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Abstract. For a controllable linear time-invariant system x′ = Ax+bu(t) in R
n a general delayed

feedback action u(t) =−k(t)u(t−τ) is proposed so that the solutions of the closed-loop system
x′ = Ax−bk(t)x(t −τ) are driven to zero in finite time. Optimality with respect to some integral
performance indices is also analyzed.

1. Introduction

It is an honor and a pleasure for us to contribute to the celebration of J.I. Diaz’s
60th birthday. Since 1975 we have kept a fruitful contact with him, first and above
all as a close friend, as well as by the privilege of collaborating with such a first-class
scientist.

In previous papers ([1]-[8]), Dr. J.I. Diaz and the authors have considered different
aspects of a general delay-differential equation

x′ = Ax−M(t)x(t− τ), t � 0, (1)

where τ > 0 is a given delay, A is the infinitesimal generator of a C0 -semigroup in
some Banach space X and M(t) is a linear operator which guarantees the existence
and uniqueness of solutions of (1) in some appropriate function space and is supposed
to vanish outside some finite time interval.

The present work will only deal with the finite-dimensional situation, so X will
be R

n and A and M(t) will be n×n matrices, M with continuous (or at least locally
integrable) entries. Our basic hypothesis is

M(t) = 0 for every t /∈ [τ,τ ′], (2)
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where numbers τ and τ ′ satisfy 0 < τ < τ ′ � 2τ, so that (1) reduces to the linear
ODE x′ = Ax except on the time interval [τ,τ ′] . Other choices for the time interval are
possible but this is the simplest one.

The structure of this equation and the hypothesis (2) on M(t) guarantee that any
solution x(t) which vanishes at some t∗ � τ ′ will automatically vanish for all future
times t � t∗ (this property it never holds for time-independent differential delay equa-
tions like x′ = Ax−Mx(t− τ) for constant matrices A and M ). We thus have extiction
in finite time t∗ or, more to the point of this paper, exact null controllability in the
prescribed time interval [τ,τ ′].

In [6] the following result was proven:

PROPOSITION 1. Assume that M(t) = 0 for t /∈ [τ,τ ′] , M(t) commutes with eAt

and
∫ τ ′
τ M(t)dt = eAτ . Then all solutions of (1) vanish for t � τ ′. In particular, if

m : R → R is a continuous scalar function which vanishes outside [τ,τ ′] and satisfies∫ τ ′
τ m(t)dt = 1, then all solutions of

x′(t) = Ax(t)−m(t)eAτx(t− τ)

vanish for t � τ ′.

We now propose here a useful adaptation of this result to a general controllable
system

x′ = Ax+Bu (3)

which will produce a delayed feedback controller of the form

u = K(t)x(t − τ) (4)

which will settle the system at the zero state after time t∗ = τ ′, independently of the
initial conditions. On the one hand, it is clear that the closed loop system

x′ = Ax−BK(t)x(t− τ) (5)

has the structure (1) with matrix M(t) = BK(t). Yet, the problem is that B anf K will
not be square in general, the product BK will not be invertible, and it is not clear how
one can modify the previous choice M(t) = m(t)eAτ in order to meet our needs. This
is precisely what we propose in this paper for the “most extreme” case in which B has
only one column and A has n different real eigenvalues.

The final section deals with some optimality questions. The usual optimal con-
trols associated to quadratic integral criteria do not meet our continuity considerations
and must be modified by including time-derivative penalty terms in the performance
index. The resulting optimal controller gain matrix K(t) turns out to be the solutions
of second-order boundary value problems whose solutions can be explicitly computed
by standard ODE methods, giving expressions of ki j(t) involving linear combinations
of the functions exp((−λi +λ j)t), where λi are the eigenvalues of A.

Section 2 contains the statements of the main results. The proofs and some exten-
sions are given in Section 3.
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2. Statement of results and remarks

Let us begin by extending the proposition mentioned above.

