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Abstract. We study the homogeneous Dirichlet problem for the equation

ut =
n

∑
i=1

Di
(
ai|Di(|u|m(x)−1u)|pi(x,t)−2Di(|u|m(x)−1u)

)
+b|u|σ(x,t)−2u

with given exponents m(x) , pi(x,t) and σ(x,t) . It is proved that the problem has a solution in
a suitable variable exponent Sobolev space. In dependence on the properties of the coefficient b
and the exponents of nonlinearity, the solution exists globally or locally in time. The comparison
principle and uniqueness are proved under additional restrictions on the data.

1. Introduction

The paper addresses the questions of existence and uniqueness of solutions of the
Dirichlet problem for the doubly nonlinear anisotropic parabolic equation with variable
nonlinearity:

ut =
n

∑
i=1

Di

(
ai(z)|Di(|u|m(x)−1u)|pi(z)−2Di(|u|m(x)−1u)

)
+b(z)|u|σ(z)−2u, z = (x,t) ∈ QT ,

u(x,0) = u0(x) in Ω, u = 0 on ΓT ,

(1.1)

where Ω ⊂ R
n is a bounded domain with the Lipschitz-continuous boundary ∂Ω ,

QT = Ω× (0,T ) and ΓT = ∂Ω× (0,T ) . The exponents of nonlinearity m(x) , pi(z)
and σ(z) are given functions of their arguments.

The nonlinear equations with variable nonlinearity are usually termed equations
with nonstandard growth conditions. In the last decades, the theory of such equations

Mathematics subject classification (2010): 35K55, 35K65, 35K67, 35K92.
Keywords and phrases: nonlinear parabolic equations, double nonlinearity, nonstandard growth con-

ditions.
The first author was partially supported by the Research Project PTDC/MAT/110613/2009, FCT, Portugal. The

second author acknowledges the support of the Research Project MTM2010-18427, MICINN, Spain.

c© � � , Zagreb
Paper DEA-04-05

67



68 STANISLAV ANTONTSEV AND SERGEY SHMAREV

has been developing developing very rapidly and already accounts for numerous results
concerning the issues we discuss in the present work. Equations of the type (1.1) with
constant exponents m and pi arise in the mathematical modelling of various physical
processes such as flows of incompressible turbulent fluids or gases in pipes, processes of
filtration in porous media, glaciology - see, e.g., [2, 16, 17]. The questions of existence
and uniqueness of solutions to equations of the types

ut = div
(
a |u|α |∇u|p−2∇u

)
+ f (x,t,u),

(|u|β−1u)t = div
(
a |∇u|p−2∇u

)
+g(x,t,u)

(1.2)

with constant exponents of nonlinearity were studied by many authors - see [11, 12,
13, 16, 22, 25, 27]. Existence, uniqueness, and qualitative properties of solutions for
parabolic equations with variable nonlinearity, including doubly nonlinear equations
(1.2) with variable p and α , were studied in [1, 3, 4, 5, 6, 7, 8, 9], see also [10] for a
study of elliptic equations with triple variable nonlinearity.

The Cauchy problem for doubly nonlinear parabolic equations with constant ex-
ponents of nonlinearity was studied in [14, 15, 20].

We prove that the Dirichlet problem for equation (1.1), rewritten in the formally
equivalent form for the new unknown v = |u|m(x)−1u , has a weak energy solution in a
suitable Sobolev-Orlicz space prompted by the equation. The existence result is estab-
lished under very weak restrictions on the low-order term, which entails the possibility
that the solutions exist locally in time and may blow-up in a finite time. The compar-
ison principle and uniqueness are established under stronger assumptions on the data:
the proof is given for the case when coefficient b(z) is nonpositive which means, in
particular, that the solutions exist globally in time.

The paper is organized as follows. In Section 2 we define the variable exponent
Sobolev spaces and collect some known facts from the theory of these spaces used in
the further proceeding. The rigorous assumptions on the problem data and the main
existence result are given in Section 3. In Sections 4, 5, 6 we construct a sequence of
solutions to the regularized problem and show that the limit of this sequence is a solu-
tion of the problem under study. In Section 7-8 we show that under certain restriction
on the data the solutions possess higher regularity, and then use this fact to establish
the comparison principle and uniqueness. These results are confined to the solutions
which exist globally in time, the latter property is provided by suitable restrictions on
the coefficient b(z) and the exponents of nonlinearity m(x) and σ(z) .

2. The function spaces

In this section we collect some known facts from the theory of the Sobolev spaces
with variable exponent. A rigorous and detailed exposition of this theory, as well as the
exhaustive review of the existing bibliographic sources, can be found in the monograph
[18].
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2.1. Orlicz-Sobolev spaces Lp(·)(Ω) and W 1,p(·)
0 (Ω): definitions and basic proper-

ties

Let Ω⊂ R
n be a bounded domain, with Lipschitz–continuous boundary ∂Ω . Let

p(x) : Ω �→ [p−, p+] ⊂ (1,∞) be a continuous function with the logarithmic module of
continuity:

∀ z, ζ ∈Ω, |z− ζ |< 1, ∑
i

|pi(z)− pi(ζ )| � ω(|z− ζ |), (2.1)

where

lim
τ→0+

ω(τ) ln
1
τ

= C < +∞.

By Lp(·)(Ω) we denote the space of measurable functions f (x) on Ω such that

Ap(·)( f ) =
∫
Ω

| f (x)|p(x) dx < ∞.

The space Lp(·)(Ω) equipped with the norm (the Luxemburg norm)

‖ f‖p(·),Ω ≡ ‖ f‖Lp(·)(Ω) = inf
{
λ > 0 : Ap(·)

(
f/λ

)
� 1

}
becomes a Banach space. The Banach space W 1, p(·)

0 (Ω) with p(x) ∈ [p−, p+]⊂ (1,∞)
is defined by

⎧⎨
⎩

W 1, p(·)
0 (Ω) =

{
u ∈ Lp(·)(Ω) : |∇u|p(x) ∈ L1(Ω), u = 0 on ∂Ω

}
,

‖u‖
W

1,p(·)
0 (Ω)

= ‖∇u‖p(·),Ω.
(2.2)

A thorough discussion of the variable exponent Lebesgue and Sobolev spaces can be
found in the monograph [18]. We limit ourselves by mentioning the basic properties of

the spaces W 1,p(·)
0 (Ω) used in the rest of this paper.

• The space W 1,p(·)(Ω) is separable and reflexive, provided that p(x) ∈C0(Ω) .

• If condition (2.1) is fulfilled, then C∞
0 (Ω) is dense in W 1, p(·)

0 (Ω) , which can be
defined as the completion of C∞

0 (Ω) with respect to the norm (2.2). The density of

smooth functions in the space W 1,p(·)
0 (Ω) is crucial for the further proceeding. The

condition of log-continuity of p(x) is the best known and the most frequently used

sufficient condition for the density of C∞
0 in W 1,p(x)

0 (Ω) - [18, 24, 28]). Although this
condition is not necessary and can be substituted by other conditions - see [18, 19, 21,
28] - we keep it throughout the paper for the sake of simplicity of presentation.

• It follows directly from the definition of the norm that

min
(
‖ f‖p−

p(·) , ‖ f‖p+

p(·)
)

� Ap(·)( f ) � max
(
‖ f‖p−

p(·) ,‖ f‖p+

p(·)
)
. (2.3)
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• Hölder’s inequality. For all f ∈ Lp(·)(Ω) , g ∈ Lp′(·)(Ω) with

p(x) ∈ (1,∞), p′(x) =
p(x)

p(x)−1
,

the following inequality holds:
∫
Ω

| f g|dx �
( 1

p−
+

1
(p′)−

)
‖ f‖p(·)‖g‖p′(·) � 2‖ f‖p(·)‖g‖p′(·) . (2.4)

2.2. Spaces Lp(·,·)(QT ) and anisotropic space W(QT )

Let m(x) > 0 and pi(x,t) > 1, i = 1, . . . ,n , be given functions. We assume that
m(x) ∈C0(Ω) and pi(x,t) satisfy the log-continuity condition in QT :

∀ (x, t), (y,τ) ∈ QT , such that |(x,t)− (y,τ)| =
√
|x− y|2 +(t− τ)2 < 1

it holds

∑
i
|pi(x, t)− pi(y,τ)| � ω(|(x,t)− (y,τ)|), lim

τ→0+
ω(τ) ln

1
τ

= C. (2.5)

For every fixed t ∈ [0,T ] we introduce the Banach space

Vt(Ω) =
{

u(x) ∈ L
m(·)+1

m(·) (Ω)∩W 1,1
0 (Ω) : |Diu(x)|pi(x,t) ∈ L1(Ω)

}
,

‖u‖Vt(Ω) = ‖u‖m(·)+1
m(·) ,Ω +∑

i
‖Diu‖pi(·,t),Ω,

and denote by V′
t(Ω) its dual. By W(Q) we denote the Banach space

W(QT ) =

{
u ∈ L

m(·)+1
m(·) (QT )

∣∣∣∣∣ |Diu|pi(x,t) ∈ L1(QT ),
u(·,t) in Vt(Ω) for a.e. t ∈ (0,T )

}
,

‖u‖W(QT ) =∑
i
‖Diu‖pi(·),QT

+‖u‖m(·)+1
m(·) ,QT

.

