. The rectifiable and unrectifiable oscillations near x = 0 for the first time were
introduced and studied in the case of Euler type equation: y′′ +λx−σy = 0 in (0,t0] ,
where λ > 0 and σ � 2, see [8] and [18]. Also, this kind of geometric oscillations have
been studied in the case of Riemann-Weber version of Euler type equation, see [10].
Preceding results are generalized to the case of general linear differential equations
y′′ + f (x)y = 0, where f (x) satisfies the so-called Hartman-Wintner type condition,
see [4]. It is enlarged to the case of two-point oscillations on the interval [0,1] , see
[13]. The most general results on the rectifiable and unrectifiable oscillations of linear
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differential equations have been obtained in the case of self-adjoint linear differential
equations, see [11]. The more general approach to the rectifiable and unrectifiable
oscillations is given in the notion of so-called fractal oscillations introduced in [9] and
continued to study in [4], [13], [14] and [12]. Recently, rectifiable oscillation of second
order half-linear differential equation(|y′|p−2y′

)′ + f (r)|y|p−2y = 0, r ∈ (r0,1), (1.4)

was studied in [14]. However, since rN−1 �≡ 1 for N � 2, we are not able to apply
directly on (1.3) the known results for (1.4). Hence, (1.3) is transformed into an
equivalent equation of the type as (1.4) . According to this procedurewhich is presented
in details in Section 2, we are able to state and prove the main result of the paper by
which the rectifiable oscillations of all radially symmetric solutions of equation (1.1)
are characterized.

THEOREM 1.1. Let coefficient f (r) besides the structural conditions given in
(1.2) satisfy the following Hartman-Wintner type condition

f−θ
(
f−η

)′′ ∈ L1(r0,1), (1.5)

where η and θ are arbitrary positive constants satisfying η+θ = 1/p. Then equation
(1.1) is rectifiable oscillatory near |x| = 1 if and only if

lim
ε→0

∫ 1−ε

r0
[ f (r)]1/p2

dr < ∞. (1.6)

REMARK 1.1. (i) By Lemma 2.5, condition (1.5) can be represented for example
with

f
− p−1

p2
(
f
− 1

p2
)′′ ∈ L1(r0,1) or f−

1
2p

(
f−

1
2p

)′′ ∈ L1(r0,1).

(ii) It should be mentioned that the conditions in Theorem 1.1 are independent of the
space dimension N . It should be also mentioned that, by Pašić and Wong [14], our
Theorem 1.1 holds true for the one-dimensional problem (1.4) with y(1) = 0. (See
Lemma 2.2 below.) It is an open question whether rectifiable oscillation of all radially
symmetric solutions of (1.1) are independent of N without the Hartman-Wintner type
condition (1.5).

By an intuitive description, if we take, among of all, that equation (1.1) is the
reduced suitable wave equation, then equation (1.1) describes the fundamental shapes
of stretched membrane with finite or infinite surface area which depends on the integra-
bility of function [ f (r)]1/p2

.
Applications of Theorem 1.1 to some linear elliptic partial differential equations

are discussed in the next examples.

EXAMPLE 1.1. We consider the linear elliptic PDE:⎧⎨
⎩

−Δu = λ
|x|2 ln4 |x|u in Ω with N = 2, λ > 0,

u = 0 on |x| = 1, u ∈C2(Ω)∩C(Ω).
(1.7)
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It is clear that p = N = 2 > 1 and the coefficient f (r) = λ/(r2 ln4 r) satisfies all re-
quired conditions from (1.2). Next, since p = 2 such f (r) also satisfies:

f−
1
2p

(
f−

1
2p

)′′ = − 1

4
√
λ

ln2 r
r

∈ L1(r0,1),

lim
ε→0

∫ 1−ε

r0
[ f (r)]1/p2

dr = − lim
ε→0

∫ 1−ε

r0

4
√
λ√

r lnr
dr � − lim

ε→0

4
√
λ r2

0

∫ 1−ε

r0

1
r lnr

dr = ∞.