THEOREM 1. 1. Let A be a real n× n matrix and let M : [0,∞) → R
n×n be a

continuous matrix-valued function vanishing outside the interval [τ,τ ′], where 0 <
τ < τ ′ � 2τ. Then all the solutions of the delay system

x′(t) = Ax(t)−M(t)x(t− τ), t � 0 (6)

vanish for t � τ ′ if and only if∫ τ ′

τ
e−AsM(s)eAs ds = eAτ . (7)

2. If matrix A has distinct eigenvalues λ1,λ2, · · · ,λn and associated modal matrix P

such that P−1AP = D
def
= diag(λ1,λ2, . . . ,λn), then (7) has some special solutions of the

form
M(t) = m(t)M,

where m : [0,∞) → R is a scalar continuous function vanishing outside [τ,τ ′] with∫ τ ′
τ m(t) dt = 1 and M is any constant matrix which can be written as

M = eAτ +PNP−1,

where N is an n×n matrix with zero diagonal entries.

The proof will be given in the next section.
In order to adapt this result to the control problem stated in the introduction we

need some preliminary comments on controllability in its easiest form.

DEFINITION 1. Given an n×n matrix A and an n×m matrix B, the linear, time
invariant open-loop dynamical system

x′ = Ax+Bu (8)

is said to be controllable if for every two states x1 and x2 and every time interval
[t1,t2] there exists at least one integrable control function u : [t1,t2]→ R

m such that the
(unique) solution x(t) to{

x′(t) = Ax(t)+Bu(t), t ∈ [t1,t2]
x(t1) = x1

satisfies x(t2) = x2.

PROPOSITION 2. (Kalman) The necessary and sufficient condition for controlla-
bility is that the so-called “controllability matrix”

C
def
= ( B | AB | A2B | . . . | An−1B )

have full rank.
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We may now state our main result in this section:

THEOREM 2. Let A be a real n×n matrix with distinct eigenvalues λ1,λ2, · · · ,λn

and b = col(b1, . . . ,bn) a real column vector such that the pair (A,b) is controllable.
Then there exists a vector continuous function k(t) = col(k1(t), · · · ,kn(t)) vanishing
outside [τ,τ ′] such that all the solutions of the closed-loop delayed feedback system

x′(t) = Ax(t)−bk(t)Tx(t − τ) (9)

vanish for t � τ ′. In fact,

k(t) = PT k̃(t) or k(t)T = k̃(t)T P,

where P is the modal matrix associated to A (that is, the j -th column of P is an
eigenvector of A associated to eigenvalue λ j), and the functions k̃ j(t) satisfy:

1.
∫ τ ′
τ k̃ j(s)e(−λi+λ j)s ds = 0 for i �= j, i, j = 1,2, . . . ,n.

2. b̃i
∫ τ ′
τ k̃i(s) ds = eλiτ for i = 1,2, . . . ,n, where b̃ = P−1b.

In particular, if m is any continuous scalar function vanishing ouside [τ,τ ′] and
satisfying

∫ τ ′

τ
m(t)dt

def
= m �= 0,

∫ τ ′

τ
m(t)e(λ j−λi)tdt = 0 for i �= j, i, j ∈ {1,2, · · · ,n}. (10)

then k(t) may chosen as k(t) = m(t)k , where k = PT k̃ and

k̃i =
eλiτ

mb̃i
, i = 1,2, ...,n.

REMARKS 1. 1. The necessity of the controllability hypothesis is obvious: the
standard (linear, finite-dimensional) theory proves that if we manage to steer any initial
state x(0) to zero, then the system is necessarily controllable.

2. The hypothesis that all eigenvalues be different is also necessary if A is diago-
nalizable and the control matrix B is a column (denoted b) . Indeed, for a diagonal
A = diag(λ1,λ2, . . . ,λn) the controllability matrix is

C =

⎛
⎜⎜⎜⎝

b1 λ1b1 · · · λ n−1
1 b1

b2 λ2b2 · · · λ n−1
2 b2

...
...

. . .
...

bn λnbn · · · λ n−1
n bn

⎞
⎟⎟⎟⎠

which has two equal rows if (and only if) two eigenvalues coincide. Also, all entries bi

must be nonzero for controllability.
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3. If the matrix A is not diagonalizable, the final conclusion of Theorem 2 may not

hold: If A =
(

0 1
0 0

)
, b =

(
0
1

)
, then (A,b) is controllable, but

e−Atbk(t)T eAt =
(−tk1(t) −t (tk1(t)+ k2(t))

k1(t) tk1(t)+ k2(t)

)

and for the condition
∫ τ ′
τ e−Atbk(t)T eAt dt = eAτ to hold it is necessary that

∫ τ ′

τ
k1(t)dt = 0,

∫ τ ′

τ
tk1(t) dt = −1,

∫ τ ′

τ
k2(t) dt = 2

These conditions are easily seen to be incompatible if we require
(
k1(t),k2(t)

)
to be a

scalar multiple m(t) of a constant vector (k1,k2) .