W′(QT ) is the dual of W(QT ) (the space of linear functionals over W(QT )):

w ∈ W′(QT ) ⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∃w = (w0,w1, . . . ,wn) such that

w0 ∈ Lm(·)+1(QT ), wi ∈ Lp′i(·)(QT ),

∀φ ∈ W(QT ) 〈〈w,φ〉〉 =
∫

QT

(
w0φ +

n

∑
i=1

wiDiφ
)
dz.

The norm in W′(QT ) is defined by

‖v‖W′(QT ) = sup
{〈〈v,φ〉〉|φ ∈ W(QT ), ‖φ‖W(QT ) � 1

}
.
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The possibility to approximate a function u∈W(QT ) is crucial for the further proceed-
ing. Let ρ be the Friedrichs’ mollifying kernel

ρ(s) =

{
κ exp

(− 1
1−|s|2

)
if |s| < 1,

0 if |s| > 1,
κ = const,

∫
Rn+1

ρ(z)dz = 1.

Given a function v ∈ L1(QT ) , we extend it to the whole R
n+1 by a function with

compact support (keeping the same notation for the continued function) and then define

vh(z) =
∫

Rn+1
v(s)ρh(z− s)ds with ρh(s) =

1
hn+1ρ

( s
h

)
, h > 0.

The following assertion are known.

PROPOSITION 2.1. If u ∈ W(QT ) with the exponents pi(z) satisfying (2.1) in
QT , then

‖uh‖W(QT ) � C
(
1+‖u‖W(QT )

)
and ‖uh−u‖W(QT ) → 0 as h → 0.

Let us denote
p+ = sup

QT

pi(z), m− = inf
Ω

m(x)

and set
V+(Ω) =

{
u(x)| u ∈ L1+ 1

m− (Ω)∩W 1,1
0 (Ω), |∇u| ∈ Lp+

(Ω)
}

.

Since V+(Ω) is separable, it is a span of a countable set of linearly independent func-
tions {ψk} ⊂ V+(Ω) .

PROPOSITION 2.2. Let pi(z) satisfy condition (2.1) in QT . Then the set {ψk} is
dense in Vt(Ω) for every t ∈ [0,T ] .

PROPOSITION 2.3. For every u ∈ W(QT ) there is a sequence {dk(t)} , dk(t) ∈
C1[0,T ] , such that

∥∥∥u−
s

∑
k=1

dk(t)ψk(x)
∥∥∥

W(QT )
→ 0 as s → ∞.

PROPOSITION 2.4. Let in the conditions of Proposition 2.1 ut ∈ W′(QT ) . Then
(uh)t ∈ W′(QT ) , and for every ψ ∈ W(QT ) 〈〈(uh)t ,ψ〉〉 → 〈〈ut ,ψ〉〉 as h → 0 .

3. Assumptions and results

It is convenient to reformulate problem (1.1) introducing the new unknown func-
tion v and it’s inverse u by the formulas

v = |u|m(x)−1u, Φ(v,x) =
1

m(x)

∫ v

0
|s|

1−m(x)
m(x) ds ≡ |v| 1

m(x) sign v.
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The function v solves the problem⎧⎪⎨
⎪⎩
∂tΦ(v,x) =

n

∑
i=1

Di

(
ai(x)|Div|pi(x)−2Div

)
+ f (z,v) in QT ,

v(x,0) = v0(x) in Ω, v = 0 on ΓT

(3.1)

with the right-hand side

f (z,v) = b(z)|v|
σ(z)−1
m(z) −1

v.

Throughout the paper assume that the coefficients and the exponents of nonlinearity
satisfy the following conditions:⎧⎪⎨

⎪⎩
there exist finite positive constants a±, p±,m±,σ± such that

0 < a− � ai(z) � a+, 1 < p− � pi(z) � p+,

0 < m− � m(x) � m+, 1 < σ− � σ(z) � σ+.

(3.2)

The solution of problem (3.1) is understood in the following way.

DEFINITION 3.1. A function v(z) is called energy solution of problem (3.1) if

(1) v ∈ L∞(QT )∩W(QT ) and ∂tΦ(v,x) ∈ W′(QT ) ,
(2) for every test-function φ ∈ W(QT ) , ∂tφ ∈ W′(QT ) ,

∫
QT

[
φ ∂tΦ(v,x)+

n

∑
i=1

ai |Div|pi(z)−2Div ·Diφ
]
dz =

∫
QT

f (z,v)φ dz, (3.3)

(3) for every ψ(x) ∈C∞
0 (Ω)

∫
Ω
ψ(x)(Φ(v(x,t),x)−Φ(v0(x),x))dx → 0 as t → 0.

The main result of the paper is given in the following theorem.

THEOREM 3.1. Let m(x) ∈ C0(Ω) , pi(x,t) satisfy the Log-continuity condition
(2.5) in QT , and let conditions (3.2) be fulfilled. Let us assume that

∇m(x) ∈ Lβ (Ω) with some β > 1,

and that the exponents m, pi satisfy one of the following conditions:

(1) pi > 1 are independent of t , m(x) > 0 in Ω ,

(2) pi(z) > 1 , m(x) ∈ (0,1] in Ω , ∇m ∈ Lpi(z)(QT ) for all i = 1, . . . ,n,

(3) pi(z) > 1 , m(x) > 0 , ∇m ∈ Lpi(z)(QT ) for all i = 1, . . . ,n, and

1 >
1

pi(z)
+

1
m(x)

in QT .
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Then for every v0 ∈ L∞(Ω) problem (3.1) has at least one solution in a cylinder
QT ∗ with

T ∗ = sup{θ : ‖v(t)‖∞,Ω < ∞ ∀t ∈ (0,θ )}.
Moreover, for small τ the solution satisfies the estimate

‖v(t)‖∞,Ω � ‖v0‖∞,ΩeAt , t ∈ [0,τ],

with a constant A depending only on the data. The solution is nonnegative if v0 � 0
a.e. in Ω .

In the special case when the exponents of nonlinearity are constant, the assumptions of
Theorem 3.1 reduce to the conditions m > 0, pi > 1.

The solution of problem (3.1) is constructed as the limit of the sequence of solu-
tions of the regularized problem with three regularization parameters. The solution of
this problem is obtained as the limit of the sequence of finite-dimensional Galerkin’s
approximations. We impose no restrictions on the growth of the term f , which leads to
the fact that the solution need not exist for all times. If b(z) � 0 in QT , the term f does
not influence the a priori estimates for the solutions of the regularized problems and the
solution exists for all times. The same happens if σ+ � 2, although b(z) is allowed
to take positive values on a part of QT . The solution of problem (3.1) is constructed
on a time interval [0,T∗] , with T∗ depending on ‖v0‖∞,Ω in such a way that T∗ → 0
as ‖v0‖∞,Ω → ∞ . Proceeding in small steps in time we continue the solution up to the
moment T ∗ where either T ∗ = T , or ‖v(x,T ∗)‖∞,Ω becomes unbounded. If T ∗ < ∞ ,
we obtain a local in time solution.

In Section 7 we derive stronger estimates on the constructed weak solutions. This
is done under additional restrictions on the regularity of the initial function and prop-
erties of the coefficients ai , b and the variable exponents of nonlinearity pi(z) , σ(z) ,
m(x) . It is shown in Theorem 7.1 that under these restrictions on the data the weak so-

lutions of problem (3.1) satisfy the estimate ‖|v| 1−m
2m vt‖2,QT < ∞ . This estimate is used

in Section 8 in the proof of the comparison principle for such solutions. The results
of these sections hold for the solutions of equation (3.1) with b(z) � 0 and σ+ � 2,
which means that the solutions exist globally in time. Besides, to prove the comparison
principle we claim that m(x) ∈ (0,1] . The proof of the comparison principle follows
[1, 16, 17].