Hence by Theorem 1.1 for p = 2, equation (1.7) is nonrectifiable oscillatory near
|x| = 1.

More complicated way to verify nonrectifiable oscillations near |x|= 1 of equation
(1.7) is to use the explicit solution’s formula for all radially symmetric solutions u(x)
of equation (1.7) : u(x) =

(
lnx

)[
c1 cos

(√
λ/ lnx

)
+ c2 sin

(√
λ/ lnx

)]
, x ∈ Ω , where

λ > 0 and c1,c2 ∈ R .

EXAMPLE 1.2. Let λ > 0 and σ > 2. By using the same calculation as in the
previous example, one can show that the function f (|x|) = λ |x|−2(− ln |x|)−σ , satisfies
all required assumptions of Theorem 1.1. Moreover, (1.6) is satisfied provided 2 <
σ < 4.

Now, we give an example for the coefficient f (|x|) which does not satisfy all
assumptions of Theorem 1.1.

EXAMPLE 1.3. We consider the linear elliptic PDE:

{−Δu = λ
|x|2 ln2 |x|u in Ω with N = 2, λ > 1/4,

u = 0 on |x| = 1, u ∈C2(Ω)∩C(Ω).
(1.8)

Unlike equation (1.7) , the coefficient f (r) = λ/(r2 ln2 r) of equation (1.8) does not
satisfy the Hartman-Wintner type condition (1.5) for p = 2, since for r ∈ (r0,1) we
have:

f−
1
2p

(
f−

1
2p

)′′ = − 1

4
√
λ

ln2 r+1
r ln r

/∈ L1(r0,1).

Therefore, we are not able to apply Theorem 1.1 to equation (1.8) . However, the
rectifiable oscillations near |x| = 1 of equation (1.8) can be immediately verified by
using the following explicit formula for all radially symmetric solutions u(x) of equa-
tion (1.8) : u(x) =

√
ln(1/x)

[
c1 cos(ρ ln ln(1/x)) + c2 sin(ρ ln ln(1/x))

]
, x ∈ Ω, ρ =√

λ −1/4 and c1,c2 ∈ R .

Summarizing results from three previous examples, we state the following impor-
tant consequence.
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COROLLARY 1.1. Let N = 2 , σ � 2 and λ > 0 if σ > 2 and λ > 1/4 if σ = 2 .
Then the equation {−Δu = λ

|x|2(− ln |x|)σ u in Ω⊆ R
2, σ � 2,

u = 0 on |x| = 1, u ∈C2(Ω)∩C(Ω),
(1.9)

is rectifiable oscillatory near |x|= 1 provided 2 � σ < 4 and nonrectifiable oscillatory
near |x| = 1 provided σ � 4 .

Let us remark that equation (1.9) allows explicit form of their radially symmetric
solutions only for σ = 2 and σ = 4.

We consider the case where the coefficient f (|x|) admits a precise asymptotic
behaviour near |x| = 1. We say that f (r) ∼ g(r) as r → 1 if there exists two positive
constants C1 , C2 such that C1g(r) � f (r) � C2g(r) near r = 1.

THEOREM 1.2. Let coefficient f (r) satisfy (1.2) and let there be a σ ∈ R such
that σ > p and

f ′′(r) ∼ (1− r)−σ−2 as r → 1. (1.10)

Then equation (1.1) is rectifiable oscillatory near |x| = 1 if and only if σ < p2 .

The proof of previous theorem is given at the end of Section 2. An application of
Theorem 1.2 to a linear elliptic PDE is given in the next example.

EXAMPLE 1.4. Let N � 2. We consider equation (1.1) with the case

f (r) = g(r)(1− r)−σ ,

where σ > p and g satisfies g ∈C2([r0,1]) and g(r) > 0 on (r0,1] . With the help of
Theorem 1.2, one can conclude that, in this case, equation (1.1) is rectifiable oscillatory
near |x| = 1 provided σ < p2 and nonrectifiable oscillatory near |x| = 1 provided
σ � p2 . In fact, the coefficient f (r) = g(r)(1− r)−σ obviously satisfies condition
(1.2) and f ′′(r) ∼ (1− r)−σ−2 as r → 1. Thus, we may apply Theorem 1.2 to the
equation, which shows the statement of this example.

