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Abstract. We study the homogeneous Dirichlet problem for the equation

u = 2Di(ai‘Di(‘u‘m(x)—lu)‘p,-(x.t)—ZDl_(‘u‘m(x)—lu)) +b‘u‘0'(x.t)—2u
i=1

with given exponents m(x), p;i(x,7) and o(x,z). It is proved that the problem has a solution in
a suitable variable exponent Sobolev space. In dependence on the properties of the coefficient b
and the exponents of nonlinearity, the solution exists globally or locally in time. The comparison
principle and uniqueness are proved under additional restrictions on the data.

1. Introduction

The paper addresses the questions of existence and uniqueness of solutions of the
Dirichlet problem for the doubly nonlinear anisotropic parabolic equation with variable
nonlinearity:

w = 3 Di (@ (@IDi(lul" ) 72Dy "))
i=1

+b(z)\u|"(z)_2u, z=(x,t) € Or, (1.D

u(x,0) =up(x) inQ, u=0onTr,

where Q C R” is a bounded domain with the Lipschitz-continuous boundary 0Q,
Or =Qx(0,T) and I'r = dQ x (0,T). The exponents of nonlinearity m(x), p;(z)
and o(z) are given functions of their arguments.

The nonlinear equations with variable nonlinearity are usually termed equations
with nonstandard growth conditions. In the last decades, the theory of such equations

Mathematics subject classification (2010): 35K55, 35K65, 35K67, 35K92.
Keywords and phrases: nonlinear parabolic equations, double nonlinearity, nonstandard growth con-
ditions.

The first author was partially supported by the Research Project PTDC/MAT/110613/2009, FCT, Portugal. The
second author acknowledges the support of the Research Project MTM2010-18427, MICINN, Spain.

© depay, Zagreb 67
Paper DEA-04-05



68 STANISLAV ANTONTSEV AND SERGEY SHMAREV

has been developing developing very rapidly and already accounts for numerous results
concerning the issues we discuss in the present work. Equations of the type (1.1) with
constant exponents m and p; arise in the mathematical modelling of various physical
processes such as flows of incompressible turbulent fluids or gases in pipes, processes of
filtration in porous media, glaciology - see, e.g., [2, 16, 17]. The questions of existence
and uniqueness of solutions to equations of the types

up = div(alu|®|VulP~2Vu) + f(x,t,u),

(1.2)
(|u\ﬁ_1u)t = div(a |Vu|p_2Vu) +g(x,t,u)
with constant exponents of nonlinearity were studied by many authors - see [11, 12,
13, 16, 22, 25, 27]. Existence, uniqueness, and qualitative properties of solutions for
parabolic equations with variable nonlinearity, including doubly nonlinear equations
(1.2) with variable p and «, were studied in [1, 3, 4, 5, 6, 7, 8, 9], see also [10] for a
study of elliptic equations with triple variable nonlinearity.
The Cauchy problem for doubly nonlinear parabolic equations with constant ex-
ponents of nonlinearity was studied in [14, 15, 20].

We prove that the Dirichlet problem for equation (1.1), rewritten in the formally
equivalent form for the new unknown v = |u\’"(x)‘1u, has a weak energy solution in a
suitable Sobolev-Orlicz space prompted by the equation. The existence result is estab-
lished under very weak restrictions on the low-order term, which entails the possibility
that the solutions exist locally in time and may blow-up in a finite time. The compar-
ison principle and uniqueness are established under stronger assumptions on the data:
the proof is given for the case when coefficient b(z) is nonpositive which means, in
particular, that the solutions exist globally in time.

The paper is organized as follows. In Section 2 we define the variable exponent
Sobolev spaces and collect some known facts from the theory of these spaces used in
the further proceeding. The rigorous assumptions on the problem data and the main
existence result are given in Section 3. In Sections 4, 5, 6 we construct a sequence of
solutions to the regularized problem and show that the limit of this sequence is a solu-
tion of the problem under study. In Section 7-8 we show that under certain restriction
on the data the solutions possess higher regularity, and then use this fact to establish
the comparison principle and uniqueness. These results are confined to the solutions
which exist globally in time, the latter property is provided by suitable restrictions on
the coefficient b(z) and the exponents of nonlinearity m(x) and o(z).

2. The function spaces

In this section we collect some known facts from the theory of the Sobolev spaces
with variable exponent. A rigorous and detailed exposition of this theory, as well as the
exhaustive review of the existing bibliographic sources, can be found in the monograph
[18].
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2.1. Orlicz-Sobolev spaces L’()(Q) and WO1 P (')(Q): definitions and basic proper-
ties

Let Q C R" be a bounded domain, with Lipschitz—continuous boundary dQ. Let
p(x) : Qi+ [p~,pT] C (1,%0) be a continuous function with the logarithmic module of
continuity:

Vz, £eQ, z- ] <1, Z|pt —pi(¢ o(lz—=¢l), 2.1

where

—_ 1
lim @(7)In= =C < +oo.
70T T

By L”()(Q) we denote the space of measurable functions f(x) on Q such that

_ / ()P dx < oo
Q

The space L{)(Q) equipped with the norm (the Luxemburg norm)
11500 = 1l oo @) = inf{A > 01 A, (F/2) < 1}

becomes a Banach space. The Banach space Wol’p(')(Q) with p(x) € [p~,pT] C (1,%0)
is defined by

WOIP()(Q) {uELP ( ) |Vu‘17 ELI(Q),L{:OOHaQ}7
2.2)
lellgy.r0 gy = V2l .02

A thorough discussion of the variable exponent Lebesgue and Sobolev spaces can be
found in the monograph [18]. We limit ourselves by mentioning the basic properties of

the spaces WO1 PC) (Q) used in the rest of this paper.

e The space W'P()(Q) is separable and reflexive, provided that p(x) € C°(Q).
o If condition (2.1) is fulfilled, then C3(Q) is dense in W,'”")(Q), which can be
defined as the completion of C7 (L) with respect to the norm (2.2). The density of

smooth functions in the space WO1 P (')(Q) is crucial for the further proceeding. The
condition of log-continuity of p(x) is the best known and the most frequently used

sufficient condition for the density of C; in WO1 P (X)(Q) - [18, 24, 28]). Although this
condition is not necessary and can be substituted by other conditions - see [18, 19, 21,
28] - we keep it throughout the paper for the sake of simplicity of presentation.