4. Regularization

A solution of problem (3.1) is constructed as the limit of the sequence of solutions
of the regularized problems{

∂tΦε (v,x) = div
(
Fδ (z,∇v)

)
+ fK(v,z) in QT ,

v(x,0) = v0(x) in Ω, v = 0 on ΓT ,
(4.1)

where

Fδ (∇v,z) = {Fδ ,1, . . . ,Fδ ,n}, Fδ ,i = δ |∇v|q−2Div+ai(x,t)|Div|pi(z)−2Div,
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with constant q > max{n, p+} , given parameters ε , δ > 0, and

Φε (v,x) =
∫ v(z)

0
Aε(s,x)ds, Aε(s,x) = ε +

1
m
|s| 1

m(x)−1 � ε > 0.

For K > 1 the function fK is defined by the equality

fK(w,z) = b(z)

⎧⎨
⎩

(
min{w2,K2}) σ−2

2m |w| 1
m−1w if σ+ > 2,

|w| σ−1
m −1w if either b(z) � 0 in QT , or σ+ � 2.

(4.2)

Let us fix some s ∈ N ,
s−1

n
� 1

2
− 1

min{p+,q} ,

and denote r = max
{

p+,q,1+
1

m−
}

.

THEOREM 4.1. Let v0 ∈ L2(Ω) ∩ L
m(·)+1
m(·) (Ω) . For every δ > 0 , ε > 0 , K >

1 problem (4.1) has at least one solution v ∈ W(QT )∩ Lq(0,T ;W 1,q
0 (Ω)) such that

∂tΦε(v,x) ∈ Lr′(0,T ;H−s(Ω)) , for every test-function φ ∈ Lr(0,T ;Hs
0(Ω)) ,

∫
QT

[
φ ∂tΦε(v,x)+

n

∑
i=1

Fδ ,i(z,v) ·Diφ
]
dz =

∫
QT

fK(v,z)φ dz

and for every φ ∈C∞
0 (Ω)∫

Ω
φ(x)(Φε (v(x,t),x)−Φε(v0(x),x))dx → 0 as t → 0.

4.1. Galerkin’s approximations

Let us fix some δ > 0, ε > 0 and K > 1. A solution of the regularized prob-
lem (4.1) is constructed as the limit of the sequence of finite-dimensional Galerkin’s
approximations

v(k) =
k

∑
i=1

ci(t)ψi(x),

where {ψi} is the orthonormal basis of L2(Ω) , composed of the eigenfunctions of the
operator

(ψi,w)Hs
0(Ω) = λi(ψi,w)L2(Ω) ∀w ∈ Hs

0(Ω).

The coefficients ci(t) are defined from the system of equations∫
Ω
∂tΦε(v(k),x)ψ j dx+ δ

∫
Ω
|∇v(k)|q−2∇v(k) ·∇ψ j dx

+
n

∑
i=1

∫
Ω

ai|Div
(k)|pi(z)−2Div

(k) ·Diψ j dx

=
∫
Ω

fK(z,v(k))ψ j dx,

(4.3)
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j = 1, ...,k . System (4.3) can be written in the form{
∑k

i=1 Bi jc′i(t) = Fj(c1(t), . . . ,ck(t)),
c j(0) =

∫
Ω v0(x)ψ j(x)dx, j = 1, . . . ,k,

(4.4)

with continuous functions Fj and the matrix B with the entries

Bi j(t) =
∫
Ω

Aε(v(k),x)ψi(x)ψ j(x)dx, i, j = 1, . . . ,k.

Since ψ j are linearly independent, so is the system of functions

Λk =
{√

Aε(v(k),x)ψi(x)
}k

i=1
.

The determinant of B is the Gram determinant of the system Λk . Since Aε(s,x) � ε >
0, system (4.4) can be solved with respect to the derivatives c′j(t) and written in the
normal form. By Peano’s theorem for every k ∈ N there exists at least one solution of
system (4.4) on an in interval (0,Tk) . The solution {ci(t), . . . ,ck(t)} of system (4.4)
defines the functions

u(k) = Φε,r(v(k),x) ≡
k

∑
j=1

Zk, j(t)ψ j(x) (4.5)

with the coefficients Zk, j(t) given by the formulas

Zk, j(t) = Zk, j(0)+
∫ t

0

k

∑
i, j=1

Bi j(τ)c′i(τ)dτ, j = 1, . . . ,k.

5. A priori estimates

Let us introduce the function

Ψε(v(k),x) =
∫ v(k)

0
sAε(s,x)ds =

ε
2
(v(k))2 +

1
m
|v(k)|m+1

m .

Multiplying each of the equations in (4.3) by c j(t) , integrating over the interval (0,Tk)
and summing up in j = 1,k , we obtain the inequality∫

Ω
Ψε(v(k)(x,Tk),x)dx+ δ

∫
QTk

|∇v(k)|q dz+a−
n

∑
i=1

∫
QTk

|Div
(k)|pi(x) dz

�
∫

QTk

|v(k)| | fK(v(k),z)|dz+
∫
Ω
Ψε(v

(k)
0 ,x)dx, QTk = Ω× (0,Tk).

Due to the definition of fK , this estimate can be continued as follows:∫
Ω
Ψε(v(k)(x,t),x)dx

∣∣∣t=Tk

t=0
+ δ‖∇v(k)‖q

q,QT

+
a−

2

n

∑
i=1

∫
QTk

|Div
(k)|pi(x) dz � J,

(5.1)
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where

J =

⎧⎨
⎩

∫
QTk

b(z)|v(k)| σ−1
m +1 dz, if either b(z) � 0 in QT , or σ+ � 2,

b+(
supQT

K
σ−2
m

)∫
QTk

|v(k)| 1
m +1 dz, if σ+ > 2.

To estimate J we consider the following two possibilities: if b(z) � 0, then J is merely
nonpositive, otherwise by Young’s inequality

J � b+(
C+Y(Tk)

)
, Y (t) =

∫
QT

|v(k)|1+ 1
m dz,

and (5.1) provides Gronwall’s inequality for Y (t) .

LEMMA 5.1. Let v(k)
0 ∈ L2(Ω)∩L

m(·)+1
m(·) (Ω) . Then each of the functions v(k) can

be continued from the cylinder QTk to QT . The continued functions satisfy the uniform
with respect to k , ε and δ estimates

sup
(0,T)

∫
Ω
Ψε (v(k)(x,t),x)dx+ δ‖∇v(k)‖q

q,QT
+

n

∑
i=1

∫
QT

|Div
(k)|pi(x) dz � M. (5.2)

Proof. The possibility of continuation of v(k) to the same interval [0,T ] follows

from (5.1) because the function v(k)(x,Tk) possesses the same properties that v(k)
0 . �

LEMMA 5.2. For every fixed j ∈ N the sequence {Zk, j(t)}∞k=1 , defined in (4.5),
contains a subsequence which converges to a function Zj(t) ∈C0[0,T ] .

Proof. The assertion will follow from the Ascoli-Arzela theorem if we prove
that for every fixed j ∈ N the sequence {Zk, j(t)}∞k=1 is equicontinuous and uniformly
bounded in [0,T ] . Let us accept the notation Qt+h

t = Ω× (t,t +h) . By virtue of (4.3),
for every t, t +h ∈ [0,T ] ,

Zk, j(t +h)−Zk, j(t) = −δ
∫

Qt+h
t

|∇v(k)|q−2∇v(k) ·∇ψ j dz

−
n

∑
i=1

∫
Qt+h

t

(
ai|Div

(k)|pi(z)−2Div
(k)) ·Diψ j dz+

∫
Qt+h

t

fK(v(k),z)ψ j dz,

whence

|Zk, j(t +h)−Zk, j(t)|

� 2a1

n

∑
i=1

‖Div
(k)‖pi(·),Qt+h

t
‖Diψ j‖pi(·),Qt+h

t

+ δ‖∇v(k)‖q,Qt+h
t

‖∇ψ j‖q,Qt+h
t

+‖ fK(v(k),z)‖2,Qt+h
t

‖ψ j‖2,Ωh
1
2

� C
n

∑
i=1

max

{(∫
Qt+h

t

|Div
(k)|pi(z) dz

) 1
p+
i ,

(∫
Qt+h

t

|Div
(k)|pi(z) dz

) 1
p−i

}
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×max

{(∫
Qt+h

t

|Diψ j|pi(z) dz
) 1

p+
i ,

(∫
Qt+h

t

|Diψ j|pi(z) dz
) 1

p−i
}

+‖ fK(v(k),z)‖2,Qt+h
t

‖ψ j‖2,Ωh
1
2 + δ‖∇v(k)‖q,Qt+h

t
‖∇ψ j‖q,Qt+h

t
.