OPEN QUESTION 1.1. Let u(x) be a radially symmetric solution of equation (1.1)
which oscillates near |x| = 1 and let xn ∈Ω be the sequence of zero points of u(x) de-
termined as in Definition 1.2. Let Ωn = {x ∈ R

N : |xn| < |x| < |xn+1|} , n ∈ N . It is
known that the Riccati type substitution (see for instance [3], [5], [6]),

�ωn(x) =
|∇u|p−2∇u
|u|p−2u

, x ∈Ωn,

transforms equation (1.1) into the following vector equation

div�ωn +(p−1)|�ωn|q + f (|x|) = 0, x ∈Ωn,

where 1/q+1/p= 1. Is it possible to derive some qualitative properties of the function
�ωn(x) that are related to the rectifiable and nonrectifiable oscillations of u(x) near |x|=
1?
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In the sequel, we consider the problems of L1 -integrability and Lp -nonintegrability
of |∇u| on Ω for all radially symmetric solutions u(x) of equation (1.1) . The L1 -
integrability of |∇u| on Ω is a direct consequence of Theorem 1.1 and Lemma 2.1 as
follows.

COROLLARY 1.2. Let f (r) satisfy (1.2) and (1.10) with σ > p. For every radi-
ally symmetric solution u(x) of equation (1.1), we have |∇u| ∈ L1(Ω) if and only if
σ < p2 .

For the Lp -nonintegrability of |∇u| on Ω , some asymptotic properties of radially
symmetric solutions of equation (1.1) are required as follows.

THEOREM 1.3. Assume that conditions (1.2) and (1.5) hold and f (r) is increas-
ing near r = 1 . Let u(x) = y(|x|) be a radially symmetric solution of equation (1.1)
such that there exists an increasing sequence rn ∈ (r0,1) of consecutive zeros of y(r)
satisfying rn → 1 and rn+1 − rn ∼ rn+2− rn+1 as n → ∞ . Then |∇u| /∈ Lp(Ω) .

If the coefficient f (|x|) admits a precise asymptotic behaviour near |x| = 1, then
besides Corollary 1.2 we have the following result.

COROLLARY 1.3. Let f (r) satisfy (1.2) and (1.10) with σ > p. For every radi-
ally symmetric solution u(x) of equation (1.1), we have |∇u| /∈ Lp(Ω) .

About the Lp integrability of solutions of quasilinear ellitpic equations, in most
general setting, see in [15].

2. Proofs of Theorems 1.1 and 1.2

We firstly state the following lemma.

LEMMA 2.1. Let u ∈C1(Ω)∩C(Ω) be a radially symmetric function and let y =
y(r) = u(|x|) , r = |x| . Then u(x) is rectifiable oscillatory near |x|= 1 if and only if the
next two conditions are satisfied:

(i) y(r) oscillates near r = 1 , that is, there is an increasing sequence rn ∈ (r0,1) such
that y(rn) = 0 and rn → 1 as n → ∞;

(ii) the graph Γ(y) = {(r,t) ∈ R×R : r ∈ [r0,1), t = y(r)} of y is a rectifiable curve

in R
2 , that is,

√
1+ y′2 ∈ L1(r0,1) .

Furthermore, u(x) is nonrectifiable oscillatory near |x| = 1 if and only if the

statement (i) is fulfilled and Γ(y) is nonrectifiable curve in R
2 , that is,

√
1+ y′2 �∈

L1(r0,1) .