Optimality considerations

The functions m and ki in Theorems 1 and 2 can be chosen in a number of mean-
ingful optimal ways. The most immediate of them is to find the control m∗ which
minimizes the quadratic performance index or “energy”

∫ τ ′
τ m(t)2dt on [τ,τ ′] and the

extend it by zero outside that interval.
However, since we are interested in having m continuous on [0,∞), we need to

impose the “boundary conditions” m(τ) = m(τ ′) = 0, and this means that an additional

derivative “penalty” term
∫ τ ′
τ m′(t)2dt will need to be added to the performance index.

We will state here the simplest result. More general comments appear along with
the proof in Section 3.

THEOREM 3. There exists a unique function m : [τ,τ ′] → R satisfying m(τ) =
m(τ ′) = 0 and minimizing

J(m)
def
=

∫ τ ′

τ
(m(t)2 +α2m′(t)2)dt

subject to the constraints

∫ τ ′

τ
m(t)dt = 1,

∫ τ ′

τ
m(t)e(−λi+λ j)t dt = 0 for i, j = 1,2, . . . ,n, i �= j.

Such function solves the boundary value problem{
m−α2m′′ = μ0 +∑i�= j μi je(−λi+λ j)t ,
m(τ) = m(τ ′) = 0,

for some appropriate “Lagrange multipliers” μi j, μ0 and therefore has the form

m(t) = c1e
−t/α + c2e

t/α + c0 +∑
i�= j

ci je
(−λi+λ j)t ,
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where the constants c1, c2, c0 and ci j (i �= j) are found by solving the (n(n− 1)+
3)× (n(n− 1)+ 3) determinate system of linear equations obtained by imposing the
boundary conditions and the integral constraints.

If only the condition
∫ τ ′
τ m(t) dt = 1 is imposed (as in Theorem 1), the solution is

simply

m(t) =
1

τ ′ − τ

[
1− 1

cosh(1/α)
cosh

2t− τ− τ ′

α(τ ′ − τ)

]
whose graph is a catenary.

3. Proofs

3.1. Proof of Theorem 1

Let us recall our basic delay system (1):

x′ = Ax−M(t)x(t− τ), t � 0. (11)

STEP 1. The integral equation for M(t). Let us apply the variation of constants
formula on [τ,τ ′] :

x(t) = eAtx(0)+
∫ t

0
eA(t−s)M(s)x(s− τ) ds for t � 0,

where x(θ ) (the “initial function”) is given on [−τ,0]. We are interested in finding
conditions on M̃(t) that will ensure that x(τ ′) = 0.

The fact that M(t) = 0 for t � τ implies two things: first, that for t ∈ [τ,τ ′] the
endpoints of integral on the right-hand side may be taken as τ and t; and second, that

when σ ∈ [0,τ] we have x(σ) = eAσx(0). Hence, denoting ξ def= x(0) we may write:

x(t) = eAtξ −
∫ t

0
eA(t−s)M(s)eA(s−τ)ξ ds

= eAtξ − eAt
(∫ t

0
e−AsM(s)eAs ds

)
e−Aτξ

= eAt
[
I−

(∫ t

τ
e−AsM(s)eAs ds

)
e−Aτ

]
ξ for t ∈ [τ,τ ′].

Therefore, x(τ ′) will vanish for every ξ ∈ R
n if and only if

I−
(∫ τ ′

τ
e−AsM(s)eAs ds

)
e−Aτ = 0

or, equivalently ∫ τ ′

τ
e−AsM(s)eAs ds = eAτ (12)

as was to be proven.
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STEP 2. Reduction to diagonal or “modal ”form. We now assume that

P−1AP = D
def= diag(λ1,λ2. · · · ,λn),

where the real numbers λi are all different.
We may write the integral equation 12 as

∫ τ ′

τ
e−AsM(s)eAs ds =

∫ τ ′

τ
Pe−DsP−1M(s)PeDsP−1 ds

= P

(∫ τ ′

τ
e−DsP−1M(s)PeDs ds

)
P−1

= eAτ = PeDτP−1.