In our choice of the basis {ψ j}∫
Qt+h

t

|Diψ j|pi(z) dz � C‖|Diψ j|pi‖ p+
pi(·) ,Q

t+h
t

‖1‖(
p+
pi(·)

)′
,Qt+h

t

� C(n,T, |Ω|, p±) max

{(
h

∫
Ω
|∇ψ j|p+

dz
) p−

p+
,h

∫
Ω
|∇ψ j|p+

dz

}

� C′(s,n,T, |Ω|, p±) max
{

h, h
p−
p+

}(
‖ψ j‖p−

Hs
0(Ω) +‖ψ j‖p+

Hs
0(Ω)

)
with constants C , C′ independent of j and h . Since ‖ψ j‖2,Ω �C′′ ‖ψ j‖Hs

0(Ω) , estimate
(5.2) yields the inequality

|Zk, j(t +h)−Zk, j(t)| � C′′ (‖ψ j‖p−
Hs

0(Ω) +‖ψ j‖p+

Hs
0(Ω) + δ 1− 1

q ‖ψ j‖q
Hs

0(Ω)

)
γ(h),

with γ(h) = max
{√

h, h, h
p−
p+ ,hq′

}
and a constant C′′ = C′′(T, |Ω|, p±,K) indepen-

dent of k and j . This means equicontinuity of the sequence {Zk, j(t)}∞k=1 . Uniform
boundedness of Zk, j(t) follows from the last estimate with t = 0. Namely, ∀h ∈ [0,T ]

|Zk, j(h)| � |Zk, j(0)|+C
(‖ψ j‖p−

Hs
0(Ω) +‖ψ j‖p+

Hs
0(Ω) +‖ψ j‖q

Hs
0(Ω)

)
, (5.3)

what gives the proof. �

Using the diagonal procedure we extract from {Zk, j(t)} a subsequence which con-
verges as k → ∞ to Zj(t) ∈ C0[0,T ] for every fixed j ∈ N . By agreement, for this
subsequence we will use the same notation. Let us introduce the functions

u =
∞

∑
j=1

ψ j(x)Zj(t).

LEMMA 5.3. For every φ(x) ∈C∞
0 (Ω)

sup
(0,T)

∫
Ω
φ(x)

(
u(z)−Φε(v(k)(z),z)

)
dx → 0 as k → ∞.

Proof. It follows from (5.3) and the Parseval equality that

∞

∑
j=s+1

∣∣∣(φ ,ψ j)2,Ω
(
u(k)−u,ψ j

)
2,Ω

∣∣∣
� sup

(0,T)
‖u(k)−u‖2,Ω

( ∞

∑
j=s+1

(φ ,ψ j)2
2,Ω

) 1
2 → 0 as s → ∞.
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At the same time, Lemma 5.2 yields∣∣∣∣∣
s

∑
j=1

(φ ,ψ j)2,Ω
(
u(k)−u,ψ j

)
2,Ω

∣∣∣∣∣ �
s

∑
j=i

sup
(0,T )

|Zk, j(t)−Zj(t)|‖φ‖2,Ω → 0 as k → ∞.

LEMMA 5.4. Let

r = max
{

q, p+,1+
1

m−
}

.

Then ∂tΦε(v(k),x) are bounded in Lr′(0,T ;H−s(Ω)) uniformly with respect to k , δ ,
ε .

Proof. It suffices to show that∣∣∣∣
∫

QT

φ ∂tΦε (v(k),x)dz

∣∣∣∣ � C, ∀φ ∈ Lr(0,T ;Hs
0(Ω)), ‖φ‖Lr(0,T ;Hs

0(Ω)) � 1,

with a constant C , independent of k , δ , ε and φ . By the definition

∂tΦε(v(k),x) =
k

∑
j=1

Z′
k, j(t)ψ j(x).

Writing φ (k) =
k

∑
j=1

(φ , ψ j)2,Ωψ j and using orthogonality of {ψ j} , we have

∫
QT

φ ∂tΦε (v(k),x)dz =
∫

QT

( ∞

∑
j=1

(φ , ψ j)2,Ωψ j

)( k

∑
s=1

Z′
k,s(t)ψs

)
dz

=
∫ T

0

k

∑
j,s=1

Z′
k,s(t)(φ , ψ j)2,Ω

(
ψs, ψ j

)
2,Ω

dt

=
∫

QT

( k

∑
j=1

(φ , ψ j)2,Ωψ j

)
∂tΦε (v(k),x)dz

=
∫

QT

φ (k) ∂tΦε (v(k),x)dz.

Using (4.3) and the uniform estimates (5.2) we obtain∣∣∣∫
QT

φ ∂tΦε (v(k),x)dz
∣∣∣ =

∣∣∣∫
QT

φ (k) ∂tΦε(v(k),x)dz
∣∣∣

� a+
n

∑
i=1

‖|Div
(k)|pi(z)−1‖ p+

p+−1
,QT

‖Diφ (k)‖p+,QT

+ δ
1
q′

(
δ ‖∇v(k)‖q

q,QT

) 1
q ‖∇φ (k)‖q′,QT +‖φ (k)‖m+1

m ,QT
‖ fK(v(k),z)‖m+1,QT

� C
( n

∑
i=1

(∫
QT

|Div
(k)|(p+)′(pi(z)−1) dz

) 1
(p+)′ +‖ fK‖m+1,QT + δ

1
q ‖∇v(k)‖q,QT

)

×
(
‖∇φ (k)‖p+,QT

+‖φ (k)‖m+1
m ,QT

+ δ
1
q′ ‖∇φ (k)‖q′,QT

)
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with a constant C independent of k, δ and ε . Since (p+)′ � (pi(z))′ , by Young’s
inequality

|Div
(k)|p

+ pi(z)−1
p+−1 � C+ |Div

(k)|pi(z)

which, by virtue of (5.2), provides the estimate

∣∣∣∫
QT

φ ∂tΦε(v(k),x)dz
∣∣∣ � C

(
‖∇φ (k)‖p+,QT

+‖φ (k)‖m+1
m ,QT

+ δ
1
q′ ‖∇φ (k)‖q′,QT

)
.

By the choice of the basis {ψ j} ,

‖∇φ (k)‖p+

p+,QT
=

∫ T

0
‖∇φ (k)‖p+

p+,Ω dt �
∫ T

0
‖φ (k)‖p+

Hs
0(Ω) dt

=
∫ T

0

∥∥∥∥∥
k

∑
j=1

ψ j(φ , ψ j)2,Ω

∥∥∥∥∥
p+

Hs
0(Ω)

dt

=
∫ T

0

( k

∑
j=1

(φ , ψ j)2
2,Ω‖ψ j‖2

Hs
0(Ω)

) p+
2

dt

�
∫ T

0

( ∞

∑
j=1

(φ , ψ j)2
2,Ω‖ψ j‖2

Hs
0(Ω)

) p+
2

dt

= ‖φ‖p+

Lp+(0,T ;Hs
0(Ω))

and

‖∇φ (k)‖q
q,QT

� C‖φ‖q
Lq(0,T ;Hs

0(Ω)), ‖φ (k)‖m+1
m ,QT

� C‖φ‖
L

m−+1
m− (0,T ;Hs

0(Ω))
.

Let us introduce the difference operator Δ(h) as follows

Δ(h)V (x,t) := V (x,t +h)−V(x,t).

LEMMA 5.5. Let

w(k) = |v(k)| 1
m(x) signv(k).

For every t, t +h ∈ [0,T ] the functions v(k) , w(k) satisfy the inequalities

ε‖Δ(h)v
(k)(x, t)‖2

2,QT−h
+

∫ T−h

0

∫
Ω∩{m<1}

∣∣∣Δ(h)v
(k)(x, t)

∣∣∣m+1
m

dz

+
∫ T−h

0

∫
Ω∩{m�1}

∣∣∣Δ(h)w
(k)(x,t)

∣∣∣m+1
dz � C |h| (5.4)

with a constant C independent of k and ε . If the exponents pi do not depend on t , the
constant C is also independent of δ .
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Proof. For every t,t +h ∈ [0,T ]

I :=
∫

QT−h

Δ(h)v
(k)(x,t)Δ(h)Φε (v(k)(x,t),x)dz

=
∫

QT−h

Δ(h)v
(k)(x,t)

(∫ t+h

t
∂τΦε (v(k)(x,τ),x)dτ

)
dz

=
∫ h

0

(∫
QT−h

Δ(h)v
(k)(x,t)∂tΦε (v(k)(x, t + τ),x)dz

)
dτ.