Proof. Since u(x) = y(r) , r = |x| , we have |∇u| = |y′| , and it follows that

|Γ(u)|S =
∫
Γ(u)

dS = ωN

∫ 1

r0
rN−1

√
1+ y′(r)2dr,
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where ωN is the volume of the unit ball in R
N . Since

rN−1
0

∫ 1

r0

√
1+ y′(r)2dr �

∫ 1

r0
rN−1

√
1+ y′(r)2dr �

∫ 1

r0

√
1+ y′(r)2dr,

u(x) is rectifiable oscillatory at |x| = 1 if and only if
√

1+ y′(r)2 ∈ L1(r0,1) , which
proves this lemma. �

Let u be a radially symmetric solution of (1.1) and let y(r) = u(x) , r = |x| . Then
y(r) satisfies the one-dimensional equation (1.3) . By the change of variables

z(t) = y(r) with

⎧⎨
⎩

r = et if p = N,

r = t
p−1
p−N if p �= N,

(2.1)

equation (1.3) is transformed into the equivalent one (see for instance [17] and [7]):

(|z′|p−2z′)′ +F(t)|z|p−2z = 0, t ∈ IN , (2.2)

where

F(t) =

⎧⎨
⎩

eNt f (et ) if p = N,∣∣ p−1
p−N

∣∣p
t

pN−p
p−N f (t

p−1
p−N ) if p �= N,

(2.3)

and

IN =

⎧⎪⎪⎨
⎪⎪⎩

(t0,0) for some t0 ∈ (−∞,0) if p = N,

(t0,1) for some t0 ∈ (0,1) if p > N,

(1,t0) for some t0 ∈ (1,∞) if p < N.

(2.4)

Since ∫ 1

r0

∣∣∣∣dy
dr

∣∣∣∣dr =
∫

IN

∣∣∣∣dz
dt

∣∣∣∣dt, (2.5)

we find that dy/dr ∈ L1([r0,1]) if and only if dz/dt ∈ L1(IN) . It is easy to see that
the structural conditions from (1.2), that is, f ∈ C2([r0,1)) , f (r) > 0 on (r0,1) and
f (1−) = ∞ , are equivalent to:

F ∈C2(IN), F(t) > 0 on IN and

⎧⎨
⎩

F(0−) = ∞ if p = N,

F(1±) = ∞ if p �= N.
(2.6)

Let us recall the results by [14] for the rectifiable oscillations of equation (2.2).

LEMMA 2.2. (See [14, Theorem 2].) Let η and θ be arbitrary positive constants
such that η+θ = 1/p. Let F satisfy (2.6) and

F−θ d2

dt2
F−η ∈ L1(IN). (2.7)

Then problem (2.2) with z(1) = 0 is rectifiable oscillatory near t = 1 if and only if

F1/p2 ∈ L1(IN). (2.8)
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Define Q = Q(r;η) by

Q(r;η) = r−
p(N−1)

p−1 η [ f (r)]−η , r ∈ (r0,1). (2.9)

First we show the following lemma.

LEMMA 2.3. (i) Let η and θ be arbitrary positive constants such that η +θ =
1/p. Condition (2.7) is equivalent to

Qθ/η d
dr

(
r

N−1
p−1

dQ
dr

)
∈ L1(r0,1). (2.10)

(ii) Condition (2.8) is equivalent to

r−
N−1
p−1 [Q(r;1/p2)]−1 ∈ L1(r0,1). (2.11)

Proof. (i) Let firstly consider the case p = N . Since F(t) = eNt f (et ) , then we
have ∫ 0

t0

1
[F(t)]θ

d2

dt2

(
1

[F(t)]η

)
dt =

∫ 0

t0
[Q(et ;η)]θ/η d2

dt2
(
Q(et ;η)

)
dt = I1.

Since
d2

dt2
(
Q(et ;η)

)
= r

d
dr

(
r
dQ
dr

)
,

we obtain

I1 =
∫ 0

t0
[Q(et ;η)]θ/η d

dr

(
r
dQ
dr

)
rdt =

∫ 1

r0
[Q(r)]θ/η d

dr

(
r
dQ
dr

)
dr.