o It follows directly from the definition of the norm that

min (1717, 12 ) < Ay () < max (£ 1710 ) (2.3)
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e Holder’s inequality. For all f € LP0)(Q), g € LP'()(Q) with

p()
x) € (1,00), px)= ,
R O
the following inequality holds:
1 1
/\fg\dx < <p_— + W> AN iy N8l ey < 2y 18y - (2.4)
Q

2.2. Spaces L") (Qr) and anisotropic space W(Qr)

Let m(x) >0 and p;(x,) > 1, i=1,...,n, be given functions. We assume that
m(x) € C°(Q) and p;(x,t) satisfy the log-continuity condition in Q7 :

V (x,1), (v,7) € Or, suchthat |(x,1) = (»T)[ =/|r—yP+(1—17)2 <1
it holds
- 1
z‘pl .XI t —Pi y» )‘ w(‘(xJ) - (y7T)|)7 lim a)(‘c)ln— =C. (25)
T—0t T

For every fixed ¢ € [0,T] we introduce the Banach space

V(@) = {ulx) € L (@ 0w (@) D)0 e L'(@) ),

lllv, (@) = llullmiye1 o+ D NDitel .,
1

)
and denote by V;(Q) its dual. By W(Q) we denote the Banach space

Dl € LY(0r), }

m1
W(0r) = {“ € L ' (0r) u(-,t)in V,(Q) fora.e. t € (0,T)

HMHW(QT) = 2 HDiu”Pi(')vQT + HMH—'"(()YI or’
i m()

W/ (Qr) is the dual of W(Qr) (the space of linear functionals over W(Qr)):

Iw = (wp,w1,...,wy) such that

wo € L"OFN(Qr),  w; e LPO(Qr),

we W (Qr) & i
W0 W) (n))= [ (w00 Twio)a:

The norm in W/(Qr) is defined by

[vllwrop) = sup {{(v.0))| ¢ € W(Or), |9llw(or) < 1}
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The possibility to approximate a function u € W(Qr) is crucial for the further proceed-
ing. Let p be the Friedrichs’ mollifying kernel

1 .
KGXP(_—I*\'IZ) if |s| <1, /
s) = s K = const, z2)dz=1.
p(s) {O e [ )
Given a function v € L'(Qr), we extend it to the whole R""! by a function with
compact support (keeping the same notation for the continued function) and then define

N

. 1
vi(z) = /RnH v(s)on(z—s)ds with pp(s) = Wp(ﬁ)’ h> 0.

The following assertion are known.

PROPOSITION 2.1. If u € W(Qr) with the exponents p(z) satisfying (2.1) in
Or, then

||uh||W(QT) < C(l + ||u||W(QT)) and ||uh — MHW(QT) — 0 as h— 0.

Let us denote
p*=suppi(z), m~ =infm(x)
Or Q
and set

V(@) = {uw)|ue L' (@) W (Q), [Vl e L @}

Since V() is separable, it is a span of a countable set of linearly independent func-
tions {y} C V4(Q).

PROPOSITION 2.2. Let p;(z) satisfy condition (2.1) in Qr. Then the set {yy} is
dense in V,(Q) for every t € [0,T].

PROPOSITION 2.3. For every u € W(Qr) there is a sequence {di(t)}, di(t) €
C'[0,T], such that

dk(t)wk(x)Hw(QT) — 0 as s — oo,

S

k=1

PROPOSITION 2.4. Let in the conditions of Proposition 2.1 u, € W'(Qr). Then
(up): € W (Qr), and for every w € W(Qr) {(((up), W) — {(us, w)) as h — 0.

3. Assumptions and results

It is convenient to reformulate problem (1.1) introducing the new unknown func-
tion v and it’s inverse u by the formulas

1—m(x)

(e i
v=u" ", D(vx) = T/ |s| ") ds = |v|m@ sign v.
m(x) Jo
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The function v solves the problem

a®(v,x) =

M=

D; <a,-(x)|D,-v|p"(x)_2Div> + f(z,v) in Qr,

i=1 (3.1
v(x,0) =vo(x) in Q, v=0on I'r
with the right-hand side
o@-1_
Faw) = b T .

Throughout the paper assume that the coefficients and the exponents of nonlinearity
satisfy the following conditions:

there exist finite positive constants ai,pi,mi, o* such that
0<a <a(z)<a’, 1<p <pi))<p’, (3.2)
0<m <mx)<m", 1<o <o(z)<o™

The solution of problem (3.1) is understood in the following way.
DEFINITION 3.1. A function v(z) is called energy solution of problem (3.1) if

(1) ve L*(Qr)NW(Qr) and 0,®(v,x) € W' (Qr),
(2) for every test-function ¢ € W(Qr), d¢ € W' (Qr),

S ;D[P 2Dy Dy dz =
, [oaetn0+ Salonr@2-pglae= [ femods  33)

(3) for every y(x) € Cy(Q)

/ W) @(v(x,1),x) — (v (x),x)) dx — O as 1 — 0.
Q
The main result of the paper is given in the following theorem.

THEOREM 3.1. Let m(x) € C%(Q), pi(x,t) satisfy the Log-continuity condition
(2.5) in Qr, and let conditions (3.2) be fulfilled. Let us assume that

Vm(x) € LP(Q) with some B> 1,

and that the exponents m, p; satisfy one of the following conditions:
(1) pi > 1 are independent of t, m(x) >0 in Q,
(2) pi(z) > 1, m(x) € (0,1] in Q, Vm € LPD(Qr) forall i=1,...,n,
(3) pi(z) > 1, m(x) >0, Vm e LP"@(Qr) forall i=1,...,n, and

1

.
1>[),—(Z)+m in Or.
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Then for every vy € L (Q) problem (3.1) has at least one solution in a cylinder
Or+ with
T* =sup{0: ||v(t)]|e@ <o Vt €(0,0)}.

Moreover, for small T the solution satisfies the estimate
Iv(0)llw0 < [vollw0e™, 7€ [0,7],

with a constant A depending only on the data. The solution is nonnegative if vy > 0
a.e. in Q.

In the special case when the exponents of nonlinearity are constant, the assumptions of
Theorem 3.1 reduce to the conditions m >0, p; > 1.