By virtue of (4.3) and (5.1),

|I| �
∫ h

0

∫
QT−h

∑
i

ai|Div
(k)(x,t + τ)|pi−1|Div

(k)(x,t +h)|dzdτ

+
∫ h

0

∫
QT−h

∑
i

ai|Div
(k)(x,t + τ)|pi−1|Div

(k)(x,t)|dzdτ

+
∫ h

0

∫
QT−h

|Δ(h)v
(k)(x,t)| | fK(v(k)(x,t + τ),(x,t + τ))|dzdτ

+ δ
∫ h

0

∫
QT−h

|∇v(k)(x,t + τ)|q−1||∇(Δ(h)v
(k)(x,t))|dzdτ

≡ I1 + I2 + I3 + I4.

If pi are independent of t , by Young’s inequality

I1 + I2 � Ca1

∫ h

0

(
∑
i

∫
QT

|Div
(k)(x,t)|pi(x) dz

)
dτ � C |h|

with an independent of δ constant C . If pi(z) ≡ pi(x) , in the same way we obtain the
estimate

I1 + I2 � Ca+
∫ h

0

(
∑
i

(∫
QT

|Div
(k)(x,t)|(pi−1)q′ dz

) 1
q′
δ− 1

q
(
δ

1
q ‖v(k)‖q,QT

))
dτ

� Ca+ |h|
(
1+

1
δ

(
δ‖∇v(k)‖q

q,QT

))
δ− 1

q
(
δ

1
q ‖v(k)‖q,QT

)
.

Further,
I3 � C |h|‖v(k)‖m+1

m ,QT
‖ fK‖m+1,QT � C |h|,

and, finally,

I4 � C |h|(δ q′
q ‖∇v(k)‖q,QT

) 1
q′

(
δ

1
q ‖∇v(k)‖q,QT

)
.

Finally, ∀μ � 2, ξ , ζ ∈ R by applying the inequality

(|ξ |μ−2ξ −|ζ |μ−2ζ )(ξ − ζ ) � 2−μ |ξ − ζ |μ

we arrive at (5.4).
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LEMMA 5.6. Let ‖∇m(x)‖α ,Ω < ∞ with some α > 1 . Then for every δ > 0 the
sequence {v(k)} contains a subsequence which converges to a function v pointwise in
QT .

Proof. It suffices to show that the sequences

w(k) = |v(k)| 1
m signv(k), s(k) = |v(k)|m+1

m signv(k)

are precompact in L1(0,T ;Lμ2(Ω∩ {0 < m < 1})) and L1(0,T ;Lμ1(Ω∩ {m � 1}))
with some μ1, μ2 > 1. On the set QT ∩{0 < m < 1} , the assertion of the lemma for
{v(k)} follows immediately from (5.2), (5.4) and the results of [26].

Let us denote Ω+ =Ω∩{m � 1} and Q+
T =Ω+×(0,T ) . For every t, t+h∈ [0,T ]

one has∫
Ω+

|Δ(h)s
(k)(x, t)|dx

=
∫
Ω+

∣∣∣∣
∫ 1

0

d
dθ

(θw(k)(x,t +h)+ (1−θ )w(k)(x,t))m+1 dθ
∣∣∣∣ dx

�
1∫

0

∫
Ω+

(m+1)
( 1∫

0

|θw(k)(x,t +h)+ (1−θ )w(k)(x,t)|m dθ
)|Δ(h)w

(k)(x,t)|dx

� C
(‖|w(k)(·, t +h)|m‖m+1

m ,Ω+ +‖w(k)(·,t)|m)‖m+1
m ,Ω+

)‖Δ(h)w
(k)(·, t)‖m+1,Ω+

:= I.

By virtue of (5.2), the first factor of I is bounded uniformly with respect to t ∈ [0,T ] .
The estimate for the second one follows from Lemma 5.5:

∫ T−h

0
‖Δhw

(k)(·,t)‖m+1,Ω+ dt

� C
∫ T−h

0

[(∫
Ω+

|Δ(h)w
(k)|m+1 dx

) 1
m++1 +

(∫
Ω+

|Δ(h)w
(k)|m+1 dx

) 1
m−+1

]
dt

� C
(
h

1
m++1 +h

1
m−+1

)
.

On the other hand, for every r > 1,

∫
Q+

T

|∇s(k)|r dz � C1

∫
Q+

T

|v(k)| r
m |∇v(k)|r dz

+C2

∫
Q+

T

|v(k)|r
(
1+ 1

m

)
| ln |v(k)||r|∇m|r dz := J1 + J2.

By Hölder’s inequality

J1 � C
(
δ

r
q ‖∇v(k)‖r

q,QT

)
δ− r

q ‖v(k)‖1− r
q

rq
q−r ,QT

� Cδ− r
q , (5.5)
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provided that q > 2r . To estimate J2 we claim that |∇m| ∈ Lα (Ω) and α > r > 1.
Since | ln s|r � C(γ)s−γ for s ∈ (0,1] and | lns|r � C(γ)sγ for s > 1 and an arbitrary
positive γ (small),

J2 � C
∫ T

0

(
‖∇m‖αα ,Ω+

∫
Ω+

(
|v(k)|

(
α
r

)′(
r
(
1+ 1

m

)
+γ

)

+ |v(k)|
(
α
r

)′(
r
(
1+ 1

m

)
−γ

)
dx

))
dt

and for the sufficiently big q we may estimate both integrals by means of the Poincaré
inequality and (5.2):

J2 � C
(
1+ δ−κ(δ‖∇v(k)‖q,QT

)κ)
. (5.6)

By the compactness results in [26] the sequence {s(k)} contains a subsequence which
converges in the norm of L1(0,T ;Lμ2(Ω)) .

COROLLARY 5.1. The assertion of Lemma 5.6 remains true if instead of the con-
dition δ > 0 we claim that δ � 0 and ‖v(k)‖∞,QT � λ uniformly with respect to k . In

this case we may take r = p− , whence J1 � C (1+λ )
p−
m− M with the constant M from

(5.2), the estimate on J2 is obvious.

Gathering the above assertions, for fixed ε > 0, δ > 0 and K > 1 we may extract from
the sequence {v(k)} a subsequence (for the sake of simplicity we keep for it the same
notation) such that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v(k) → v a.e. in QT ,

Φε (v(k),x) →Φε (v,x) a.e. in QT ,

Fδ ,i(v(k),z) → Ai weakly in Lp′i(·)(QT ), i = 1, . . . ,n,

∂tΦε(v(k),x) →V weakly in Lr′(0,T ;H−s(Ω)),
Φε (v(k),x) →Φε (v,x) weakly in L2(Ω) uniformly in t ∈ [0,T ].

(5.7)

It is easy to see that V = ∂tΦε(v,x) ∈ Lr′(0,T ;H−s(Ω)) . By the definition of v(k)

∫
QT

[
φ (s)∂tΦε(v(k),x)+∑

i
Fδ ,i(v

(k),z) ·Diφ (s) −φ (s) fK(v(k),z)
]
dz = 0 (5.8)

for every φ (s) ∈ span{ψ1, . . . ,ψs} , s � k . Letting first k →∞ and then s→ ∞ , we find
that for every test-function φ ∈ Lr(0,T ;Hs

0(Ω)) ,∫
QT

[
φ ∂tΦε(v,x)+∑

i
Ai ·Diφ −φ fK(v,z)

]
dz = 0. (5.9)

Since smooth functions are dense in W(QT ) , we then conclude that (5.9) holds for
every test-function φ ∈ W(QT ) ∩ Lq(0,T ;W 1,q

0 (Ω)) and that for the limit function
∂tΦε(v,x) ∈ W′(QT )∩Lq′(0,T ;W 1,q′(Ω)) . To identify Ai we rely on the monotonic-
ity of the flux functions Fδ ,i(v(k),z) and follow the classical scheme described in [23,
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Ch.2, Sec.2] (see also [4]) and conclude that Ai = Fδ ,i(v,z) a.e. in QT . Taking in
(5.8) the independent of t test-function φ , integrating by parts in t , and then letting
k,s → ∞ , by Lemma 5.3 we have that

∫
Ω
φ(x)(Φε (v(x,t),x)−Φε(v0,x))dx

= −
∫ t

0

∫
Ω

[ n

∑
i=1

Fδ ,i(v,z) ·Diφ − fK(v,z)φ
]
dz → 0 as t → 0.