Next we consider the case p �= N . In this case, since

F(t) = Cp,Nt
pN−p
p−N f (t

p−1
p−N ), where Cp,N =

∣∣∣ p−1
p−N

∣∣∣,
we have∫ b

a

1
[F(t)]θ

d2

dt2

(
1

[F(t)]η

)
dt = C

∫ b

a

[
Q(t

p−1
p−N ;η)

]θ/η d2

dt2

(
Q(t

p−1
p−N ;η)

)
dt = I2.

Here the interval [a,b] denotes [t0,1] or [1,t0] respectively for p > N or p < N . Since

d2

dt2

(
Q(t

p−1
p−N ;η)

)
=

( p−1
p−N

)2
r

N−1
p−1

d
dr

(
r

N−1
p−1

dQ
dr

)
,

we obtain

I2 = C′
∫ b

a
[Q(t

p−1
p−N ;η)]θ/η r

N−1
p−1

d
dr

(
r

N−1
p−1

dQ
dr

)
dt
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= C′
∫ 1

r0
[Q(r)]θ/η d

dr

(
r

N−1
p−1

dQ
dr

)
dr,

which proves that (2.10) is equivalent to (2.7) .
(ii) First let us consider the case p = N . Since

F(t) = eNt f (et ) and Q(et ;1/p2) = e−t/p[ f (et )]−1/p2
, r ∈ (r0,1),

we have

∫ 0

−ε
[F(t)]1/p2

dt =
∫ 0

−ε
et/N [ f (et)]1/p2

dt =
∫ 0

−ε
1

Q(et ;1/p2)
dt =

∫ 1

e−ε
1

rQ(r;1/p2)
dr.

Next let us consider the case p �= N . Since

F(t) = Cp,Nt
pN−p
p−N f (t

p−1
p−N ), Cp,N =

∣∣∣ p−1
p−N

∣∣∣p
,

then we have

∫ 1+ε

1
[F(t)]1/p2

dt = C1/p2

p,N

∫ 1+ε

1
t

N−1
p2−pN [ f (t

p−1
p−N )]1/p2

dt

= C1/p2

p,N

∫ 1+ε

1

1

Q(t
p−1
p−N ;1/p2)

dt

= C′
p,N

∫ 1

1−ε̃
1

r
N−1
p−1 Q(r;1/p2)

dr,

where C′
p,N =

∣∣∣ p−1
p−N

∣∣∣(p−1)/p
and ε and ε̃ have a relation 1+ε = (1− ε̃)(N−1)/(p−1) . In

the above, we have used (2.9) , that is,

Q(t(p−1)/(p−N);1/p2) =
1

t(N−1)/(p2−pN)[ f (t(N−1)/(p−N))]1/p2 .

Thus, we have proved that (2.11) is equivalent to (2.8). �

LEMMA 2.4. Let η and θ be arbitrary positive constants such that η+θ = 1/p.
Then condition (2.10) is equivalent to (1.5).

In order to prove Lemma 2.4, we need the following result by [14].

LEMMA 2.5. (See [14, Lemma 1].) Let f satisfy (1.2). Let η1 , θ1 , η2 , and θ2

be positive constants such that η1 + θ1 = η2 + θ2 . Then f−θ1
(
f−η1

)′′ ∈ L1(I) if and

only if f−θ2
(
f−η2

)′′ ∈ L1(I) .
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PROOF OF LEMMA 2.4. Applying Lemma 2.5 with f = F , we may assume that
(2.7) holds with θ = η = 1/(2p) . Then, by Lemma 2.3 (i), we obtain (2.10) with
θ = η = 1/(2p) .

In order to simplify notation, let q = (N−1)/(p−1) . Then

Q(r;η) = r−pqη f (r)−η

and
Qr(r;η) = −pqηr−pqη−1[ f−η ]+ r−pqη [ f−η ]r.

