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Abstract. A quasilinear parabolic problem is investigated. It models the evolution of a single
population species with a nonlinear diffusion and a logistic reaction function. We present a
new treatment combining standard theory of monotone operators in L2(Ω) with some order-
preserving properties of the evolutionary equation. The advantage of our approach is that we
are able to obtain the existence and long-time asymptotic behavior of a weak solution almost
simultaneously. We do not employ any uniqueness results; we rely on the uniqueness of the
minimal and maximal solutions instead. At last, we answer the question of (long-time) survival
of the population in terms of a critical value of a spectral parameter.

1. Introduction

Let Ω⊂ R
N be a smooth bounded domain, λ > 0 a real parameter, q > 0 a fixed

number, u0 ∈ L2(Ω) , and m ∈ L∞(Ω) a possibly sign-changing function. Consider the
quasilinear parabolic problem⎧⎪⎨

⎪⎩
∂t u−Δpu = λ |u|p−2u

(
m(x)−|u|q) in Ω× (0,∞),

∂νu = 0 on ∂Ω× (0,∞),
u(0) = u0 in Ω,

(1)

where Δp is the p -Laplace operator, defined by Δpu := div(|∇u|p−2∇u) for 1 < p <∞ ,
and ∂ν stands for the derivative in the direction of the exterior unit normal to the bound-
ary ∂Ω . The purpose of this paper is to investigate the existence and the asymptotic
behavior as t goes to infinity of nonnegative solutions of (1).

The equation in (1) is actually a nonlinear generalization of the well-known logis-
tic equation which is used in biology to model a population of density u at time t (see
for instance [3, 7, 18]). From this point of view, the existence of a nonnegative solution
not tending to zero as t goes to infinity means that the population survives after infinite
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time. Our aim is thus to find conditions on the intrinsic growth rate λ and the weight
function m that guarantee (long-time) survival of the species.

To emphasize the main features of problem (1), we formulate a part of our results
in a more general framework. More precisely, we replace the equation in (1) by

∂t u+Au = g(x,u) in Ω× (0,∞), (2)

where A is a second order differential operator of Leray-Lions type, and g an increasing
function in u . Assuming the presence of a pair of ordered sub- and supersolutions
(α0,β0) , and under some conditions on A and g , we show the existence of minimal
and maximal solutions in the interval [α0,β0] . This result is more or less classical (see
[5, 11] and related papers), but here we present a proof from which information on the
asymptotic behavior of solutions can be deduced. Our approach consists in combining
the theory of monotone operators from [19] (see also [6]) with the method of monotone
iterations from [23]. The minimal and maximal solutions being uniquely determined,
we are able to allow for nonuniqueness of weak solutions of problem (2).

The technique of monotone iterations (also called the Chaplygin method) was first
introduced in [23] in the context of semilinear parabolic PDEs. In addition, we point
out that the use of iterative schemes in the case of general nonlinear elliptic operators
of Leray-Lions type first appeared in Dı́az’ famous book [12]. A nice review on mono-
tone methods can be found in the work [8] where the one-dimensional ϕ -Laplacian is
considered. In the literature, the study of quasilinear parabolic problems similar to (1)
has mostly been carried out in the case of Dirichlet boundary conditions; see [13, 17]
and references therein. We also refer to [14, 21] for existence and uniqueness results
on the stationary problem associated to (1). Although both works [8, 12], and [14] as
well, treat only problems with nonlinear elliptic operators, their approach is based on a
number of very general properties shared by both, elliptic and parabolic operators, such
as the weak comparison principle and regularity of solutions, for instance. Therefore, in
the work reported here we have been able to adopt some of their techniques and apply
them to problems with nonlinear parabolic operators; cf. [13, 19, 21].

In the present paper, one of our contributions is the proof of the continuity of the
solution operator associated to (2) (see Proposition 2.1). Since our problem is nonlinear,
we also rewrite the arguments from [23] by using a parabolic comparison principle (see
Proposition 2.2) instead of the standard linear parabolic maximum principle. Finally, in
the study of the asymptotic behavior of solutions, we handle the possible nonuniqueness
of solutions by proving a comparison principle for minimal and maximal solutions (see
Lemma 3.3).