This completes the proof of Theorem 4.1.

6. Bounded solutions. Proof of Theorem 3.1

LEMMA 6.1. Let in the conditions of Theorem 4.1 v0 ∈ L∞(Ω) . Then for every
K > max{‖v0‖∞,Ω, 1} there is TK such that the solutions of problem (4.1) satisfy the
uniform in δ and ε estimate

‖v(t)‖∞,Ω � ‖v0‖∞,Ω eA(K)t for t ∈ [0,TK ] (6.1)

with a constant A independent of ε and δ .

The proof relies on the following assertion.

LEMMA 6.2. Denote Aε(ρ ,x) = ε+
1
m
|ρ | 1

m−1 . For every constant K > 0 , q � 1

and Cq >
1
m

+2q−1 ,

G(v) ≡Cq

∫ max{0,v}

0
ρ Aε(ρ ,x)min{K2(q−1), ρ2(q−1)}dρ

− v max{0,v}Aε(v,x)min{K2(q−1), v2(q−1)} � 0.

Proof. The assertion follows because G(0) = 0 and the function G(v) is nonde-
creasing:

G′(v) =
1
m

v
1
m−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if v � 0,(
Cq− 1

m
− (2q−1)

)
v2q−1 if 0 < v < K,(

Cq− 1
m

+1
)

if v > K.

PROOF OF LEMMA 6.1 We consider in detail the more complicated case when b(z) � 0
and σ+ > 2. Let us show the following estimate

‖max{0,v}(t)‖∞,Ω � ‖max{0,v0}‖∞,Ω exp(At),
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where A is a suitable constant. Let us fix some K > 1 and test (5.9) with the function
φq(v) = max{0,v}min{K2(q−1), v2(q−1)} :

1
h

∫ t+h

t

∫
Ω

Aε(v,x)φk(v)vt dx

=
1
h

∫ t+h

t

d
dt

(∫
Ω

∫ max{0,v}

0
sAε(s,x)min{K2(q−1), s2(q−1)}dsdx

)
dt

� 1
h

∫ t+h

t

∫
Ω
|b(z)| max{0,v}|v| 1−m

m
(
min{v2, K2}) σ−2

2m min{K2(q−1), v2(q−1)}dz

� Cq b+m+
(
sup
Qt

(
min{v2, K2})σ−2

2m
)

× 1
h

∫ t+h

t

∫
Ω

∫ max{0,v}

0
sAε(s,x)min{K2(q−1), s2(q−1)}dsdz.

Let us denote

I =
∫ max{0,v}

0
sAε(s,x)min{K2(q−1), s2(q−1)}ds.

Letting h → 0, we obtain the differential inequality for I :

dI(t)
dt

� Cqb
+m+

(
sup
QT

(
min{v2, K2})σ−2

2m
)

I(t), I(0) = I0.

Integration of this inequality leads to the inequality I
1

Cq (t) � I
1

Cq
0 eAt with the constants

Cq > 2q−1, A = b+m+
(
sup
QT

min{v2, K2}
) σ−2

2m � b+m+Kμ , μ = sup
Qt

σ −2
m

.

Letting q → ∞ (i.e. Cq → ∞), we arrive at (6.1) with A still depending on v . Let
us claim that on the interval (0,TK) the constant A is independent of v . Let K >
max{‖v0‖∞,Ω,1} . We want to choose it from the condition

‖v0‖∞,Ω exp
(
b+m+ t Kμ)

� K,

which can be written in the equivalent form:

t � 1
b+m+Kμ ln

( K
‖v0‖∞,Ω

)
=

‖v0‖μ∞,Ω

b+m+

(
s−μ lns

)
, s =

K
‖v0‖∞,Ω

.

It remains to show that this inequality is indeed true for small t . Consider the function
g(s) = s−μ lns , s � 1. It is nonnegative and attains its maximum when s = exp(1/μ) ,
which gives the value of TK .

COROLLARY 6.1. If v0 � 0 a.e. in Ω , then the solutions of problem (4.1) are
nonnegative in QTK .
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It follows that for K > max{‖v0‖∞,Ω, 1} the solutions of problem (4.1) are indepen-
dently of δ and ε bounded in OTK , which means that there is an interval [0,T0] where
‖v(t)‖∞,Ω < K . Thus, fK(v,z) ≡ f (v,z) in QT0 and v is a bounded solution of the
problem {

∂tΦε (v,x) = div
(
Fδ (z,∇v)

)
+ f (v,z) in QT0 ,

v(x,0) = v0(x) in Ω, v = 0 on ΓT0 ,
(6.2)

which includes only two regularizations parameters ε and δ .

6.1. Passage to the limit as ε → 0

To pass to the limit as ε → 0 we notice that all the estimates for the solutions
of the regularized problem (4.1) are independent of ε , and that the presence of ε was
used only once in the proof of invertibility of the matrix B . Let {vε} be the sequence
of solutions of problem (6.2) with fixed δ > 0. The functions vε satisfy the uniform in
ε and δ a priori estimates of the previous section needed to pass to the limit as ε → 0.
According to (5.1) sup(0,T ) ‖

√
εvε‖2,Ω are bounded uniformly in ε . It follows that for

every smooth test-function φ with φt ∈C∞(0,T ;C∞
0 (Ω))

ε
∣∣∣∫

QT0

φ ∂tvε dz
∣∣∣ � ε

∫
Ω
|φ | |vε |dx+ ε

∫
Ω
|φ(x,0)| |v0ε |dx+ ε

∫
QT0

|vε ||φt |dz

�
√
ε sup

(0,T0)
‖√εvε‖2,Ω sup

(0,T0)
‖φ‖2,Ω+ ε‖v0‖2,Ω‖φ(x,0)‖2,Ω

+
√
ε‖vε‖2,QT0

‖φt |2,QT0
→ 0 as ε → 0.

Since the smooth functions are dense in the set{
φ : φ ∈ W(QT0), ∂tφ ∈ W′(QT0)

}
,

the limit function v ≡ vδ solves problem (6.2) with ε = 0.

6.2. Passage to the limit as δ → 0

Let us denote by {vδ} the sequence of solutions of problem (4.1) with ε = 0 and
fK ≡ f . The functions vδ satisfy all the estimates we need to extract a converging
subsequence, except the estimate of Lemma 5.5 which is independent of δ only if
pi ≡ pi(x) . Estimate (5.4) was used only in the proof of relative compactness of the
sequences {v(k)} and {vε} . The uniform boundedness of solutions of problem (6.2)
allows one to prove the relative compactness of the sequence {vδ} with respect to δ in
a different way.

LEMMA 6.3. Let the conditions of Lemma 6.1 be fulfilled and let {vδ} be a se-
quence of weak solutions of problem 6.2 with ε = 0 and δ > 0 . If ∇m ∈ Lpi(z)(QT0)
for all i = 1, . . . ,n and either m(x) ∈ (0,1] , or

1 >
1

pi(z)
+

1
m(x)

in QT0 ,
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then the sequence {uδ} , uδ ≡Φ−1
0 (vδ ,x) , is relatively compact in Lμ(QT0) with some

μ > 1 .

Proof. By virtue of (6.2), estimate (5.2) and Lemma 6.1 we have

∂t uδ ∈ Lq′(0,T0;W
−1,q(Ω)).

Testing equation (6.2) with the function φ =
∫ vδ

0
|s|α−1ds , α ∈ (0,1) , we obtain the

inequality

∫
Ω

1
1+mα

|vδ |
1
m +α dx

∣∣∣∣
t=T0

t=0
+ δ

∫
QT0

|vδ |α−1|∇vδ |q dz

+a−
n

∑
i=1

∫
QT0

|vδ |α−1|Divδ |pi(z) dz � C

with an independent of δ constant C . It is easy to calculate that for bounded |vδ |

|Diuδ |pi(z) � C1

mpi
|vδ |

(
1
m−1

)
pi |Divδ |pi +C2

|∇m|pi

m2pi

∣∣∣|vδ | 1
m ln |vδ |

∣∣∣pi

� C3

(
|vδ |

(
1
m−1

)
pi |Divδ |pi + |∇m|pi

)
.