By a direct calculation, we obtain

Q(r;η)θ/η
(
r(N−1)/(p−1)Qr(r;η)

)
r

= Q(r;η)θ/η (rqQr(r;η))r

=
pqη(pqη+1−q)

r2 [ f−θ ][ f−η ]

+
q(1−2pη)

r
[ f−θ ][ f−η ]r +[ f−θ ][ f−η ]rr. (2.12)

Putting θ = η = 1/(2p) in (2.12), we have

Q(r;η)
(
r(N−1)/(p−1)Qr(r;1/(2p))

)
r

=
pqη(pqη+1−q)

r2

[
f−1/(2p)][ f−1/(2p)]+

[
f−1/(2p)][ f−1/(2p)]

rr. (2.13)

Since f (r)→∞ as r→ 1− , we see that the function r−2[ f−1/(2p)][ f−1/(2p)] is bounded
on [r0,1) and so,

r−2[ f−1/(2p)][ f−1/(2p)] ∈ L1([r0,1)).

Then it follows that
f−

1
2p

(
f−

1
2p

)′′ ∈ L1(r0,1). (2.14)

By applying Lemma 2.5 again, we obtain (1.5).
Conversely, we assume that (1.5) holds. By Lemma 2.5 we may assume that (2.14)

holds. By (2.13), we obtain (2.10) with θ = η = 1/(2p) . By applying Lemma 2.5 with
f = F , we have (2.10). �

LEMMA 2.6. The condition (2.11) is equivalent to (1.6) .

Proof. Observe that

1

r(N−1)/(p−1)Q(r;1/p2)
= r(N−1)/p f (r)1/p2

.

Then it follows that

r(N−1)/p
0

∫ 1−ε

r0
f (x)1/p2

dx �
∫ 1−ε

r0

1

r(N−1)/(p−1)Q(r;1/p2)
dr �

∫ 1−ε

r0
f (x)1/p2

dx.
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Thus (2.11) is equivalent to (1.6). �

PROOF OF THEOREM 1.1. Let u= u(x)= y(|x|) be a solution of our main equation
(1.1) , where the coefficient f = f (r) satisfies conditions (1.2) and (1.5) . Then by
Lemmas 2.3 (i) and 2.4, the coefficient F = F(t) (defined in (2.3)) of equation (2.2)
satisfies the required conditions (2.6) and (2.7) . Hence, by Lemma 2.2, equation
(2.2) is rectifiable oscillatory if and only if condition (2.8) is fullfiled. Together with
(ii) of Lemma 2.3 and Lemma 2.6, this proves that (2.2) is rectifiable oscillatory if and
only if condition (1.6) is valid. We know that the rectifiability of the graph G(z) of
a smooth function z(t) , defined on the interval I , is equivalent to dz/dt ∈ L1(I) , see
[8, Theorem 1]. By (2.5) , it means that dy/dr ∈ L1(I) if and only if (1.6) is valid.
Lemma 2.1 implies that (1.1) is rectifiable oscillatory near |x| = 1 if and only if (1.6)
is valid, which proves this theorem. �

PROOF OF THEOREM 1.2. By integrating (1.10) we obtain the corresponding
asymptotic behaviour for f (r) and f ′(r) and hence, we have:

f (r) ∼ (1− r)−σ , f ′(r) ∼−(1− r)−σ−1 and f ′′(r) ∼ (1− r)−σ−2 as r → 1. (2.15)

Next, we show that a function f (r) which satisfies (1.2) and (2.15) also satisfies
the Hartman-Wintner condition (1.5) provided σ > p . In fact,

f−
1
2p ( f−

1
2p )′′ =

1+2p
4p2 f−

1+2p
p ( f ′)2− 1

2p
f−

1+p
p f ′′,

and then ∣∣∣ f− 1
2p

(
f−

1
2p

)′′∣∣∣ ∼ (1− r)
σ
p −2 ∈ L1(r0,1),

since σ > p . Moreover, from (2.15) easily follows: f
1
p2 ∈ L1(r0,1) if and only if

σ < p2 . Now, with the help of Theorem 1.1 we complete the proof of this theorem. �

3. Proofs of Theorem 1.3 and Corollary 1.3

In this section, we give the proofs of Theorem 1.3 and Corollary 1.3 which have
been stated in Section 1.