This paper is organized as follows. In Section 2, we deal with the existence of
solutions of an abstract parabolic problem involving a strongly monotone operator. The
asymptotic behavior of solutions of this problem is studied in Section 3. At last, in
Section 4 we apply our results to problem (1). In the case when m changes sign and∫
Ωm < 0, it is established that if λ > λ1(m) then any positive solution u of (Pu0)

converges to the unique positive stationary solution u of (1) as t → ∞ , whereas u
converges to zero when λ � λ1(m) . In other words, the principal eigenvalue λ1(m)
appears as the threshold value of λ under which the species does not survive.
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2. Existence via monotone iterations

Let Ω be a smooth bounded domain in R
N (with N � 1) and T > 0 be given. In

this section, we are concerned with the existence of solutions u = u(x,t) of the problem⎧⎪⎨
⎪⎩
∂t u+Au = g(x,u) in Ω× (0,T),

∂νu = 0 on ∂Ω× (0,T ),
u(0) = u0 in Ω.

(3)

Here u0 ∈ L2(Ω) , g : Ω×R → R is a Carathéodory function which is increasing in its
second argument, and A is a second order differential operator of Leray-Lions type [19]

Au(x,t) = −
N

∑
i=1

∂
∂xi

ai
(
x,u(x,t),∇u(x,t)

)
, (4)

satisfying properties (A1)-(A3) below.
More precisely, our aim is to show the existence of at least one (bounded) solution

of (3) in the presence of a pair of well-ordered upper and lower solutions. As mentioned
before, this result has already been established by several authors. However, in order to
deduce some information on the asymptotic behavior of solutions, we give here a proof
based on the method of monotone iterations from [23].

First of all, we introduce a few assumptions and definitions. Let 1 < p <∞ and let
V be a separable reflexive Banach space which is continuously embedded in W 1,p(Ω)∩
L2(Ω) , and dense in L2(Ω) . Then we denote by Lp(0,T ;V ) the Banach space of all
strongly measurable (i.e. Bochner-measurable) functions u : (0,T ) →V such that

‖u‖Lp(0,T ;V ) :=
(∫ T

0
‖u‖p

V dt
)1/p

< ∞.

It is well-known that Lp(0,T ;V ) is reflexive whenever V is reflexive; its dual space
coincides with Lp′(0,T ;V ∗) . The duality pairing between V ∗ and V will be denoted
by 〈 , 〉 . In the sequel, we also set

W p(0,T ;V ) := {u ∈ Lp(0,T ;V ) : ∂t u ∈ Lp′(0,T ;V ∗)},
where ∂t u is the distributional derivative of u . The space W p(0,T ;V ) is a Banach
space for the norm

‖u‖W p :=
(∫ T

0
‖u‖p

V dt
)1/p

+
(∫ T

0
‖∂tu‖p′

V∗ dt
)1/p′

.

The reader is referred to [19, 25] for more details about the spaces Lp(0,T ;V ) , and
W p(0,T ;V ) .

The operator A is given by (4), and satisfies the following assumptions.

(A1) A : V →V ∗ is continuous;

(A2) there exists C > 0 such that ‖Au‖V∗ � C‖u‖p−1
V for all u ∈V ;
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(A3) A is strongly monotone in the following interpolation sense: there exist θ ∈ (0,1] ,
and c > 0 such that for all u,v ∈V ,

c‖u− v‖V �
〈
Au−Av,u− v

〉θ(‖u‖V +‖v‖V
)1−θ

.

Let us point out that for A = −Δp , we have θ = min{1, p/2} (see Section (17)).
Furthermore, the continuity of the embedding V ⊂ W 1,p(Ω)∩ L2(Ω) implies that A
obeys also the following coercivity condition from [19, Chapter 2]:

(A4) there exists α > 0 such that 〈Au,u〉 � α‖∇u‖p
Lp for all u ∈V , where ‖∇u‖p

Lp is
a seminorm on W 1,p(Ω) , and hence on V .

With the above notations, a function u is called a solution of (3) if u∈W p(0,T ;V ) ,
g(x,u(t)) ∈ Lp′(0,T ;V ∗) , u(0) = u0 in Ω , and u satisfies〈

∂t u(t),v
〉
+

〈
Au(t),v

〉
=

〈
g(x,u(t)),v

〉
, (5)

for all v ∈ V , and for almost all t ∈ (0,T ) . Observe that, by the continuous embed-
ding W p(0,T ;V ) ⊂ C([0,T ];L2(Ω)) , the condition u(0) = u0 makes sense (see [25,
Proposition 23.23 (ii)]).

To obtain the existence of at least one solution of (3), two preliminary propositions
are needed.