If m(x) ∈ (0,1] , this inequality gives the uniform estimate on ‖∇uδ‖p−,QT0
. In the

case m � 1, the same estimate follows if we claim that (1/m−1) pi(z) � α−1. The
conclusion about relative compactness of the family {uδ} in Lμ(QT0) with some μ > 1
follows from [29, Lemma 9.1]. �

We can now extract from {vδ} a subsequence with the following properties:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vδ → v a.e. in QT0 ,

Φ(vδ ,x) →Φ(v,x) a.e. in QT0 ,

Φ(vδ ,x) →Φ(v,x) weakly in L2(Ω) uniformly in t ∈ [0,T0],
Fδ ,i(vδ ,z) → Bi weakly in Lp′i(·)(QT0), i = 1, . . . ,n,

∂tΦ(vδ ,x) →W weakly in Lr′(0,T0;H−s(Ω)).

(6.3)

Moreover, the estimate δ‖∇vδ‖q
q,QT

� C yields

δ |∇vδ |q−2∇vδ → 0 as δ → 0 weakly in Lq(QT0).

Indeed: for every φ ∈ Lq(0,T ;W 1,q
0 (Ω))

δ
∣∣∣∣
∫

QT0

|∇vδ |q−2∇vδ ·∇φ dz

∣∣∣∣ � δ
1
q

(
δ

∫
QT0

|∇vδ |qdz
)1− 1

q ‖∇φ‖q,QT0
→ 0

as δ → 0. The limit functions Bi are defined by monotonicity,

Bi = F0,i(∇v,z) = ai(z)|Div|pi(z)−2Div.

These arguments are summarized in the following lemma.
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LEMMA 6.4. Let us assume that the conditions of Theorem 4.1 are fulfilled and,
additionally, v0 ∈ L∞(Ω) . If either pi are independent of t , or the conditions of
Lemma 6.3 are fulfilled, then for every K > max{‖v0‖∞,Ω, 1} there exists T0 > 0 such
that problem (6.2) with ε = 0 has a solution v ∈W(QT0) in the sense of Definition 3.1.
Moreover, ‖v(t)‖∞,Ω is bounded in [0,T0] and satisfies estimate (6.1)). The solution is
nonnegative if v0 � 0 in Ω .

6.3. Continuation to the maximal existence interval

The constructed solution is defined on an interval (0,T0) with T0 estimated in
Lemma 6.1, the function v(x,T0) possesses the same properties that the initial function
v0 . Taking now T0 for the initial moment we may repeat all the above arguments to
show that the solution of problem (3.1) can be continued to a time interval (T0,T1) with
T1 depending on ‖v(·,T0)‖∞,Ω . Continuing this process we obtain the sequence {Tk}
and a solution of problem (3.1) in the cylinders QTk . If Tk → ∞ , the solution exists
globally in time, otherwise limTk = T ∗ < ∞ and problem (3.1) admits a local in time
solution.

7. Strong energy solutions

In this section we improve estimates for the finite-dimensional Galerkin’s approxi-
mations for the solutions of the regularized problem (4.1) under additional assumptions
on the coefficients ai , b and the nonlinearity exponents pi , σ . These estimates remain
true for the energy solution obtained as the limit of the sequence of the approximate
solutions. For the sake of simplicity, we confine the derivation of these estimates to
the simplest case when b(z) � 0 in QT and σ+ � 2. Under these assumptions the
solution constructed in the previous sections is global in time, i.e., can be continued to
the cylinder QT with any T > 0. Let us introduce the energy function

E(t,v(k)) =
∫
Ω

(
δ
q
|∇v(k)|q +

n

∑
i=1

ai
|Div(k) |pi

pi
+ |b| |v

(k)| σ+m−1
m

σ+m−1
m

)
dx. (7.1)

We begin with deriving some energy relations. Multiplying each of the equations in
(4.3) by c′j(t) and summing up in j = 1,k , we arrive at the equality

∫
Ω

Aε(v(k),x)
(
v(k)
t

)2
dx

+
∫
Ω

[
δ |∇v(k)|q−2∇v(k)∇v(k)

t +
n

∑
i=1

(
ai|Div

(k)|pi(z)−2Div
(k))Di

(
v(k)
t

)]
dx

=
∫
Ω

b|v(k)| σ−m−1
m v(k)v(k)

t dx.

We will use the easily verified formulas

δ |∇u|q−2∇u∇ut =
δ
q
∂
∂ t

(|∇u|q),
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and

ai|Diu|pi−2Diu ·Diut =
∂
∂ t

(
ai
|Diu |pi

pi

)

+ai|Diu |pi

(
1

p2
i

− ln |Diu |pi

pi

)
pit −ait

|Diu |pi

pi
,

b|u| σ−m−1
m uut =

∂
∂ t

(
b
|u| σ+m−1

m

σ+m−1
m

)

+b|u| σ+m−1
m

(
1

(σ+m−1
m )2

− ln |u|
σ+m−1

m

)
σt

m
−bt

|u| σ+m−1
m

σ+m−1
m

.

Then ∫
Ω
δ |∇u|q−2∇u∇utdx = δ

d
dt

∫
Ω
|∇u(·,t)|qdx,

and ∫
Ω

n

∑
i=1

(
ai|Div

(k)|pi(z)−2Div
(k))Di(v

(k)
t )dx

=
d
dt

∫
Ω

( n

∑
i=1

ai
|Div(k) |pi

pi

)
dx

+
∫
Ω

n

∑
i=1

(
ai|Div

(k) |pi
( 1

p2
i

− ln |Div(k) |pi

pi

)
pit −ait

|Div(k) |pi

pi

)
,

∫
Ω

b|v(k)| σ−1
m −1v(k) v(k)

t dx =
d
dt

∫
Ω

(
b
|v(k)| σ+m−1

m

σ+m−1
m

)
dx

+
∫
Ω

(
b|v(k)| σ+m−1

m

(
1

(σ+m−1
m )2

− ln |v(k)|
σ+m−1

m

)
σt

m
−bt

|v(k)|σ+m−1
m

σ+m−1
m

)
dx.

Gathering these formulas and taking into account the definition of the energy function,
we arrive at the relation

dE(t,v(k))
dt

+
∫
Ω

Aε(v(k))
(
v(k)
t

)2
dx = Λ1 +Λ2, (7.2)

where

Λ1 =
∫
Ω

n

∑
i=1

(
−ai|Div

(k) |pi

(
1

p2
i

− ln |Div(k) |pi

pi

)
pit +ait

|Div(k) |pi

pi

)
dx,

Λ2 =
∫
Ω

(
b|v(k)| σ+m−1

m

(
1

(σ+m−1
m )2

− ln |v(k)|
σ+m−1

m

)
σt

m
−bt

|v(k)|σ+m−1
m

σ+m−1
m

)
dx.
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LEMMA 7.1. Let us assume that pit = σt = 0 , and that

0 � −ait(x,t) � Ca, 0 � bt(x,t) � Cb.

Then

E(t,v(k))+
∫ t

0

∫
Ω

Aε(v(k),x)
(
v(k)
t

)2
dxdτ � E(0,v(k)

0 ). (7.3)

Inequality (7.3) transforms into equality if ait = bt = 0 .

Proof. Under the assumptions of the lemma, relation (7.2) takes the form

d
dt

E(t,v(k))+
∫
Ω

Aε(v(k),x)
(
v(k)
t

)2
dx

= −
∫
Ω

( n

∑
i=1

|ait | |Div(k) |pi

pi
+

|bt |m|u| σ+m−1
m

σ +m−1

)
dx � 0

and (7.3) upon integration in t .

LEMMA 7.2. Let us assume that{
0 � −pit � Cp, 0 � σit � Cσ ,

0 � −ait(x,t) � Ca, 0 � bt(x,t) � Cb

Then

E(t,v(k))+
∫ t

0

∫
Ω

Aε(v(k))
(
v(k)
t

)2
dxdτ � E(0,v(k)

0 )+Ct (7.4)

with the constant C = |Ω|e(
a+Cp + b+

m−Cσ
)
.

Proof. In this case (7.2) takes on the form

d
dt

E(t,v(k))+
∫
Ω

Aε(v(k),x)
(
v(k)
t

)2
dx

=
n

∑
i=1

∫
Ω

(
−|ait | |Div(k) |pi

pi
+

ai|Div(k)|pi

p2
i

(
1− pi ln |Div

(k) |)|pit |
)

dx

−
∫
Ω

|bt |m|v(k)|
σ+m−1

m

σ +m−1
dx

+
∫
Ω

( |σt |bm
(σ +m−1)2 |v(k)| σ+m−1

m

(
1− (σ +m−1)

m
ln |v(k)|

))
dx,

whence

dE(t,v(k))
dt

+
∫
Ω

Aε(v(k),x)
(∂v(k)

∂ t

)2
dx

�
n

∑
i=1

∫
Ω

ai|Div(k)|pi

p2
i

(
1− pi ln |Div

(k) |)|pit |dx
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+
∫
Ω

|σt |bm
(σ +m−1)2

∣∣∣v(k)
∣∣∣ σ+m−1

m
(
1− (σ +m−1)

m
ln

∣∣∣v(k)
∣∣∣)dx

≡ Λp +Λσ .

