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A SECOND–ORDER DIFFERENTIAL SYSTEM WITH

HESSIAN–DRIVEN DAMPING;

APPLICATION TO NON–ELASTIC SHOCK LAWS

HEDY ATTOUCH, PAUL-EMILE MAINGÉ AND PATRICK REDONT

Abstract. We consider the second-order differential system with Hessian-driven damping ü+
α u̇ + β∇2Φ(u)u̇ +∇Φ(u) +∇Ψ(u) = 0, where H is a real Hilbert space, Φ,Ψ : H → R

are scalar potentials, and α ,β are positive parameters. An interesting property of this system
is that, after introduction of an auxiliary variable y , it can be equivalently written as a first-
order system involving only the time derivatives u̇ , ẏ and the gradient operators ∇Φ , ∇Ψ .
This allows to extend our analysis to the case of a convex lower semicontinuous function Φ :
H → R∪{+∞} , and so to introduce constraints in our model. When Φ = δK is the indicator
function of a closed convex set K ⊆ H , the subdifferential operator ∂Φ takes account of the
contact forces, while ∇Ψ takes account of the driving forces. In this setting, by playing with
the geometrical damping parameter β , we can describe nonelastic shock laws with restitution
coefficient. Taking advantage of the infinite dimensional framework, we introduce a nonlinear
hyperbolic PDE describing a damped oscillating system with obstacle. The first-order system
is dissipative; each trajectory weakly converges to a minimizer of Φ+Ψ , provided that Φ
and Φ+Ψ are convex functions. Exponential stabilization is obtained under strong convexity
assumptions.
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[26] P. E. MAINGÉ, N. MERABET, A new inertial-type hybrid projection- proximal algorithm for mono-

tone inclusions, Applied Mathematics and Computation, (2009), doi:10.1016/j.amc.2009.10.26.
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