The solution of problem (3.1) is constructed as the limit of the sequence of solu-
tions of the regularized problem with three regularization parameters. The solution of
this problem is obtained as the limit of the sequence of finite-dimensional Galerkin’s
approximations. We impose no restrictions on the growth of the term f', which leads to
the fact that the solution need not exist for all times. If b(z) <0 in Qr, the term f does
not influence the a priori estimates for the solutions of the regularized problems and the
solution exists for all times. The same happens if 0™ < 2, although b(z) is allowed
to take positive values on a part of Or. The solution of problem (3.1) is constructed
on a time interval [0,7.], with 7, depending on ||vg||lwq in such a way that 7, — 0
as |[vo||e,@ — oo. Proceeding in small steps in time we continue the solution up to the
moment 7% where either T* =T, or ||[v(x,T")||q becomes unbounded. If T* < o,
we obtain a local in time solution.

In Section 7 we derive stronger estimates on the constructed weak solutions. This
is done under additional restrictions on the regularity of the initial function and prop-
erties of the coefficients a;, b and the variable exponents of nonlinearity p;(z), o(z),
m(x). It is shown in Theorem 7.1 that under these restrictions on the data the weak so-

lutions of problem (3.1) satisfy the estimate |||v| Ty l|l2,0; < eo. This estimate is used
in Section 8 in the proof of the comparison principle for such solutions. The results
of these sections hold for the solutions of equation (3.1) with b(z) <0 and o© < 2,
which means that the solutions exist globally in time. Besides, to prove the comparison
principle we claim that m(x) € (0,1]. The proof of the comparison principle follows
[1, 16, 17].

4. Regularization

A solution of problem (3.1) is constructed as the limit of the sequence of solutions
of the regularized problems

{atcpg (v,x) = div(F5(z, Vv)) + fx(v,z) in Or,

4.1
v(x,0) =vo(x) in Q, v=0 on I'y, @1

where

F5(V02) = {(Fsnos Fss)s Foi= 8|90 Dot ai(e.t) Dv]P 2Dy,
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with constant g > max{n, p*}, given parameters €, § > 0, and
v(z) 1 1
e (V,x) = / Ae(s,x)ds, Ag(s,x) =€+ —|s|"@ " >¢e>0.
0 m
For K > 1 the function fx is defined by the equality

c 2 AN EE b e
min{w*,K“}) 2" |w|m"w if 67 >2,
fxk(w,z) = b(z) (min{ v 4.2)

|w|6n_71_1w if either b(z) <0 in Qr, or oF < 2.

Let us fix some s € N,

s—1_ 1 1
Z ==,
n 2 min{p*,q}

1
and denote r = max {p+,q,1—|— —_}
m

m(-)+1

(
THEOREM 4.1. Let vg € L*(Q)NL "0 (Q). For every § >0, € >0, K >
1 problem (4.1) has at least one solution v € W(Qr) ﬂL’i(O,T;WOI’q(Q)) such that
0@ (v,x) € L (0,T; H5(Q)), for every test-function ¢ € L"(0,T;Hj(Q)),

n

/[q)é’,d)gvx Z i(z,v)-Di¢ dz-/ fk(v,z) 9 dz

i=1

and for every ¢ € Cy (L)

/Q 0 () (e (v(x,1),x) — e (vo (x),.x)) dx — O as 1 — 0.

4.1. Galerkin’s approximations

Let us fix some 6 >0, € >0 and K > 1. A solution of the regularized prob-
lem (4.1) is constructed as the limit of the sequence of finite-dimensional Galerkin’s
approximations

k
= ;Ci(t)q/t(x)

where {y;} is the orthonormal basis of L?(Q), composed of the eigenfunctions of the
operator

(Vi w)my @) = Ai(Visw)2 o) Vw € Hp(Q).

The coefficients c¢;(¢) are defined from the system of equations

/a,opg l[/de+5/ (V01929 ®) vy dx
-l-Z/ai|DiV(k)‘pi(Z)72Div(k)'D,‘l[/jdx (4.3)
i=1/Q

= [ feler )y,
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j=1,...,k. System (4.3) can be written in the form
SE Bijel(r) = Fi(ei(t),...,ex(0)), 4.4)
cj(0) = [ovox)wj(x)dx, j=1,... .k,

with continuous functions F; and the matrix B with the entries

/A Wi dx, =1,k

Since y; are linearly independent, so is the system of functions

Ap= { Ae(vh) ) l[/,'(x)}

The determinant of B is the Gram determinant of the system Ay. Since Ag(s,x) > € >
0, system (4.4) can be solved with respect to the derivatives c’j (¢) and written in the
normal form. By Peano’s theorem for every k € N there exists at least one solution of
system (4.4) on an in interval (0,7;). The solution {c;(z),...,ck(t)} of system (4.4)
defines the functions

k

i=1

u = o, , (v x 2 Z (1) (4.5)
with the coefficients Z; ;(z) given by the formulas

2 j(t) =2 (0 +/ ZB,, Nt)dr, j=1,...,k
i,j=1

5. A priori estimates

Let us introduce the function
p(K)
¥ (v x) z/ sAg(s,x)ds = £
0 2
Multiplying each of the equations in (4.3) by c¢;(t), integrating over the interval (0, 7)
and summing up in j = 1,k, we obtain the inequality

/ W, (v (x, ), x) dx+ 8 / VO 7dz+a= 3 / D) P g
Q Or, i=1701

</Q \v(k)\\fK(v(k),z)|dz+/Q‘Pg(v(()k>,x)dx, O, = Q% (0,Ty).
T

k

1
(kN2 4 2,0k 2
") —|—m\v | .

Due to the definition of fx, this estimate can be continued as follows:

/ ¥, (v )dx’ s,

+ a7 2/ IDp WP gz <,
=101

(5.1)
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where

fQka(z)|v<k>\"77'+ldz, if either b(z) <0 in Qr, or o+ <2,
b (supg, K5 fg, W95+ dz, i 0" > 2.

To estimate J we consider the following two possibilities: if b(z) <0, then J is merely
nonpositive, otherwise by Young’s inequality

JT<bH(CH+Y(T), Y()= / W0+ g,
or
and (5.1) provides Gronwall’s inequality for Y (¢).

m(-)+1
LEMMA 5.1. Let v(()k) € L2(Q)NL ™0 (Q). Then each of the functions v¥) can
be continued from the cylinder Qg to Qr. The continued functions satisfy the uniform
with respect to k, € and O estimates

sup | We(v® (x,1),x) dx+ 5| VY| qQT+2/ DR PO gz <M. (5.2)

(0,7)79

Proof. The possibility of continuation of v(¥) to the same interval [0,7] follows
from (5.1) because the function v(¥) (x,T;) possesses the same properties that v(()k) . O

LEMMA 5.2. For every fixed j € N the sequence {Z; j(t)}7_,, defined in (4.5),
contains a subsequence which converges to a function Z;(t) € C°[0,T).