We estimate Λp and Λσ in the following way:

Λp � a+Cp

n

∑
i=1

∫
Ω∩{pi ln |Div(k) |�1}

|Div(k)|pi

p2
i

dx

� a+Cp n |Ω|
(

sup
p−�r�p+

[
max

0�ξ�e
1
r

|ξ |r
r2

])
� ea+Cp n |Ω| = C1,

Λσ � b+

m−Cσ

∫
Ω∩{(σ+m−1) ln |v(k)|�m}

m2
∣∣∣v(k)

∣∣∣ σ+m−1
m

(σ +m−1)2 dx � e
b+

m−Cσ |Ω| = C2.

Then
d
dt

E(t,v(k))+
∫
Ω

Aε(v(k),x)
(∂v(k)

∂ t

)2
dx � C1 +C2,

and (7.4) follows upon integration in t . �

Lemma 7.1 and Lemma 7.2 allow one to derive stronger estimates for the energy
solutions. Namely, under the conditions of Lemma 7.1,

sup
t∈(0,T )

∫
Ω

(
δ |∇v(k)|q +

n

∑
i=1

|Div
(k) |pi + |v(k)| σ+m−1

m

)
dx

+
∫

QT

Aε(v(k),x)
(
v(k)
t

)2
dz � CE(0,v(k)

0 )

with a constant C depending only on a± , b± , p± , σ± . If the conditions of Lemma 7.2
are fulfilled, then

sup
t∈(0,T )

∫
Ω

(
δ |∇v(k)|q +

n

∑
i=1

|Div
(k) |pi + |v(k)| σ+m−1

m

)
dx

+
∫

QT

Aε(v(k),x)
(
v(k)
t

)2
dz � E(0,v(k)

0 )+CT

with the constant C = e(a+ nCp + b+

m−Cσ )|Ω| .
These inequalities give the additional estimates for the energy solution obtained as

the limit of the sequence of solutions of the regularized problem:

Ψ(v) = sup
t∈(0,T )

∫
Ω

( n

∑
i=1

|Div |pi + |v| σ+m−1
m

)
dx+

∫
QT

|v| 1−m
m |vt |2 dz � C. (7.5)

The energy solutions of problem (3.1) satisfying (7.5) will be termed Strong Energy
Solutions. Let us consider the function

G(v(k),x) =
∫ v(k)

0

√
Aε(s,x)ds.
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Under the conditions of Lemmas 7.1, 7.2 it follows that ‖Gt(v(k),x)‖2,QT are uniformly
bounded. Using the properties of convergence of the sequence of solutions of problem
(4.1), we may extract a subsequence such that

G(v(k),x) =
∫ v(k)

0

√
Aε(s,x)ds → 2

√
m

1+m
|v| 1+m

2m v a.e. in QT ,

Gt(v(k),x) = ∂t

(∫ v(k)

0

√
Aε(s,x)ds

)
→ G∗ weakly in L2(QT ).

It is easy to see that G∗ = Gt(v,x) .

THEOREM 7.1. Let in the conditions of Theorem 3.1 b(z) � b− < 0 in QT and
σ+ � 2 . Assume that either the conditions of Lemma 7.1, or the conditions of Lemma

7.2 are fulfilled. If E0(0,v(k)
0 ) are uniformly in k bounded, then the constructed solution

of problem (3.1)) is a strong energy solution.

The initial energy is bounded uniformly in k if we claim that v0 possesses some extra
regularity, say, v0 ∈ Hs

0(Ω) with a suitably big s (see the proof of Lemma 5.4). It is

clear also that in this case the first term of E(0,v(k)
0 ) given by (7.1) tends to zero as

δ → 0.

8. Comparison principle and uniqueness of strong solutions

In this section we establish the comparison principle for strong energy solutions
of the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂t

(
|v| 1

m(x)−1
v
)

=
n

∑
i=1

Di

(
ai|Div|pi(z)−2Div

)
+b |v|

σ(z)−1
m(x) −1

v in QT ,

v(x,0) = v0(x) in Ω,

v = 0 on ΓT .

(8.1)

Given two solutions v1 , v2 of problem (8.1), we introduce the functions

w = |v1| 1
m−1v1−|v2| 1

m−1v2, v = v1− v2.

THEOREM 8.1. Let v1 , v2 be bounded strong energy solutions of problem (8.1)
with the initial data v01 , v02 . Assume that

0 < m− � m(x) � m+ < 1, 2 � σ−. (8.2)

Then for all t ∈ [0,T ]

‖w(·,t)‖L1(Ω) � eCt ‖w(·,0)‖L1(Ω) , C = const. > 0.



92 STANISLAV ANTONTSEV AND SERGEY SHMAREV

Proof. By virtue of (7.5) and (8.2),

∫
QT

(
∂t

(|v| 1
m−1v

))2
dz =

∫
QT

1
m2 |v|

2(1−m)
m |vt |2 dz

� C sup
QT

( |v| 1−m
m

m2

)∫
QT

|v| (1−m)
m |vt |2 dxdt

� C′.

Now we may follow the arguments of papers [1, 16, 17]. By the definition, for every
φ ∈ W(Q) with φt ∈ W′(QT ) ,

∫
Q

[
φ ∂tw+

n

∑
i=1

ai(z)
(
|Div1|pi−2 Div1−|Div2|pi−2 Div2

)
Diφ

]
dz

=
∫

Q
b(z)

(
|v1|

σ−1
m −1 v1−|v2|

σ−1
m −1 v2

)
φ dz.

Let us introduce the function

Tδ (s) =
s√

δ 2 + s2
, δ > 0.

It is easy to check that∫ w

0
Tδ (s)ds → |w|, Tδ (s) → sign s as δ → 0,

T ′
δ (s) =

δ 2

(δ 2 + s2)
3
2

> 0, |sT ′
δ (s)| � 1, s ∈ R.

Now we will make use of the following assertion.

LEMMA 8.1. (Lemma 4.5, [1]) Let v ∈ W(QT ) ∩ L∞(QT ) , ∂tw ∈ W′(QT ) . If
∂tw ∈ L1(QT ) , then

lim
δ→0

∫
Qt

Tδ (v)∂twdz =
∫
Ω
|w(·,s)|dx

∣∣∣s=t

s=0
. (8.3)

The proof is based on the observation that w and v have the same sign and, thus, if
Tδ (v)∂tw has a limit as δ → 0, it must coincide with limTδ (w)∂tw as δ → 0. Because
of (7.5), in the case m(x)∈ (0,1] this lemma is applicable to the strong energy solutions.
Testing (8.1) with Tδ (v) , δ > 0, we get

∫
Q

(
Tδ (v)∂tw+

n

∑
i=1

ai(z)
(
|Div1|pi−2Div1−|Div2|pi−2Div2

)
T ′
δ (v)Div

)
dz

=
∫

Q
b(z)

(|v1|
σ−1
m −1 v1−|v2|

σ−1
m −1 v2

)
Tδ (v)dz.
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The second term on the left-hand side of this equality is nonnegative because of the
monotonicity, while

∣∣∣b(z)
(|v1|

σ−1
m −1 v1−|v2|

σ−1
m −1 v2

)∣∣∣ � C
∣∣∣|v| 1

m−1 v−|v| 1
m−1 v

∣∣∣σ−2
�

∼
C |w| .

Letting δ → 0, we arrive at the inequality∫
Ω
|w(·,s)|dx

∣∣∣s=t

s=0
� C

∫
Qt

|w|dz.

Writing this inequality in the form

Y ′(t) � A+CY(t), Y (t) =
∫ t

0

∫
Ω
|w|dz, A =

∫
Ω
|w(x,0)|dx,

and integrating, we obtain the estimate

Y (t) � A
C

(
eCt −1

)
,

whence ∫
Ω
|w(x,t)|dx = Y ′(t) � A+CY(t) � eCt

∫
Ω
|w(x,0)|dx.

Under the conditions of Theorem 8.1 uniqueness of strong energy solutions is an im-
mediate byproduct of the comparison principle.
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