Let u(x) = y(|x|) be a radially symmetric solution of equation (1.1), where the
coefficient f (r) satisfies the required assumptions (1.2) and (1.5). By the change of
variables given in (2.1) , we know that the function z(t) = y(r) satisfies the differential
equation (2.2): (|z′|p−2z′)′ +F(t)zp−2z = 0, t ∈ IN , where the coefficient F(t) and the
interval IN are given respectively by (2.3) and (2.4).

We consider the case IN = (t0,1) . The other cases from (2.4), that is IN = (t0,0)
and IN = (1, t0) can be analogously considered and they are left to the reader.

The generalized sine function sinp is defined by the solution to the problem

(|S′|p−2S′)′ +(p−1)|S|p−2S = 0, S(0) = 0 and S′(0) = 1.
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The function sinp is defined on R and is periodic with period 2πp , where

πp =
2π

psin(π/p)
.

It is known that sinp satisfies |sinp t|p + |sin′p t|p = 1 for all t ∈ R ,

sinp(kπp) = 0 for all k ∈ N,

sin′p(kπp +πp/2) = 0 and |sinp(kπp +πp/2)| = 1 for all k ∈ N,

where sin′p denotes the first derivative of sinp .
Similar to as in [14, Lemma 2, Propositions 1 and 2], we obtain the following

lemma.

LEMMA 3.1. Let η and θ be arbitrary positive constants such that η+θ = 1/p.
Let F satisfy (2.6) and (2.7) . Then all solutions z = z(t) of equation (2.2) admit the
following asymptotic formula:

z(t) = (p−1)
1
pq F− 1

pq (t)V
1
p (t)sinp(ϕ(t)) near t = 1 , (3.1)

where 1/p+1/q = 1 and the energy functional V (t) and the phase ϕ(t) satisfy:{
0 < limt→1−V (t) <∞ and limt→1−ϕ(t) = ∞,

ϕ ′(t) > 0 on (t0,1) and ϕ ′(t) ∼ F
1
p (t) as t → 1.

(3.2)

PROOF OF THEOREM 1.3. From the assumption of this theorem, we know that
there exists an increasing sequence rn ∈ (r0,1) of consecutive zeros of y(r) such that
rn → 1 and rn+1− rn ∼ rn+2− rn+1 as n → ∞ . Hence by the change of variables given
in (2.1) we get an increasing sequence tn ∈ (t0,1) of consecutive zeros of z(t) such
that

tn → 1 and tn+1− tn ∼ tn+2− tn+1 as n → ∞ . (3.3)

Since z ∈W 1,p
0 (t0,1) , there exists a c > 0 depending only on p such that (see [1])

sup
(tn,tn+1)

|z(t)| � c(tn+1− tn)1−1/p||z′||Lp(tn,tn+1).

It allows us to conclude that for some n0 ∈ N and for all m � n0 ,

||z′||pLp(t0,tm+1) �
m

∑
n=n0

||z′||pLp(tn,tn+1) � c
m

∑
n=n0

max(tn,tn+1) |z(t)|p
(tn+1− tn)p−1 . (3.4)

Moreover, from (3.3) and (3.4), we observe that

||z′||p(t0,tm+1) � c
m

∑
n=n0

max(tn,tn+1) |z(t)|p
(tn+2− tn+1)p−1 . (3.5)
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Since tn is an increasing sequence of consecutive zeros of z(t) , from the asymptotic
formula (3.1) and from (3.2), we derive that there exists an n∗ ∈ N such that:

ϕ(tn) = (n+n∗)πp for all n ∈ N. (3.6)

We also get the existence of a sequence sn ∈ (tn,tn+1) such that

ϕ(sn) = (n+n∗+1/2)πp and |sinp(ϕ(sn))| = 1 for all n ∈ N. (3.7)

By the mean value theorem, there exists σn+1 ∈ (tn+1,tn+2) such that

πp = ϕ(tn+2)−ϕ(tn+1) = ϕ ′(σn+1)(tn+2− tn+1).