Proof. The assertion will follow from the Ascoli-Arzela theorem if we prove
that for every fixed j € N the sequence {Z; ;(r)};, is equicontinuous and uniformly
bounded in [0,7]. Let us accept the notation Q'™ = Q x (t,1 4 h). By virtue of (4.3),
forevery t,t +h € [0,T],

Zk’j (t + h) - Zkv](t) - _5 /Qf+h |Vv(k) ‘q_ZVv(k) . ij dZ
_ ;/Qi” (a;| D™ |PiO=2Dy W) . Dy dz + ” Fe® 2 wsdz,
whence

|Zk’j(l‘+h) —Zk’j(l)‘

n
< 2a 2 HDiv(k Qr+h||D IIIJH )0

i=1

1
+ 8V, oYWl g+ L 0, 2 g w12, 002

<C§n:max{</Qt+hDv RE dz)l’,7</t+}\Dv RE dZ>L}
=1 1
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xmax{(/gﬁh |Diu/j‘Pi(Z)dz>$, </, . |D zW;\p' dz) pi }
1

08,2 gl

k
B, e VW3l g

In our choice of the basis {y/;}

Jyn Pl dz < DIl (”6) o
pi ’

1@y man{ (i [ 19w as) "o [ 9wl az

p_ _ +
<C(sm .10 p*) max [ b | (13l )+ Wil o))

with constants C, C" independentof j and h. Since [[y[20 < C" ||| () » estimate
(5.2) yields the inequality

‘Zk,j(t +h) _Zk,j(t)| < c’ (ijnpg(g) + “Wf“ZS(Q) + 61 a Hu’j”qg(g)) Y(h),

e
with y(h) = max{\/ﬁ, h, hvt 9 } and a constant C" = C"(T,|Q|,p*,K) indepen-
dent of k and j. This means equicontinuity of the sequence {Z ;(r)};>_,. Uniform
boundedness of Z; ;(¢) follows from the last estimate with # = 0. Namely, VA € [0,T]

- +
|Zk,j(h)| < |Zk,j(0)‘ +C (ij”pg(g) + ijnpg(g) + ||WjH1‘{18(Q))a (5.3)

what gives the proof. O

Using the diagonal procedure we extract from {Z; ;(¢)} a subsequence which con-
verges as k — oo to Z;(t) € C°[0,T] for every fixed j € N. By agreement, for this
subsequence we will use the same notation. Let us introduce the functions

u= iwj<x>z,<r>

LEMMA 5.3. Forevery ¢(x) € C5(Q)
sup [ 9(x) (u(z) — @(v¥(2),2)) dx — 0 as k— oo,
(07)/%

Proof. 1t follows from (5.3) and the Parseval equality that

oo

)y )(‘157%)279(”(1{)_”v‘VJ')zQ)

Jj=s+1

— 0 as s — co.

N———
Nl—

< sup Hu
o.r Jj= \+1
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At the same time, Lemma 5.2 yields

N
< Z(SUP Zk j(t) = Zj(t)][|@]l2,0 — O as k — oo
=i(0,T)

2 0, Y; 29( 14,11/,;')279

LEMMA 5.4. Let

1
r:max{q,p+,1—|——_}.
m

Then 0,@¢(v¥) x) are bounded in L” (0,T;H*(Q)) uniformly with respect to k, &,
E.

Proof. Tt suffices to show that

’/ ¢ D (v, x)dz

with a constant C, independent of k, §, € and ¢ . By the definition

k
at q)&‘ 7 2

<C, Vo €L (0,T:Hy(Q)), [[9llerormy@) <1,

k
Writing ¢®) = ' (¢, w;)2,0 ¥, and using orthogonality of {y;}, we have
=1

|, o0 ae= [ (f‘, (9, w,zgw,)(ﬁz;s(t)%)dz

_/ Zst ¢W,)2g<11/571//,> dt

Jjus=1
k

= (2 (@, Wj)z,szllfj> 9P (v x) dz
Or Vj=1

= oM 9,0, (v x)dz.
Or
Using (4.3) and the uniform estimates (5.2) we obtain

| q)&tq)g(v(k),x)dz‘:‘/ 0™ 9,0, (VP x)dz
Or or

<@ R DaBPO e 100 o
i=1 pr—1

1
+87 (8vv HqQ,) Hv¢<">\\qf,QT+H¢<">||m7+1,QTHfK<v<">,z>||m+1,QT

n

() — 1 1
(2</ PO d) T |l 07 + 89 [V g0 )

i=1

% (IV6W ], + 10 s g, +87 VoWl 0, )
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with a constant C independent of k, 8 and €. Since (p*) < (pi(z))’, by Young’s
inequality
+pia)=1
D WP 2 T < C+ | Dy |Pil?)
which, by virtue of (5.2), provides the estimate
(k) (0) (®) 7 Vo
|, 9220 00de| < C (190l g1 + 10Vl s g, +87 V0l g, ).

By the choice of the basis {y;},

dt
Hé Q)

(0, W),

VoI, = [ N0 g < / 1150
-2

k /AN
- [( (o vikalviliye) " d

oo pt

< T(zw Ballvilye) * d
Sl \& s Wi)2.0ll Wil (@)
=190+

and

VoW |7 <Cllo @y 19®Nns o <ClO o :
[ HqQT | ”L‘iOTH(Q)) I I “lor I HLTH(O,T;HS(Q))

Let us introduce the difference operator A, as follows

A(h)V(xat) = V(.X,t + h) - V(x7t)'

LEMMA 5.5. Let

wh) = [0 51gnv(k)

For every t,t +h € [0,T] the functions v Wk satisfy the inequalities

T—h
el nle ,+ [ [ - 2y 1)

T—h m+1
+/ / ‘A(h)w(k)(x,t)‘ dz<Clh|  (5.4)
0 Qn{m>1}

with a constant C independent of k and €. If the exponents p; do not depend on t, the
constant C is also independent of §.

m+1

" dz
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Proof. For every t,t +h € [0,T]

I::/Q A(h)v(k)(x,t)A(h)CI>£(v(k>(x,t)7x)dz
T—h

t+h
- A(h)v(k) (x’ t) ( afq)e (v(k) (x7 T) 7x) dT) dz

Or—n t

_/ / ) (0,1) e (vO) (3,1 + 7),x) d) dit.
Or—n

By virtue of (4.3) and (5.1),
h
1] < / / N ai| DO (x,1 4 1) [P DO (x,1 + )| dzd
T h i

+// Zal|Dv (x,2 + 1) [P D ® (x,1)| dzdT
0

T—h |

+/ /QT ) xt)||fK( (x7t+7),(x,t+r))|dzd1

45 / / 90 (x, 1 4 2) 17|V (A (x,1))| dzd e
0 JOrp
=Lh+L+5L+1.