Hence, by denoting M̃(t) def= P−1M(t)P , we have a similar integral equation with a
diagonal D : ∫ τ ′

τ
e−DsM̃(s)eDs ds = eDτ . (13)

The advantage of this change of variables is that, for a diagonal D, the analysis of
the integral becomes feasible because of the easy identity

[diag(α1, · · · ,αn)(qi j)diag(β1, · · · ,βn)]i j = αiqi jβ j for i, j = 1, . . . ,n.

In our case,

e−DsM̃(s)eDs =

⎛
⎜⎜⎜⎝

m̃11(s) m̃12(s)e(−λ1+λ2)s · · · m̃1n(s)e(−λ1+λn)s

m̃21(s)e(−λ2+λ1)s m̃22(s) · · · m̃2n(s)e(−λ2+λ2)s

...
...

. . .
...

m̃n1(s)e(−λn+λ1)s m̃n2(s)e(−λn+λ2)s · · · m̃nn(s)

⎞
⎟⎟⎟⎠ .

Thus, for our integral equation to be satisfied it is necessary and sufficient that

1.
∫ τ ′
τ m̃i j(s)e(−λi+λ j)s ds = 0 for i �= j, i, j = 1,2, . . . ,n,

2.
∫ τ ′
τ m̃ii(s) ds = eλiτ for i = 1,2, . . . ,n,

or just ∫ τ ′

τ
m̃i j(s)e(−λi+λ j)s ds = δi je

λiτ for i, j = 1, . . . ,n.

Once these functions have been chosen according to some specific criterion, the
original matrix M(t) is recovered as

M(t) = PM̃(t)P−1.

STEP 3. The case M(t) = m(t)M for fixed M and m(t) = 0 outside [τ,τ ′]. Un-
der the hypothesis M(t) = m(t)M (or M̃(t) = m(t)M̃) , conditions (1) and (2) above
translate into
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1’. m̃i j
∫ τ ′
τ m(s)e−(λi+λ j)s ds = 0 for i �= j, i, j = 1,2, . . . ,n,

2’. m̃ii
∫ τ ′
τ m(s) ds = eλiτ for i = 1,2, . . . ,n.

If
∫ τ ′
τ m(s)ds = m �= 0 then any M̃ = (1/m)eDτ +N, where N has zero diagonal

entries, will satisfy (1’) and (2’) without any further assumptions on m(t). In terms of
the original matrix M,

M = PM̃P−1 = P
(
(1/m)eDτ +N

)
P−1 =

1
m

eAτ +PNP−1

is a parametrization of the matrices M which solve our problem.

3.2. Proof of Theorem 2

The problem of going from a general square M(t) to a control-theoretic factored
matrix bk(t)T is no easy matter, not even with the parametrizations obtained before.
This is because the non-vanishing integral condition imposed on m(t) is no longer
enough to solve our problem.

Continuing with the notations introduced in the previous proof and assuming that
the pair (A,b) is controllable, let us see how the expression M(t) = bk(t)T changes
after diagonalization, that is, after introducing matrix P and its associated M̃(t) =
P−1M(t)P.

If we perform the usual change of variables y(t) = P−1x(t), system x′ = Ax+bu
becomes

y′ = P−1AP+P−1b = Dy+P−1bu.

It thus suffices to define the associated vectors

b̃
def= P−1b, k̃(t) def= PT k(t)

so that
bk(t)T = (Pb̃)(P−T k̃(t))T = P

(
b̃k̃(t)T )

P−1,

where P−T stands for
(
P−1

)T =
(
PT

)−1
. Therefore

M(t) = bk(t)T ⇐⇒ PM̃(t)P−1 = P
(
b̃k̃(t)T )

P−1

is then equivalent to
M̃(t) = b̃k̃(t)T

that is,
m̃i j(t) = b̃ik̃ j(t), i, j = 1,2, . . . ,n

and the conditions given in the previous theorem now correspond to:

1.
∫ τ ′
τ m̃i j(s)e(−λi+λ j)s ds = b̃i

∫ τ ′
τ k̃ j(s)e(−λi+λ j)s ds = 0 for i �= j, i, j = 1,2, . . . ,n,

2.
∫ τ ′
τ m̃i j(s) ds = b̃i

∫ τ ′
τ k̃i(s) ds = eλiτ for i = 1,2, . . . ,n.
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The hypothesis of controllability comes into play at this point. This property is
invariant under linear changes of variables, so it is enough to check the controllability
matrix C̃ associated to the transformed diagonal system y′ = Dy+ b̃u, which is

C̃ =

⎛
⎜⎜⎜⎝

b̃1 λ1b̃1 · · · λ n−1
1 b̃1

b̃2 λ2b̃2 · · · λ n−1
2 b̃2

...
...