PROPOSITION 2.1. Let f ∈ Lp′(0,T ;V ∗) and u0 ∈ L2(Ω) be given. Under as-
sumptions (A1)-(A3) above, the problem⎧⎪⎨

⎪⎩
∂t u+Au = f in Ω× (0,T),

∂νu = 0 on ∂Ω× (0,T),
u(0) = u0 in Ω,

(6)

has a unique solution u∈W p(0,T ;V ) . Moreover, if fn, f ∈ Lp′(0,T ;V ∗) and u0,n,u0 ∈
L2(Ω) are such that fn → f in Lp′(0,T ;V ∗) and u0,n → u0 in L2(Ω) then

un → u in W p(0,T ;V ) as n → ∞, (7)

where un,u ∈W p(0,T ;V ) are the solutions of (6) with fn, f as right-hand sides and
u0,n,u0 as initial conditions, respectively.

Proof. The existence and uniqueness of a solution of (6) has been obtained in
[19, Chapter 2] and [25, Chapter 30] by means of the Faedo-Galerkin method. Another
approach involving the semigroup theory can be found in [2, Chapter 3] and [6, Chapter
3]. Arguments to establish (7) are in fact contained in these references, even though not
stated explicitly. Here we give the main ideas of the proof of (7), and refer to [9] for
more details.
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Firstly, using the boundedness of fn and coercivity condition (A4) , one shows that
the sequence (un) is bounded in Lp(0,T ;V ) ∩ L∞(0,T ;L2(Ω)) . Therefore, passing to
subsequences if necessary, we have

un
∗
⇀ u weakly∗ in L∞(0,T ;L2(Ω)),

un ⇀ u weakly in Lp(0,T ;V ),

un(T ) ⇀ ξ weakly in L2(Ω).

Next, assumption (A2) implies that (Aun) is bounded in Lp′(0,T ;V ∗) , and thus Aun ⇀

χ in Lp′(0,T ;V ∗) up to a subsequence, where χ ∈ Lp′(0,T ;V ∗) satisfies

∂t u+ χ = f

in the weak sense. Finally, a classical argument from the theory of monotone operators
shows that u solves (6) with f as right-hand side (see [19, Chapter 2]).

To get to the strong convergence un → u in W p(0,T ;V ) , it suffices to take un−u
as test function in the equations of un , u , and to substract:

0 � 1
2
‖(un−u)(T )‖2

L2 +
∫ T

0
〈Aun−Au,un−u〉dt

=
∫ T

0
〈 fn − f ,un−u〉dt + 1

2
‖un,0−u0‖2

L2 .

Since the right-hand side tends to zero as n goes to infinity, it follows that

‖un(T )−u(T)‖2
L2 → 0 and

∫ T

0
〈Aun −Au,un−u〉dt → 0.

Hence, by assumption (A3) , ‖un−u‖Lp(0,T ;V ) → 0 as n → ∞ . Recalling the equations
satisfied by un , u , and using continuity assumption (A1) , one concludes that un → u
in W p(0,T ;V ) . �

The next proposition is a weak comparison principle, and will be crucial in the
construction of our monotone iterative scheme. In the case when A is linear, this result
is an easy consequence of the parabolic weak maximum principle from [20].

PROPOSITION 2.2. Let T > 0 and let u1,u2 ∈W p(0,T ;V ) satisfy〈
∂t u1 +Au1,v

〉
�

〈
∂t u2 +Au2,v

〉
, (8)

for all v ∈V , v � 0 , and almost all t ∈ (0,T ) . If u1(0) � u2(0) a.e. in Ω then u1 � u2

a.e. in Ω× (0,T) .

Proof. Let us take v = max{u1−u2,0} ∈W p(0,T ;V ) as a test function in (8) and
integrate over (0, t) for some t ∈ (0,T ) . Then

∫ t

0
〈∂t(u1−u2),v〉+

∫ t

0
〈Au1−Au2,v〉 � 0. (9)
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Then, by the integration-by-parts formula (see [25, Proposition 23.23 (iv)]), the diver-
gence form of A , and assumption (A3) , we deduce

1
2
‖v(t)‖2

L2 − 1
2
‖v(0)‖2

L2 � 0.

Since v(0) = 0 a.e. in Ω , we conclude that v(t) = 0 a.e. in Ω , and so u1 � u2 a.e. in
Ω× (0,T) . �

We say that a function α : Ω× (0,T ) → R is a subsolution for problem (3) if it
satisfies the following conditions:

(i) α ∈W p(0,T ;V )∩L∞(Ω× (0,T)) ;
(ii) the function

(x,t) �→ g(x,α(x,t)) : Ω× (0,T) → R

belongs to Lp′(0,T ;V ∗) ;
(iii) α(x,0) � u0(x) holds for a.e. x ∈Ω ; and

(iv) the inequality

〈∂tα(t),v〉+ 〈Aα(t),v〉 � 〈g(x,α(x,t)),v〉

holds for all v ∈V , v � 0, and for almost every t ∈ (0,T ) .