If p; are independent of ¢, by Young’s inequality
h
L+bh<Ca / » / D, 0) |1 dz) dt < Ch|
0 i JOr

with an independent of & constant C. If p;(z) = pi(x), in the same way we obtain the
estimate

h /
nensca (S [ 100w ae) 5 5 ) ) do
0 i Or

1 1,1
<ca |nl (145 61V 4 o,) )87 (891 0y)-

Further,
LLCI O wir o 1 fi 1.0, < CIRI,

and, finally,
L < CIRI(ET [V 0,)7 (85(V6

).

Finally, Vu > 2, &, £ € R by applying the inequality
(IEH2E—IEI*20)E~ ) =27 HE —¢I*

we arrive at (5.4).



DOUBLY NONLINEAR PARABOLIC EQUATIONS 81

LEMMA 5.6. Let |[Vm(x)||q.q < ° with some o > 1. Then for every § > 0 the
sequence {v(k)} contains a subsequence which converges to a function v pointwise in

Or.

Proof. 1t suffices to show that the sequences

w) = 0|7 signy® | 50 = |05

sign y)

are precompact in L'(0,7;L*(QN{0 < m < 1})) and LY(0,T;1* (QN {m > 1}))
with some py, U > 1. On the set Q7 N{0 < m < 1}, the assertion of the lemma for
{ v(k)} follows immediately from (5.2), (5.4) and the results of [26].

Letus denote Q" =QN{m > 1} and QOf =Q" x (0,T). Forevery t,t+h € [0,T]
one has

(k)
/Q+ |Ags™ (x,1)] dx

1
- [ (0w (xyt ) + (1= 0w (x,0))" 1 | dix
ot |Jo dO

1 1
<//(m+1)(/|6w(k)(x7t+h)+(l—G)W(k)(x,t)|’"d6)|A<h)w(k)(x7t)|dx
0 Qt 0

<O+ B st g+ WO Lt o) Iy D)l 0
=1

By virtue of (5.2), the first factor of / is bounded uniformly with respect to ¢ € [0,T].
The estimate for the second one follows from Lemma 5.5:

T—h .
L 18 0l 0
“h 1 1
gc/T [(/ |A(h)w(k)|m+ldx>"’+“+</ By ax) "
0 Qt Qt
< C (R =T i 7).

On the other hand, for every r > 1,

/ |vS<k>\’dz<c1/ W5 VB | g
oF oF

T

+C2/Q+ (5 (1 O 1|Vl d = 0y + .

T

By Holder’s inequality

r _r 1-Z _r
11<C(5q||Vv(")||;,QT>6 q||v<k)\\%‘fQT<C5 7, (5.5)
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provided that g > 2r. To estimate J, we claim that |Vm| € L*(Q) and o > r > 1.
Since |Ins|” < C(y)s™Y for s € (0,1] and |Ins|” < C(y)s? for s > 1 and an arbitrary
positive y (small),

ngc/OT(van Q+/ () () )
+\v<k>|(%)/(’(1+%)*7) dx) ) dr

and for the sufficiently big ¢ we may estimate both integrals by means of the Poincaré
inequality and (5.2):

A <C(1+5*'<(6HVV<")H%Q,)K>. (5.6)

By the compactness results in [26] the sequence {s(k)} contains a subsequence which
converges in the norm of L!(0,7T;L*2(Q)).

COROLLARY 5.1. The assertion of Lemma 5.6 remains true if instead of the con-
dition § > 0 we claim that § > 0 and |V« o, < A uniformly with respect to k. In

this case we may take r = p~, whence J; < C(1+ /l) = M with the constant M from
(5.2), the estimate on J, is obvious.

Gathering the above assertions, for fixed € >0, 6 > 0 and K > 1 we may extract from
the sequence { v(k)} a subsequence (for the sake of simplicity we keep for it the same
notation) such that

vy a.e. in Or,

D (v, x >~d>g(vx> ae.in Qr,

Fs. l(v ,2) — weakly in L70)(Q7),i=1,...,n, (5.7)
A (v x) — weakly in L (0, T;H5(Q)),

D (v (k)7x) — @, (v x)  weakly in L2(Q) uniformly in 7 € [0, T].
It is easy to see that V = 6, @, (v,x) € L (0,T; H5(Q)). By the definition of v(%)

/ [(])(S)c?,d)g(v(k),x)+2§57,~(v(k>,z)~D,~¢(“')—(])(S) fK(v(k),z)} dz=0 (5.8
or i

for every ¢ € span{yy,..., ¥}, s < k. Letting first k — oo and then s — oo, we find
that for every test-function ¢ € L"(0,T;H3(Q)),

/Q [00®c(e) + T4 Do — 0 ficv.2)| de = 0. (5.9)

Since smooth functions are dense in W(Qr), we then conclude that (5.9) holds for
every test-function ¢ € W(Qr) N L? (O,T;WO1 “4(€)) and that for the limit function
O ®e(v,x) € W(Or)NLY (0,T; W4 (Q)). To identify A; we rely on the monotonic-
ity of the flux functions f&i(v(k),z) and follow the classical scheme described in [23,
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Ch.2, Sec.2] (see also [4]) and conclude that A; = %5 ;(v,z) a.e. in Qr. Taking in
(5.8) the independent of ¢ test-function ¢, integrating by parts in ¢, and then letting
k,s — oo, by Lemma 5.3 we have that

/Qq)(x)(q)g(v(x,t),x)—@E(vo,x))dx

:_/Ot/Q[znly&i(v,Z).Dl.q)_fK(v’Z)q) dz—0 as t — 0.

i=1

This completes the proof of Theorem 4.1.

6. Bounded solutions. Proof of Theorem 3.1

LEMMA 6.1. Let in the conditions of Theorem 4.1 vy € L*(Q). Then for every
K > max{||vo||lwq, 1} there is Tx such that the solutions of problem (4.1) satisfy the
uniformin 8 and € estimate

[v(0) o2 < [[V0]|ew. ™" for 1 € [0, Ti] (6.1)
with a constant A independent of € and §.