. . .
...

b̃n λnb̃n · · · λ n−1
n b̃n

⎞
⎟⎟⎟⎠ .

Therefore, b̃1 �= 0, b̃2 �= 0, . . . , b̃n �= 0 is both necessary and sufficient for controlla-
bility. And this is precisely what was needed for the diagonal conditions (2) to hold. It
is then clear that functions k̃i(s) may be chosen so that (1) also hold, and finally k(t)
be recovered as P−T k̃(t).

However, if we want to factor out

k̃(t) = m̃(t)k̃

for a scalar m̃(t) and a constant vector k̃, we run into some difficulties not encountered
in the previous theorem. In fact, the first condition cannot be done away with by merely
imposing m̃i j = 0 like before, because now b̃i is not zero (recall that it is essential
that it be nonzero for controllability). Hence we need to impose the “orthogonality
conditions” ∫ τ ′

τ
m̃(t)e(−λi+λ j)t dt = 0, i �= j, i, j = 1,2, . . . ,n,

as extra hypotheses for (2) to hold true.

REMARKS 2. If matrix A is not diagonalizable, the final conclusion of Theorem
2 may not hold: If

A =
(

0 1
0 0

)
and b =

(
0
1

)
,

then the pair (A,b) is controllable, but

e−Atbk(t)T eAt =
(−tk1(t) −t (tk1(t)+ k2(t))

k1(t) tk1(t)+ k2(t)

)

and for the condition
∫ τ ′
τ e−Atbk(t)T eAt dt = eAτ to hold it is necessary and sufficient

that ∫ τ ′

τ
k1(t)dt = 0,

∫ τ ′

τ
tk1(t) dt = −1,

∫ τ ′

τ
k2(t) dt = 2.

These conditions are easily seen to be incompatible if we require
(
k1(t),k2(t)

)
to be a

scalar multiple m(t) of a constant vector
(
k1,k2

)
.
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3.3. Optimal delayed feedback controls

Since the problem we are dealing with is basically concentrated on the interval
[τ,τ ′], it is natural to compare the feedback controllers we have produced

u(t) = k(t)T x(t − τ)

with the optimal control problem of the non-delayed initial problem{
x′ = Ax+bu(t),
x(τ) = η , x(τ ′) = 0,

where η (= eAτξ in our previous notation) is arbitrary and “optimal” refers to some
standard performance index like

J(u) =
∫ τ ′

τ
|u(t)|2 dt =

∫ τ ′

τ
u(t)Tu(t)dt.

Unfortunately, it is easy to show that this optimal control u(t) , given by

u(t) = bT e−ATt
(∫ τ ′

τ
e−AsbbTeAT sds

)−1

e−Aτη

(see Sontag ([10])) does not vanish on the endpoints τ, τ ′, so it will not fit into the
present discussion.

In order to force u to vanish at these endpoints, the simplest device is to add a
derivative penalty term, so we will consider instead

J(u) def=
∫ τ ′

τ

(
|u(t)|2 +α2

∣∣u′(t)∣∣2)dt =
∫ τ ′

τ

(
u(t)T u(t)+α2u′(t)T u′(t)T )

dt,

where α is an nonzero positive number to be chosen according to the importance ac-
corded to the penalty term.

Going back to our delayed problem, we thus assume that the control actions pre-
viously considered have an associated cost functional of the type

J(k) =
∫ τ ′

τ

(
|k(t)|2 +α2

∣∣k′(t)∣∣2)dt =
∫ τ ′

τ

(
k(t)T k(t)+α2k′(t)T k′(t)T )

dt.