A supersolution for problem (3) is defined in the same way by reversing the cor-
responding inequalities.

Let us now assume that α0 is a subsolution of (3), that is, α0 satisfies (i)-(iv)
above, in place of α . In addition, let {α0,n}∞n=0 be a monotone increasing (i.e., non-
decreasing) sequence of functions in L2(Ω) with α0,0 = α0( · ,0) in Ω for n = 0 and
t = 0. Then we can introduce the following monotone iteration scheme: For each
n ∈ N , assuming that αn−1 : Ω× (0,T ) → R is known, such that αn−1 satisfies both
conditions (i) and (ii) in place of α , we denote by αn : Ω× (0,T ) → R recursively the
unique weak solution of the following initial-boundary value problem:⎧⎪⎨

⎪⎩
∂tαn +Aαn = g(x,αn−1(x,t)) in Ω× (0,T),
∂ναn(x,t) = 0 on ∂Ω× (0,T),
αn(x,0) = α0,n(x) in Ω.

(10)

In view of Proposition 2.1, the sequence {αn}∞n=0 exists and is uniquely defined on the
whole of (0,T ) . Similarly, if β0 is a supersolution of (3) and {β0,n}∞n=0 is a monotone
decreasing (i.e., nonincreasing) sequence of functions in L2(Ω) with β0,0 = β0( · ,0) in
Ω , we can construct recursively the sequence {βn}∞n=0 of weak solutions of the initial-
-boundary value problem (10) with α ’s replaced by the corresponding β ’s. It is easy
to see that each αn (βn , respectively) is a subsolution (supersolution) to problem (3).
From Proposition 2.2, the definition of sub- and supersolution, and the monotone in-
creasing property of g , we derive that αn � αn−1 and βn � βn−1 a.e. in Ω×(0,T ) first
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for n = 1 and subsequently, by induction, for all n ∈ N . If, in addition, α0 � β0 and
α0,n � β0,n for all n ∈ N then Proposition 2.2 yields αn � βn for all n ∈ N , as well,
and hence

α0 � α1 � . . . � αn � . . . � βn � . . . � β1 � β0 a.e. in Ω× (0,T) . (11)

Using the construction described above, we prove the following existence result.

THEOREM 2.3. Let A : V → V ∗ be given by (4), and satisfy (A1)-(A3) and let
g :Ω×R→R be a Carathéodory function, increasing in its second argument. Suppose
there exist a subsolution α0 and a supersolution β0 of (3) such that α0 � β0 a.e. in
Ω× (0,T ) . Then there exists a minimal solution umin and a maximal solution umax of
(3) in the interval [α0,β0] such that

α0 � umin � umax � β0 a.e. in Ω× (0,T). (12)

In other words, umin and umax solve (3) together with (12), and for any other solution
w of (3) such that α0 � w � β0 , one has umin � w � umax a.e. in Ω× (0,T) .

Proof. Apart from Propositions 2.1 and 2.2, the proof follows similar lines as in
[23]. Consider the sequences (αn) , (α0,n) , (βn) and (β0,n) introduced above, with
α0,n ↗ u0 and β0,n ↘ u0 in L2(Ω) . From (11), we deduce that the pointwise limits

α̃(x,t) := lim
n→∞

αn(x,t) and β̃ (x,t) := lim
n→∞

βn(x,t)

exist for almost all (x,t) ∈ Ω× (0,T ) . By the Lebesgue dominated convergence theo-
rem, it follows that αn → α̃ in Lp(Ω× (0,T )) as n →∞ , and so g(x,αn) → g(x, α̃) in
Lp′(0,T ;V ∗) as n → ∞ (see [25, Example 23.4]). The same holds, of course, for (βn) .
Therefore, recalling the continuity result from Proposition 2.1, one gets

αn → α̃ and βn → β̃ in W p(0,T ;V ).

Hence, passing to the limit in (10), we obtain that α̃ is a weak solution of problem
(3). In the same way, one proves that β̃ solves (3). Also, it follows from (11) that
α0 � α̃ � β̃ � β0 a.e. in Ω× (0,T) .