From (3.2), we get the existence of a positive constant c1 and of an n1 ∈ N such that
for all n � n1 ,

1
(tn+2− tn+1)p−1 =

1

π p−1
p

[ϕ ′(σn+1)]p−1 � c1
[
F

1
p (σn+1)

]p−1
. (3.8)

Note here that F(t) is increasing near t = 1, since f (t) is increasing near t = 1 and F
is given by (2.3). From tn < sn < tn+1 < σn+1 < tn+2 , we have

1
(tn+2− tn+1)p−1 � c1

[
F

1
p (sn)

]p−1 = c1[F(sn)]
1− 1

p . (3.9)

On the other hand, from (3.1), (3.2) and (3.7), we obtain the existence of a positive
constant c2 and of an n2 ∈ N such that for all n � n2 ,

max
(tn,tn+1)

|z(t)|p � |z(sn)|p � c2
[
F− 1

pq (sn)
]p = c2[F(sn)]

1
p−1, (3.10)

since 1/p+1/q = 1.
Finally, by chosing n0 = max{n1,n2} , where n1,n2 are as in (3.8) and (3.10) and

using (3.9) and (3.10) into (3.5), we obtain:

||z′||p(t0,tm+1)
� c

m

∑
n=n0

max(tn,tn+1) |z(t)|p
(tn+2− tn+1)p−1 � c3

m

∑
n=n0

[F(sn)]
1− 1

p [F(sn)]
1
p−1

= c3

m

∑
n=n0

1 = c3(m−n0).

Taking m → ∞ in previous inequality, we get z′ /∈ Lp(t0,1) which implies that y′ /∈
Lp(r0,1) and |∇u| /∈ Lp(Ω) , p > 1. It proves this theorem. �

PROOF OF COROLLARY 1.3. In the proof of Theorem 1.2, it is shown that as-
sumptions (1.2) and (1.10) ensure that the coefficient f (r) also satisfies the Hartman-
Wintner condition (1.5). Hence, f (r) satisfies all required assumptions of Theorem
1.3. Thus, in order to be able to use Theorem 1.3, it remains to show that every radially
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symmetric solution u(x) = y(|x|) admits an increasing sequence of zeros rn ∈ (r0,1)
such that

rn → 1 and rn+1− rn ∼ rn+2 − rn+1 as n → ∞. (3.11)

In fact, by the reasons already presented at the begining of the proof of Theorem 1.3,
we have all solutions z = z(t) of equation (2.2) allowing the asymptotic formula (3.1)
and (3.2) (let for instance IN = (t0,1) , the other cases: IN = (t0,0) and IN = (1, t0) can
be analogously considered).

By the asymptotic assumption for f (t) near t = 1 given in (2.15) we have F(s) ∼
(1− s)−σ as s → 1. By the asymptotic behaviour of ϕ ′(t) near t = 1, determined in
(3.2): ϕ ′(t) ∼ F1/p(t) as t → 1, we obtain:

ϕ(t) ∼
∫ t

t0
F

1
p (s)ds ∼

∫ t

t0
(1− s)−

σ
p ds ∼ (1− t)−

σ
p +1 as t → 1. (3.12)

Next, with the help of (3.3) we know that sequence tn of consecutive zeros of every
solution z(t) of (2.2) satisfies ϕ(tn) ∼ n as n → ∞ (see (3.6)), which together with
(3.12) shows that tn ∼ 1−n−p/(σ−p) as n → ∞ and thus,

tn+1− tn ∼ n−
σ

σ−p ∼ (n+1)−
σ

σ−p ∼ tn+2− tn+1 as n → ∞.

It proves the desired statement (3.11) by using the change of variables given in (2.1).
�
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