Performing the standard change of variables to diagonal form

y(t) = P−1x(t), x(t) = Py(t)

we obtain again to the associated diagonal delay system

y′(t) = Dt −P−1bk(t)T Py(t− τ) def= Dt− b̃k̃(t)T y(t− τ)

with b̃ = P−1b and k̃T (t) = k(t)T P as before. The functional J is now expressed as

J(k̃) =
∫ τ ′

τ

(
k̃(t)T P−1P−T k̃(t)+α2k′(t)T P−1P−T k′(t)

)
dt
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=
∫ τ ′

τ

(
k̃(t)TW̃ k̃(t)+α2k̃′(t)TW̃ k̃′(t)

)
dt,

where W̃ = P−1P−T is symmetric and positive definite. The integral constraints on k̃
are given by ∫ τ ′

τ
e−Dt b̃k̃(t)eDtdt = eDτ

or, equivalently,

∫ τ ′

τ
e(−λi+λ j)t b̃ik̃ j(t) dt = δi je

λiτ , i, j = 1,2, . . . ,n.

We must therefore solve the following quadratic isoperimetric variational problem
(where we have dropped the tilde symbols for simplicity):

(V)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

minimize J(k) def=
∫ τ ′
τ

(
k(t)TWk(t)+α2k′(t)TWk′(t)

)
dt

=
∫ τ ′
τ ∑n

i, j=1 wi j(ki(t)k j(t)+α2k′i(t)k′j(t)) dt,

subject to

{
ki(τ) = 0, ki(τ ′) = 0, i = 1,2, . . . ,n,∫ τ ′
τ e(−λi+λ j)t bik j(t)dt = eλiτδi j, i, j = 1,2, . . . ,n.

(14)

In the function space H1(τ,τ ′) of R
n -valued functions with square-integrable

derivatives this quadratic problem has a unique solution as long as the integral con-
straints are not incompatible and the set of admissible functions is not empty,and this
is indeed the case since we have already produced some particular functions satisfying
those constraints. Furthermore, since for each j the integrands

e(−λi+λ j)t bi, i = 1,2, . . . ,n

are linearly independent, the standard isoperimetric theory (see [9], 4.7) guarantees that
if we define the Lagrangian functional in the usual way

L (k,μ) = J(k)−
n

∑
i, j=1

μi j

(∫ τ ′

τ
e(−λi+λ j)t bik j(t)dt− eλiτδi j

)

=
∫ τ ′

τ

n

∑
i, j=1

wi j(ki(t)k j(t)+α2k′i(t)k
′
j(t)) dt

−
n

∑
i, j=1

μi j

(∫ τ ′

τ
e(−λi+λ j)tbik j(t)dt− eλiτδi j

)

=
∫ τ ′

τ
F (t,k(t),k′(t)) dt,

where the Lagrangian function F : R
1+2n → R is given by

F (t,k,k′) def=
n

∑
i, j=1

[
wi j(kik j +α2k′ik

′
j)− μi je

(−λi+λ j)t bik j

]
.
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Then there exists a unique choice of the Lagrange multipliers μi j for which the vari-

ation δL vanishes at the (unique) optimum k(t) and therefore the Euler-Lagrange
equations are satisfied there:

d
dt

[
∂F

∂k′j
(t, k(t), k

′
(t))

]
− ∂F

∂k j
(t, k(t), k

′
(t)) = 0, j = 1,2, . . . ,n.

In our case we obtain

d
dt

n

∑
i=1

2α2wi jk
′
i −

n

∑
i=1

(2wi jki − μi je
(−λi+λ j)t bi) = 0, j = 1,2, . . . ,n

which, together with the required boundary data, can be written as

(BVP)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
n
∑
i=1

wi j(ki−α2k′′i ) =
n
∑
i=1

μi je(−λi+λ j)tbi, j = 1,2, . . . ,n,

k j(τ) = 0, k j(τ ′) = 0, j = 1,2, . . . ,n,∫ τ ′
τ e−λit bik j(t)eλ jt dt = δi jeλiτ , i, j = 1,2, . . . ,n,

which is the boundary value problem with integral constraints to be analyzed. This
system may be expressed in matrix form as follows:

2(k−α2k′′)TW = bTe−DtμeDt ,

where μ represents the matrix (μi j).
In order to obtain a simpler closed-form solution to this problem, let us assume

that A is symmetric and P is orthogonal. This ensures that W = P−1P−T is the identity
matrix and thus the problem becomes uncoupled:

(BVP)′j

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(k j −α2k′′j ) =
n
∑
i=1

μi je(−λi+λ j)t bi,

k j(τ) = 0, k j(τ ′) = 0,∫ τ ′
τ e−λit bik j(t)eλ jt dt = δi jeλiτ , i = 1,2, . . . ,n,

(15)

(where j = 1,2, . . . ,n).
If α is such that 1−α2(λ j −λi)2 is never zero, the solutions of (BVP)′ can be

explicitly obtained:

k j(t) =
1
2

n

∑
i=1

μi jbi

1−α2(λ j −λi)2 e(−λi+λ j)t + c j1e
−t/α + c j2e

t/α , j = 1, . . . ,n. (16)

Otherwise the solution contains some extra polynomial terms multiplying the exponen-
tials, but the analysis remains the same.

We have thus n2 + 2n unknowns (μi j and c j1, c j2) together with n2 + 2n side
conditions: {

k j(τ) = 0, k j(τ ′) = 0, j = 1,2, . . . ,n,∫ τ ′
τ e−λit bik j(t)eλ jt dt = δi jeλiτ , i, j = 1,2, . . . ,n,



FINITE EXTINCTION AND CONTROL IN SOME DELAY MODELS 107

which can be uniquely solved since the variational problem does have a unique solution.
In the general case (that is, when W �= I), the system is coupled but it can be

solved in the same way. From

2(k−α2k′′)TW = bTe−DtμeDt ,

we conclude
2(k−α2k′′)T = bTe−DtμeDtW−1

which corresponds to

(V )

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(k j −α2k′′j ) =
n
∑
i=1

n
∑

r=1
e(−λi+λs)t biμirw−1

r j , j = 1,2, . . . ,n,

k j(τ) = 0, k j(τ ′) = 0, j = 1,2, . . . ,n,∫ τ ′
τ e−λit bik j(t)eλ jt dt = 0 for i, j = 1,2, . . . ,n,

where w−1
r j is the (r, j) entry of W−1. The general solution of the differential equation

is now

k j(t) =
1
2

n

∑
i=1

n

∑
r=1

μirw
−1
r j bi

1−α2(λr −λi)2 e(−λi+λr)t + c j1e
−t/α + c j2e

t/α

and the constants are again determined by the side conditions.
Finally, the original k(t) (before the diagonalization process) is recovered from

k̃(t) given above by means of the relation k(t)T P = k̃(t)T .
Let us finish by considering the simpler case

k̃i(t) = m(t)k̃i, i = 1,2, . . . ,n

for a fixed function m(t) and constant gains k̃i whose values were obtained in Theorem
2. Then

J(m) =
∫ τ ′

τ

(
k̃(t)TW̃ k̃(t)+α2k̃′(t)TW̃ k̃′(t)

)
dt = k̃TW̃ k̃

∫ τ ′

τ

(
m(t)+α2m′(t)

)
dt

and the variational problem to be considered is

(V)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minimize J(m) def=
∫ τ ′
τ

(
m(t)+α2m′(t)

)
dt,

subject to

⎧⎪⎨
⎪⎩

m(τ) = 0, m(τ ′) = 0, i = 1,2, . . . ,n,∫ τ ′
τ m(t)dt = 1,∫ τ ′
τ e(−λi+λ j)tm(t)dt = 0, i, j = 1,2, . . . ,n, i �= j,

which has the same, but simpler, structure than the one just analyzed. By following
exactly the same steps, one shows that this problem has a unique solution of the form

m(t) = c1e
−t/α + c2e

t/α + c0 +∑
i�= j

ci je
(−λi+λ j)t .
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3.4. An example

Let us consider the controlled pendulum equation

mθ ′′ + l sinθ = u(t),

where u(t) stands for the external forces. We want to settle the pendulum in the upright

position. Linearizing around θ = π , and denoting z(t) def= θ (t)−π we find

mz′′ − lz = u(t)

or, in matrix form, (
x1

x2

)′
=

(
0 1
l 0

)(
x1

x2

)
+

(
0
1

)
u(t).

Assume m = 1 and l = 1 so that the eigenvalues are λ1 = −1, λ2 = 1. A modal
matrix is

P =
(

1 1
−1 1

)

and thus,

b̃ = P−1b =
1
2

(−1
1

)
, k̃T = kT P = (k1,k2)

(
1 1
−1 1

)
= (k1− k2,k1 + k2)

and the associated diagonal system is

d
dt

(
y1

y2

)
=

(−1 0
0 1

)(
y1

y2

)
+

1
2

(−1
1

)(
k̃1, k̃2

)(
y1(t − τ)
y2(t − τ)

)
.

