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FINITE EXTINCTION AND CONTROL IN SOME DELAY MODELS

ALFONSO C. CASAL AND JOSÉ M. VEGAS

Abstract. For a controllable linear time-invariant system x′ = Ax+bu(t) in R
n a general delayed

feedback action u(t) =−k(t)u(t−τ) is proposed so that the solutions of the closed-loop system
x′ = Ax−bk(t)x(t −τ) are driven to zero in finite time. Optimality with respect to some integral
performance indices is also analyzed.
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[3] A. C. CASAL, J. I. DÍAZ, M. STICH, On some delayed nonlinear parabolic equations modeling CO
oxidation, Dyn. Contin. Discret. Impuls. Syst. A, 13 (Supp S) (2006), 413–426.
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