To finish, if w is any solution of (3) satisfying α0 � w � β0 then w is a subsolution
of (3) with w � β0 . Thus one may consider the sequence of monotone iterations (αn)
defined by (10) with α0 = w and α0,n = u0 for all n . Obviously, αn = w for all n ,
and Proposition 2.2 yields w = αn � βn for all n . Passing to the limit for n → ∞ , we
obtain w � β̃ . Inequality α̃ � w is similar. The functions umin := α̃ and umax := β̃
are therefore minimal and maximal solutions of (3), respectively. �

3. Asymptotic behavior of solutions

This section is devoted to the asymptotic behavior of solutions of the problem

(Pu0)

⎧⎪⎨
⎪⎩
∂t u+Au = g(x,u) in Ω× (0,∞),

∂νu = 0 on ∂Ω× (0,∞),
u(0) = u0 in Ω,
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where the differential operator A and the nonlinearity g are as in Theorem 2.3. In
the sequel, we use the notations Lp

loc([0,∞) ;V ) (W p
loc([0,∞) ;V ) , resp.) for functions

belonging to Lp(0,T ;V ) (W p
loc(0,T ;V ) , resp.) for any T > 0. We say that u is a

solution of (Pu0) if u ∈W p
loc(0,∞ ;V ) , g(x,u(t)) ∈ Lp′

loc(0,∞) , u(0) = u0 in Ω , and u
satisfies (5) for all v ∈V and for almost all t ∈ (0,∞) .

As we have already announced, our study relies strongly on the previous monotone
iterative procedure used in the proof of Theorem 2.3. We start with a few auxiliary
results in which some more properties of the sequences (αn) and (βn) defined in (10)
are given.

Our first lemma is concerned with the monotonicity of solutions with respect to
the time variable t . In the case when A is linear, this was established in [23] by dif-
ferentiating the equation with respect to t , and using a maximum principle. Here an
important role is played by the comparison principle from Proposition 2.2 whose proof
involves the monotonicity of A .

LEMMA 3.1. Let α0 � β0 be a sub- and a supersolution of problem (Pα0(0)) .
If α0 is nondecreasing in t then the minimal solution αmin of (Pα0(0)) in [α0,β0] is
nondecreasing in t for almost all x ∈ Ω . Similarly, if β0 is nonincreasing in t , the
maximal solution βmax of (Pβ0(0)) in [α0,β0] is nonincreasing in t .

Proof. We prove the result for αmin . The same kind of argument applies to βmax .
Let us consider the sequence (αn) of monotone iterations defined in (10) with α0,n :=
α0(0) for all n . By Theorem 2.3, one has

αn → αmin in W p
loc(0,∞ ;V ) as n → ∞.

Moreover, αn is nondecreasing in t for all n � 0. Indeed, suppose by induction that
αn−1 is nondecreasing. Fix T > 0 and define for any h � 0 the translation τhαn by

(τhαn)(x,t) := αn(x,t +h),

for all t ∈ [0,T ] and almost all x ∈Ω . One has

∂tαn(t)+Aαn(t) = g(x,αn−1(t))
� g(x,αn−1(t +h))
= ∂t(τhαn)(t)+A(τhαn)(t),

in the weak sense. Since the sequence (αn) is monotone in n and since αn−1 is non-
decreasing in t , τhαn(x,0) � αn−1(x,h) � αn−1(x,0) = αn(x,0) for all n � 0. Thus,
Proposition 2.2 applies and we obtain αn(x,t) � τhαn(x,t) = αn(x,t + h) for almost
all (x, t) ∈ Ω× (0,T) and all h � 0. This shows that αn is nondecreasing in t for all
n � 0. Passing to the limit for n→ ∞ , we conclude that αmin is nondecreasing in t . �

Let us now assume that α0 and β0 are, respectively, sub- and supersolutions of
the stationary problem

(P)

{
Au = g(x,u) in Ω,

∂νu = 0 on ∂Ω.
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Then the minimal solution αmin of (Pα0) and the maximal solution βmax of (Pβ0
) are

not only monotone in t , but also converge to a solution of (P) . This is the purpose of
the following lemma. Again, this result is proved in [23] in the linear case, where the
author uses the self-adjointness of the studied operator. Below we rely on the strong
monotonicity of A instead.

LEMMA 3.2. Suppose that α0 is a subsolution and β0 a supersolution of the
stationary problem (P) , with α0 � β0 . Let αmin be the minimal solution of (Pα0) and
let βmax be the maximal solution of (Pβ0

) in [α0,β0] . Then, for all 1 � r < ∞ ,

αmin(t) ↗ α and βmax(t) ↘ β in Lr(Ω) as t → ∞,

where α and β are solutions of (P) , and α0 � α � β � β0 a.e. in Ω .

Proof. By Lemma 3.1, we know that αmin and βmax are respectively nondecreas-
ing and nonincreasing in t and, by construction, we have αmin,βmin ∈ [α0,β0] . There-
fore, the pointwise limits

α(x) := lim
t→∞

αmin(x,t) and β (x) := lim
t→∞

βmax(x,t)

exist for almost all x ∈ Ω . By the Lebesgue dominated convergence theorem, this
convergence also holds in Lr(Ω) for all 1 � r < ∞ .