The proof relies on the following assertion.

1
LEMMA 6.2. Denote A¢(p,x) =€+ —\p\%’l. For every constant K >0, g > 1
m

1
and Cy > — +2g—1,
m

G(v)=C max {0y} Ae in{k24 1 p2a-Drg
=G ), pAg(p,x)min P P
—vmax{0,v} Ag(v,x) min{K>~1 21 > .

Proof. The assertion follows because G(0) = 0 and the function G(v) is nonde-
creasing:

0, if v <0,
I
G'(v) = %v%,l (Co— - —(q= 1)) ! ifo<v<K,
f
(C,——+1) ifv>K.
m

PROOF OF LEMMA 6.1 We consider in detail the more complicated case when b(z) >0
and o > 2. Let us show the following estimate

[max{0,v}(1)[|e0 < || max{0,vo} [ 0 exp(A7),
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where A is a suitable constant. Let us fix some K > 1 and test (5.9) with the function
¢y (v) = max{0,v} min{ K20~ 2=}

%/tt+h/Ag(v7x)¢k(v)Vt dx

1 ft+h max{0,v}
= E/ d // sA¢(s,x) min{ K>~ 1 §>a=1) }dsdx)dt

1+ —m
< % / / 1b(2)| max{0,v} [v| =" (min{¥?, K*}) o min{K>@~ 1 2@~} gz

<Cybtm +(51le(m1n{v K*}) D )

t+h max{0,v}
X —/ / / sAe(s,x)min{ K>V 20" gsdz.
h Ji QJo

Let us denote

max{0,v}
I= / sA¢(s,x) min{ K>~ 24~V g,
0
Letting & — 0, we obtain the differential inequality for I:

di(r)

— <Cybm* (sup(min{y?, K2}) o )I(t)7 1(0) = Ip.

Or

L o
Integration of this inequality leads to the inequality 7% (7) < IOC" e’ with the constants

o—2

C;>29—1, A=b"m" (supmin{vz, K2}> W <b mTK*,  u=sup
Or Or

Letting g — o (i.e. C; — o), we arrive at (6.1) with A still depending on v. Let
us claim that on the interval (0,7k) the constant A is independent of v. Let K >
max{||vo|l~q,1}. We want to choose it from the condition

[vollwoexp(b™m" 1 K*) <K,

which can be written in the equivalent form:

u
1 K V0 |loo K
ln< ) = [vol 2 (f“lns), §=——

<
S otmtKE T \[volleg btmt [Vol|es,2

It remains to show that this inequality is indeed true for small 7. Consider the function
g(s) =sHIns, s > L. It is nonnegative and attains its maximum when s = exp(1/u),
which gives the value of Tx.

COROLLARY 6.1. If vo > 0 a.e. in Q, then the solutions of problem (4.1) are
nonnegative in Qry .
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It follows that for K > max{||vo||~, 1} the solutions of problem (4.1) are indepen-
dently of § and € bounded in Oy, , which means that there is an interval [0, Tp] where
[v(t)]|eo. 0 < K. Thus, fx(v,z) = f(v,z) in O, and v is a bounded solution of the
problem

{ APe (1) = div(Z5(2. V) + £(n2) in O, 62

v(x,0) =vp(x) in Q, v=0 on I'g,

which includes only two regularizations parameters € and & .

6.1. Passage to the limit as ¢ — 0

To pass to the limit as € — 0 we notice that all the estimates for the solutions
of the regularized problem (4.1) are independent of &, and that the presence of £ was
used only once in the proof of invertibility of the matrix B. Let {v¢} be the sequence
of solutions of problem (6.2) with fixed 6 > 0. The functions v, satisfy the uniform in
€ and & a priori estimates of the previous section needed to pass to the limit as € — 0.
According to (5.1) sup(g 7)||v/€Ve|[2,0 are bounded uniformly in €. It follows that for
every smooth test-function ¢ with ¢, € C*(0,7;C5(Q))

d

daweds| <e [ [olveldrre [ 10e0)|lvoeldx+e [ ello]dz
Q Q Or

To 0

< Ve sup ||Vevellzq sup [0]l2.0+ €lvoll2.al ¢ (x,0)
(0,Tp) (0,Tp)

2,Q

"‘\/EH"E||2=QT0H¢I|2~,QTO —0 as € —0.

Since the smooth functions are dense in the set

{¢ : ¢ € W(QTo)a at¢ € W/(QT())}a

the limit function v = vg solves problem (6.2) with € = 0.

6.2. Passage to the limit as 6 — 0

Let us denote by {vs} the sequence of solutions of problem (4.1) with € =0 and
fx = f. The functions vg satisfy all the estimates we need to extract a converging
subsequence, except the estimate of Lemma 5.5 which is independent of § only if
pi = pi(x). Estimate (5.4) was used only in the proof of relative compactness of the
sequences {v()} and {ve}. The uniform boundedness of solutions of problem (6.2)
allows one to prove the relative compactness of the sequence {vs} with respectto § in
a different way.

LEMMA 6.3. Let the conditions of Lemma 6.1 be fulfilled and let {vg} be a se-
quence of weak solutions of problem 6.2 with € =0 and 6 > 0. If Vm € Lpi(z)(QTO)
forall i=1,...,n and either m(x) € (0,1], or

1

I
1>pl—(z)+m mn QTO7
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then the sequence {ug}, us = ®, "' (vs,x), is relatively compact in L*(Qr,) with some
u>1.

Proof. By virtue of (6.2), estimate (5.2) and Lemma 6.1 we have
dus € LY (0, T; W 14(Q)).

Vs

Testing equation (6.2) with the function ¢ = / s/~ tds, o € (0,1), we obtain the
0

inequality

t=1;

0
i / Ivs| %1 Vg |7 dz
Or,

1 L+a
m d
/Q v

=0
n
ta Z/ Ivs| % Dyvs PP dz < €

with an independent of § constant C. It is easy to calculate that for bounded |vs]

\Vm\

. C1 1_q
D) < s =)Dyl € D (s 1 gl

1 . . .
< cz(\v(s\(vl)f’wavév"+|le”')~

If m(x) € (0,1], this inequality gives the uniform estimate on [|Vus||,- o,,- In the
case m > 1, the same estimate follows if we claim that (1/m— 1) p;(z) < o — 1. The
conclusion about relative compactness of the family {us} in L*(Qg,) with some u > 1
follows from [29, Lemma 9.1]. O

We can now extract from {vgs} a subsequence with the following properties:

Vg —V a.e. in Oy,
P(vs,x) — P(v,x) ae.in O,
®(vg,x) — ®(v,x) weakly in L2(Q) uniformly in 7 € [0, Tp], (6.3)

Fs.i(vs,z) — Bi weakly in L70)(Qg),i = 1,...,n,
o®(vs,x) = W weakly in L” (0, To: H 5 (Q)).