The boundary-value problem (BVP) (15) becomes⎧⎪⎨
⎪⎩

2(k̃1−α2k̃′′1) = −μ11

2
+

1
2
μ21e−2t ,

2(k̃2−α2k̃′′2) = −μ12

2
e2t +

1
2
μ22,

whose general solution is given by (16) :⎧⎪⎪⎨
⎪⎪⎩

k̃1(t) = −1
4
μ11 +

1
4

μ21

1−4α2 e−2t + c11e−t/α + c12et/α ,

k̃2(t) = −1
4

μ12

1−4α2 e2t +
1
4
μ22 + c21e−t/α + c22et/α ,

together with the eight side conditions⎧⎨
⎩

k̃1(τ) = 0, k̃1(τ ′) = 0,
∫ τ ′
τ k̃1(t)dt = −2e−τ ,

∫ τ ′
τ e−2t k̃1(t)dt = 0,

k̃2(τ) = 0, k̃2(τ ′) = 0,
∫ τ ′
τ k̃2(t)dt = 2eτ ,

∫ τ ′
τ e2t k̃2(t)dt = 0.
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Let us take, for instance, α = 1, τ = 1 and τ ′ = 2. Then the side conditions
become ⎧⎪⎪⎨

⎪⎪⎩
0.36788c11−0.011278μ21−0.25μ11 +2.7183c12 = 0,
0.13534c11−0.0015263μ21−0.25μ11 +7.3891c12 = 0,
0.23254c11−0.0048758μ21−0.25μ11 +4.6708c12 +0.73576 = 0,
0.015769c11−0.00037459μ21−0.014627μ11+0.23254c12 = 0,⎧⎪⎪⎨

⎪⎪⎩
0.61575μ12 +0.25μ22 +0.36788c21 +2.7183c22 = 0,
4.5498μ12 +0.25μ22 +0.13534c21+7.3891c22 = 0,
1.967μ12 +0.25μ22 +0.23254c21 +4.6708c22−5.4366 = 0,
60.966μ12 +5.9011μ22 +4.6708c21 +127.78c22 = 0,

whose unique solution is:

μ11 = 595.56, μ21 = 10131.0, c11 = 637.19, c12 = 10.572,

μ12 = 186.4, μ22 = 4420.5, c21 = −1576.1, c22 = −235.47.

Therefore, the optimal solution is{
k̃1(t) = −148.89−844.25e−2t +637.19e−t +10.572et,

k̃2(t) = 1105.1+15.533e2t−235.47et −1576.1e−t.

The original k(t) is recovered from k̃(t) by means of:

k(t) = P−T k̃(t) =
1
2

(
1 1

−1 1

)(
k̃1(t)
k̃2(t)

)
.

4. Final remarks

1. The conditions (10) imply that no result of this type seems to be readily available for
infinite-dimensional systems because of the infinitely many eigenvalues usually asso-
ciated to their infinitesimal generators. This fact is also related to the fact than many
infinite-dimensional control systems are only “approximately controllable”. The au-
thors are working on this topic at the moment.

2. No substantial differences appear if vector b is allowed to depend on t. In that case
the general solution (16) cannot be written explicitly and the best one can do is to use
the Green’s function G(t,s) associated to the Dirichlet problem{

v−α2v′′ = f (t) on [τ,τ ′],
v(τ) = 0, v(τ ′) = 0,

and obtain

k j(t) =
1
2

n

∑
i=1

μi j

∫ τ ′

τ
G(t,s)e(−λi+λ j)sbi(s)ds, j = 1, . . . ,n.
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3. Similarly, nonautonomous systems like

x′ = A(t)x+b(t)x(t− τ)

can be considered by the usual change of variables x = Φ(t)y, where Φ(t) is a funda-
mental matrix associated to x′ = A(t), obtaining

y′ = Φ(t)−1b(t)Φ(t− τ)y(t− τ)

and assuming that the gramian matrix∫ τ ′

τ
Φ(t)−1b(t)b(t)TΦ(t)−T dt

is nonsingular. This is equivalent (see [11]).
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