Our aim is to show that α is a solution of (P) . Let us fix T > 0. For h � 0, define
as before (τhαmin)(x,t) := αmin(x,t + h) for all t ∈ [0,T ] and for almost all x ∈ Ω .
Then we have

τhαmin(t) → α in Lr(Ω) as h → ∞, (13)

for all t ∈ [0,T ] and all 1 � r < ∞ .
In fact, (τhαmin) is a Cauchy sequence in the space Lp(0,T ;V ) . Indeed, for all

h � 0, τhαmin solves problem (Pαmin(h)) and hence

1
2
‖(τh1αmin− τh2αmin)(T )‖2

L2

+
∫ T

0

〈
A(τh1αmin)−A(τh2αmin),τh1αmin− τh2αmin

〉
dt

=
∫ T

0

〈
g(τh1αmin)−g(τh2αmin),τh1αmin − τh2αmin

〉
dt

+
1
2
‖(τh1αmin − τh2αmin)(0)‖2

L2 ,

for all h1,h2 � 0. In view of (13), the right-hand side goes to zero as h1 and h2 tend
to infinity. It follows therefore from monotonicity assumption (A3) that

‖τh1αmin − τh2αmin‖Lp(0,T ;V ) → 0 as h1,h2 → ∞ .

Thus, there exists α̃ ∈ Lp(0,T ;V ) such that

τhαmin → α̃ in Lp(0,T ;V ) as h → ∞ .
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Moreover, using the equation satisfied by τhαmin , one easily verifies that

∂t(τhαmin) → ∂t α̃ in Lp′(0,T ;V ∗) ,

and
∂t α̃ +Aα̃ = g(x, α̃). (14)

Finally, the convergence τhαmin → α̃ in W p(0,T ;V ) and the continuous embedding
W p(0,T ;V ) ⊂C([0,T ];L2(Ω)) yield

(τhαmin)(0) → α̃(0) and (τhαmin)(T ) → α̃(T ) in L2(Ω) as h → ∞.

Hence (13) implies that α̃(T ) = α for all T � 0, and ∂t α̃ ≡ 0 in (14). This shows that
α solves (P) . The same reasoning applies to β . �

The last important lemma for the asymptotic behavior of solutions of (Pu0) is
the following weak comparison principle. This lemma involves minimal and maximal
solutions, and is particularly interesting because solutions of (Pu0) are not necessarily
unique.

LEMMA 3.3. Let u0,v0 ∈ L2(Ω) and let α0 and β0 be a sub- and a supersolution
of both problems (Pu0) and (Pv0) with α0 � β0 a.e. in Ω× (0,∞) . Suppose umin and
vmin are the minimal solutions of (Pu0) and (Pv0) in [α0,β0] , respectively. If u0 � v0

a.e. in Ω then
umin � vmin a.e. in Ω× (0,∞).

A similar result holds for maximal solutions: umax � vmax a.e. in Ω× (0,∞) .

Proof. Let us denote by (αu
n ) and (αv

n) , respectively, the monotone sequences
from Theorem 2.3 that converge to u and v almost everywhere. Without loss of gener-
ality, we may choose the initial data αu

0,n and αv
0,n such that αu

0,n �αv
0,n for all n . Then,

by induction and by Proposition 2.2, one easily shows that αu
n � αv

n for all n ∈ N . Our
statement follows by taking the limit for n → ∞ . �

We are now in a position to conclude the following result.

THEOREM 3.4. Let α0 be a subsolution and β0 a supersolution of (P) , and let
u0 ∈ L2(Ω) satisfy α0 � u0 � β0 a.e. in Ω . If u is any solution of (Pu0) such that
α0 � u � β0 then

α � liminf
t→∞

u(x,t) � limsup
t→∞

u(x,t) � β a.e. in Ω, (15)

where α and β solve the stationary problem (P) . In particular, if (P) admits a unique
solution u in [α0,β0] then, for all 1 � r < ∞ ,

u(t) → u in Lr(Ω) as t → ∞. (16)
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Proof. Consider the minimal solution αmin of (Pα0) , and the maximal solution
βmax of (Pβ0

) in [α0,β0] , whose existence has been established in Theorem 2.3. In
view of Lemma 3.3, one has αmin � umin and umax � βmax a.e. in Ω× (0,∞) . As a
result, αmin � u � βmax a.e. in Ω× (0,∞) , and (15) follows from Lemma 3.2. In the

case when (P) has a unique solution u in [α0,β0] , one has α ≡ β ≡ u in (15). Hence,
u converges pointwise to u as t → ∞ , and it suffices to apply the Lebesgue dominated
convergence theorem to get (16). �

4. Application to a model for population evolution

Let Ω ⊂ R
N be a smooth bounded domain, λ > 0 a parameter, m ∈ L∞(Ω) a

possibly sign-changing function, p∈ (1,∞) , q > 0, and u0 ∈L2(Ω) . In this last section,
we build upon our previous investigations to study the quasilinear parabolic problem⎧⎪⎨

⎪⎩
∂t u−Δpu = λ |u|p−2u

(
m(x)−|u|q) in Ω× (0,∞),

∂νu = 0 on ∂Ω× (0,∞),
u(0) = u0 in Ω.