Moreover, the estimate §||Vvs HZ oy < C yields
8|Vl *Vvs — 0 as § — 0 weakly in L(Qg ).

Indeed: for every ¢ € Lq(O,T;Wol’q(Q))

1 -3
<56<6/Q \Vv(;\qu) qHV¢||q7QTO_)O

To

5‘ / (V5|9 2V -V dz
or,

as 0 — 0. The limit functions B; are defined by monotonicity,
B; = g()J(VV,Z) = ai(z)|Div\1’i(Z)72Div.

These arguments are summarized in the following lemma.
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LEMMA 6.4. Let us assume that the conditions of Theorem 4.1 are fulfilled and,
additionally, vy € L*(Q). If either p; are independent of t, or the conditions of
Lemma 6.3 are fulfilled, then for every K > max{||vo||«q, 1} there exists Ty > 0 such
that problem (6.2) with € =0 has a solution v € W(Qr,) in the sense of Definition 3.1.
()|l is bounded in [0,Tp] and satisfies estimate (6.1)). The solution is
nonnegative if vo 2 0 in Q.

6.3. Continuation to the maximal existence interval

The constructed solution is defined on an interval (0,7p) with Ty estimated in
Lemma 6.1, the function v(x,Ty) possesses the same properties that the initial function
vo. Taking now Ty for the initial moment we may repeat all the above arguments to
show that the solution of problem (3.1) can be continued to a time interval (7p,7;) with
Ty depending on ||v(-,7p)||-q. Continuing this process we obtain the sequence {7;}
and a solution of problem (3.1) in the cylinders Q. If T; — oo, the solution exists
globally in time, otherwise lim7;, = T* < < and problem (3.1) admits a local in time
solution.

7. Strong energy solutions

In this section we improve estimates for the finite-dimensional Galerkin’s approxi-
mations for the solutions of the regularized problem (4.1) under additional assumptions
on the coefficients a;, b and the nonlinearity exponents p;, o. These estimates remain
true for the energy solution obtained as the limit of the sequence of the approximate
solutions. For the sake of simplicity, we confine the derivation of these estimates to
the simplest case when b(z) < 0 in Qr and ot < 2. Under these assumptions the
solution constructed in the previous sections is global in time, i.e., can be continued to
the cylinder Q7 with any T > 0. Let us introduce the energy function

o+m—1

Dv pi wl m
E(t,v<">)=/g< \HZ 1 _ \b|‘ G+|m_1 )dx. (7.1)

We begin with deriving some energy relations. Multiplying each of the equations in
(4.3) by c}(t) and summing up in j = 1,k, we arrive at the equality

/ Ae(v® x) (vt(k) ) ? dx
Q

- s 015+ 3 w04
Q i=1

We will use the easily verified formulas

. )
8 |Vul"2VuVu, = EE(\VM\‘I),
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and
a D Pi
ai|Diu|P " Diu - Dy, = —( ¢>
ot Di
(1 In|Dju|Pi Diu |Pi
+ ai|Diu P! <_2 - |7)Pit —a,-,‘ | )
D; Di i
‘u|0'+m 1
o—m—1
blu| " uuy = g(l’m>
m
o+m—1
oim1 1 Inju| \ o Jul *
+b‘u| ((0‘+m—1)2 - 6+m—l)z_bt o+m—1 °
m m m
Then d
/6\Vu\‘172VuVu,dx:5—/ [Vu(-,1)|%dx,
o dt Jo
and

n

/ Z(ai|Div(k)‘pi(Z)_ZDiV(k))Di(vt(k))dx
Q

i=1
-2 a2

1 1In|D; pi Dk |pi
+/92(ai|DiV(k) |p’( M)Pﬁ_aitu>a
i=1 i

Di
o+tm—1
o—1_ k d |V(k)‘ +”’
/lev(")l w0y )dx:E/Q(bW dx

m

o'+m 1 1 ln |V(k) | Oy ‘v(k) ‘ Lml
+/ <b|v " ((6+1n—1)2 T otm—1 Z _bt 0'+m 1 dx.

m

Gathering these formulas and taking into account the definition of the energy function,
we arrive at the relation

/A )2dx = Aj + Ag, (72)
where
< 1 In|DpW) |pi D) |pi
n=[3 (—a,-D,-v(k) ,,,.<_ u) pitwvi)dx’
Qi1 Di Di

\v(k)\ o+m—1

k o+m—1 1 ln‘v(k)‘ Oy I—
A2:/Q<bv()| " <(O‘+ml)2_ o+m—1 E_b’ 0'+qu dx.

m m m
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LEMMA 7.1. Let us assume that p; = o; =0, and that
Og_ait(x7t)<caa Ogbt(xat)gch

Then
E(t,v* +/ /A8 v dxdr < E0,01). (7.3)

Inequality (7.3) transforms into equality if a; = b; = 0.

Proof. Under the assumptions of the lemma, relation (7.2) takes the form
E(t, K )+ / Ae(v ) dx
U+m 1

D; b
/(lel| L L Y
Di oc+m—1

and (7.3) upon integration in .

LEMMA 7.2. Let us assume that

0< Pngcp; 0 < oy < Co,
0< all(x7t)<caa 0< t(x7t) Cb
Then
E(t +//A8 )? dxdr < E(0,v) +Ct (7.4)

with the constant C = |Qle (a*C, + Z—tCU) .

Proof. In this case (7.2) takes on the form
—E(t,v(k)) + / Ag(v(k) ,X) (vt(k))zdx
Q

4 Dk |pi L DK |pi
:2/ (—‘aitH i ' P il ‘ (1—pi1n|DiV(k) |)|pir\>dx
i—1/Q Di P

i
o+m—1
[ o mp |
_ Zr L dx
Q o+m—1

|Gt‘bm (k) o+m—1 _ (0+m— 1) (k)
+/g((0‘+m—1)2|v (0 ) )

whence

dE(t,v¥) W (VW2
— +/QA8(V ,x)( EF ) dx

1 a; D[V(k) Pi
S 2/9 |T(1 — piln DY) |) | py|dx
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|o;|bm ) | (c+m—1) ‘ (k)‘
+/97(0+m—1)2 v (1—7m In|v )dx

=Ap+As.