(17)

From a biological point of view, (17) describes the density u at time t of a population
living in the domain Ω (see [7]). The p -Laplacian −Δpu of u represents the diffusion
of the population, while its growth is given by λ |u|p−2u(m−|u|q) . Neumann boundary
conditions mean that individuals may not cross the boundary of their habitat. In the
linear case p = 2, this problem has been considered in [7, 18, 23], and more recently
in [3] among many others.

To recover the framework of Sections 2 and 3, we rewrite the equation in (17) as
follows

∂t u−Δpu+λm−|u|p−2u+λ |u|p+q−2u = λm+|u|p−2u.

More precisely, we consider the Banach space

V := W 1,p(Ω)∩Lp+q(Ω)∩L2(Ω)

and define, for all x ∈Ω and all u ∈V ,

Au := −Δpu+λm−(x)|u|p−2u+λ |u|p+q−2u,

g(x,u) := λm+(x)|u|p−2u.

Then V ⊂ W 1,p(Ω) is separable, reflexive, and continuously and densely embedded
in L2(Ω) . (Of course, if p + q � 2 or p∗ � 2, the intersection with L2(Ω) is not
necessary.) It is well-known that the p -Laplacian, and hence the operator A : V →V ∗ ,
satisfy properties (A1)-(A2) . Condition (A3) follows from the standard inequality

|ξ −η |p � Cp
(
(|ξ |p−2ξ −|η |p−2η)(ξ −η)

)s/2(|ξ |p + |η |p)1−s/2
, (18)

which holds for all ξ ,η ∈ R
N , and p ∈ (1,∞) , and where Cp > 0 is a constant, s = 2

if p � 2, and s = p if 1 < p < 2 (see [24]). Indeed, by (18) and a direct application
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of the Hölder inequality, it can be derived that (A3) holds with θ = 1 if p � 2, and
θ = p/2 if 1 < p < 2. One also verifies that the Carathéodory function g = g(x,u) =
λm+(x)|u|p−2u is increasing with respect to the variable u .

The asymptotic behavior of positive solutions of (17) is described Theorems 4.1
and 4.3 below. Our results involve the one-parameter eigenvalue problem{

−Δpu−λm|u|p−2u = μ |u|p−2u in Ω,

∂νu = 0 on ∂Ω.
(19)

We recall that, for any λ ∈ R , there exists a unique principal eigenvalue μ1 = μ1(λ ,m)
of (19) (see [4]). Moreover, the associated principal eigenvalue φ1 satisfies φ1 ∈C1(Ω) ,
and can be chosen such that φ1 > 0 in Ω .

THEOREM 4.1. Let 1 < p < 2 and u0 ∈ L∞(Ω) be given. Let u = u(x,t) be any
bounded solution of (17). In case (i) assume that u0,u � δ a.e. for some δ > 0 .
(i) If μ1 < 0 then u(t) → u in Lr(Ω) , for all 1 � r < ∞ , as t → ∞ , where u is the
unique positive solution of the stationary problem associated to (17).

(ii) If μ1 � 0 then u(t) → 0 in Lr(Ω) , for all 1 � r < ∞ , as t → ∞ .

Proof. (i) Let φ1 > 0 be the principal eigenfunction of (19) normalized by ‖φ1‖∞ =
1. If ε > 0 is a real number such that ε � (−μ1/λ )1/q , then εφ1 solves

−Δp(εφ1)−λm(εφ1)p−1 = μ1(εφ1)p−1 � −λ (εφ1)p+q−1 in Ω.

Hence α0 := εφ1 is a subsolution of the stationary problem associated to (17), and every
constant β0 > (‖m‖∞)1/q is a supersolution. Choosing ε,β0 such that α0 � u � β0

a.e. in Ω×(0,∞) , we may thus apply Theorem 3.4. It can easily be established by using
the Picone identity for the p -Laplacian from [1] that the stationary problem associated
to (17) has at most one nontrivial nonnegative solution u , and therefore, the conclusion
follows.