We estimate A, and As in the following way:

+Cp2/

a*Cpn|£2\< sup [ max ED <ea C,n|Q|=Cy,

_ 1
pm<r<pt T0gE<er

|Div(K) |Pi

——dx
ﬁ{p,ln|Dv <1} Pi

o+m—1
m

m? )w«)

b+

b+
dx<e——Co|Q =Co.

A g—c/ L
TS m on{(o+m—1)np®|<m} (0 +m—1)?

Then

RGN
E(t,v(k))+/Ag(v(k)7x)< ;t ) dx < C1 + Gy,
Q
and (7.4) follows upon integration in ¢. O

Lemma 7.1 and Lemma 7.2 allow one to derive stronger estimates for the energy
solutions. Namely, under the conditions of Lemma 7.1,

sup (5‘Vv(k) |11 + 2 |Div(k) |Pi + ‘V( | otm= 1 )dx
t€(0,T) Q =

+ [ AW x) (v,gk))zdz < CE(O,v(()k))
or

with a constant C depending only on a*, b*, p*, o . If the conditions of Lemma 7.2
are fulfilled, then

sup (5|Vv(k)|q+2|Dv Pi 4 |v(®) Hm l)dx
1€(0,T) /< i=1
+ [ A )9 dz <E0WO)+CT
or
with the constant C = e (a* nCp, + Z—th)\m .
These inequalities give the additional estimates for the energy solution obtained as
the limit of the sequence of solutions of the regularized problem:

Y(v)= sup (2\Dv\1’t+|v|‘”"" dx+/ 1 v 2 dz < C. (7.5)
1€(0,1) /L

The energy solutions of problem (3.1) satisfying (7.5) will be termed Strong Energy
Solutions. Let us consider the function

(k)
k x):/o VAe(s,x)ds.



DOUBLY NONLINEAR PARABOLIC EQUATIONS 91

Under the conditions of Lemmas 7.1, 7.2 it follows that ||G,(v¥),x)||2.0, are uniformly
bounded. Using the properties of convergence of the sequence of solutions of problem
(4.1), we may extract a subsequence such that

(k) o) "
G(v¥ x) :/ VAe(s,x)ds — v V[ v ae. in Or,
0

1+m
W0
G,V x) =0, (/ VAe(s,x) ds) — G* weakly in L*(Qr).
0
It is easy to see that G* = G;(v,x).

THEOREM 7.1. Let in the conditions of Theorem 3.1 b(z) < b~ <0 in Qr and
o1 < 2. Assume that either the conditions of Lemma 7.1, or the conditions of Lemma

7.2 are fulfilled. If Ey(0, vék)) are uniformly in k bounded, then the constructed solution
of problem (3.1)) is a strong energy solution.

The initial energy is bounded uniformly in k if we claim that vy possesses some extra
regularity, say, vo € Hj(Q) with a suitably big s (see the proof of Lemma 5.4). It is

clear also that in this case the first term of E (O,v(()k)) given by (7.1) tends to zero as

8 —0.

8. Comparison principle and uniqueness of strong solutions

In this section we establish the comparison principle for strong energy solutions
of the problem

1 7 o(z)-1
8,(\\/\'"(*) 1v> = ZDi<a,~\Div|p"(Z)72Div> +b|v| m(x) lV in QT7
i=1
8.1
v(x,0) = vp(x) in Q, @.1)
y=0 on I'y.

Given two solutions v, v, of problem (8.1), we introduce the functions
1 4 1
w=v|m vy —|va|m vy, v=v— .

THEOREM 8.1. Let vi, vo be bounded strong energy solutions of problem (8.1)
with the initial data vo1, vy . Assume that

0<m <m(x)<m" <1, 2<o0 . (8.2)
Then forall t € [0,T]

(0l ) < € IW(,0) 1y, €= const. > 0.
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Proof. By virtue of (7.5) and (8.2),

1 2 1 2(1—m)
a (b)) dz:/ T P dz
/QT( t( ) Oor m? '

m (1—=m)
<Csup<|v|2 )/ | v P dxdr
or m or
<C.

Now we may follow the arguments of papers [1, 16, 17]. By the definition, for every
¢ € W(Q) with ¢, € W'(Qr),

/{(Parw-i-zal <|DV1|p’ DiVI_|DiV2‘pi72DiV2>Di¢}dZ

_ o=1_
—/b v1| Ty — v vz>(])dz.
Let us introduce the function
Ts(s) _ 5>0
5) = ——, .
o V62 452

It is easy to check that
w
/ Ts(s)ds — |w], Ts(s) — signs as 8 — 0,
0

52
Ti(s)= ——— >0, [sTs(s)| <1, seR.
(62 +s2)2

Now we will make use of the following assertion.

LEMMA 8.1. (Lemma 4.5, [1]) Let v € W(Qr) NL™(Qr), dw € W'(Qr). If
ow € LY(Qr), then

s=t

lim Tg(v)atwdz=/£2|w(-7s)|dx (8.3)

8—0J 0,

The proof is based on the observation that w and v have the same sign and, thus, if
Ts(v)dw has a limit as § — 0, it must coincide with lim Tg(w)d;w as § — 0. Because
of (7.5), in the case m(x) € (0, 1] this lemma is applicable to the strong energy solutions.
Testing (8.1) with Tg(v), & > 0, we get

/ < v)dw+ Z a;(z <‘D vy [P 2Divy — ‘D,‘V2|pi_2DiV2> Té(v)D,-v) dz
Q

o-1_ o-1_
:/éb(Z)(|V1| m l\/1—|V2| m 1V2)T5(V)dz.
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The second term on the left-hand side of this equality is nonnegative because of the
monotonicity, while

—1 —1 1 1 -2 ~
[b(2) (1711 v = ) [ <€t [T < Cl,

Letting 6 — 0, we arrive at the inequality

/|w |dx C/ |w|dz.

Writing this inequality in the form

Y1) SA+CY (1), //|w|dz, A:/Q|w(x,0)|dx,

and integrating, we obtain the estimate

whence
/|w(x,t)|dx: "(t) <A+CY(t) Ct/|wx0 |dx.
Q

Under the conditions of Theorem 8.1 uniqueness of strong energy solutions is an im-
mediate byproduct of the comparison principle.
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