(ii) Let us take u as test function in (17) and integrate over (t1,t2) with 0< t1 < t2 .
We have

1
2
‖u(t2)‖2

L2 − 1
2
‖u(t1)‖2

L2 +
∫ t2

t1

∫
Ω
|∇u|p dxdt +λ

∫ t2

t1

∫
Ω
|u|p+qdxdt

= λ
∫ t2

t1

∫
Ω

m(x)|u|p dxdt. (20)

Recalling the definition of μ1 , we get

1
2
‖u(t2)‖2

L2 − 1
2
‖u(t1)‖2

L2 + μ1

∫ t2

t1

∫
Ω
|u|p dxdt +λ

∫ t2

t1

∫
Ω
|u|p+q dxdt = 0, (21)

for almost all t1 < t2 . The last two terms in (21) being nonnegative, we deduce that the
function t →‖u(t)‖2

L2 is nonincreasing on (0,∞) . Let η be such that ‖u(t)‖2
L2 ↘ η as

t → ∞ . Assume by contradiction that η > 0 and fix T > 0. Then the functions

(τhu)(x,t) := u(x,t +h), h � 0,



A QUASILINEAR PARABOLIC MODEL FOR POPULATION EVOLUTION 133

are such that for all t ∈ [0,T ]

‖τhu(t)‖2
L2 ↘ η as h → ∞,

and solve problem (17) with the initial condition u(h) . Since u is assumed to be
bounded, the limit u := limt→∞ u(x,t) exists for almost all x ∈ Ω . Moreover, by the
Lebesgue dominated convergence theorem, we have

τhu → u in Lr(Ω) as h → ∞,

for all t ∈ [0,T ] and all 1 � r < ∞ . As in the proof of Lemma 3.2, one shows that
τhu → ũ in Lp(0,T ;V ) as h → ∞ (up to a subsequence), where ũ satisfies

∂t ũ−Δpũ = λ |ũ|p−2ũ(m−|ũ|q) and τhu → ũ in C([0,T ];L2) as h → ∞ .

Therefore

‖τhu(T )‖2
L2 → ‖ũ(T )‖2

L2 as h → ∞ and ‖ũ(T )‖2
L2 = η > 0 for all T > 0.

Hence, from (21) with u replaced by ũ , we deduce that ũ ≡ 0, a contradiction. �

Note that the requirement that u � δ in Theorem 4.1 is closely related to the
question of uniqueness of solutions of (17). When 1 < p < 2, the nonlinear term
|u|p−2u is not Lipschitz continuous, but only Hölder continuous with respect to u .
Therefore, we are in a situation comparable to that of the classical ODE u′ = up−1 , and
we have to restrict our study to solutions that are bounded away from zero (see also [9]
for more details).

When p � 2, the assumption u � δ can be removed. In that case, one has indeed
the following comparison principle which implies that solutions of (17) are unique. Its
proof relies on the Lipschitz continuity of the function |u|p−2u (see for example [15]).

LEMMA 4.2. Let p � 2 and T > 0 . Assume that u1,u2 ∈W p(0,T ;V ) are such
that u1(0) � u2(0) a.e. in Ω , and

〈
∂t u1−Δpu1−λ |u1|p−2u1

(
m−|u1|q

)
,v

〉
�

〈
∂t u2−Δpu2−λ |u2|p−2u2

(
m−|u2|q

)
,v

〉
, (22)

for all 0 � v ∈V and almost all t ∈ (0,T ) . Then u1 � u2 a.e. in Ω× [0,T ] .

Using the previous lemma, we deduce the following.

THEOREM 4.3. Let p � 2 and u0 ∈ L∞(Ω) be given. Let u be any bounded
solution of (17). In case (i) below, assume that u0 � δ a.e. for some δ > 0 .

(i) If μ1 < 0 then u(t) → u in Lr(Ω) , for all 1 � r < ∞ , as t → ∞ , where u is the
unique positive solution of the stationary problem associated to (17).

(ii) If μ1 � 0 then u(t) → 0 in Lr(Ω) , for all 1 � r < ∞ , as t → ∞ .
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Proof. We start with (i) , the proof of (ii) being exactly the same as in Theorem
4.1. Let φ1 > 0 be the principal eigenfunction of (19) normalized by ‖φ1‖∞ = 1. As
u0 � δ > 0 a.e. in Ω , there exists some κ > 0 such that α0 := κφ1 � u0 a.e. in Ω . Since
α0 is a subsolution of the stationary problem associated to (17) for κ small enough,
Lemma 3.1 implies that the unique solution α of⎧⎪⎨

⎪⎩
∂t u−Δpu = λ |u|p−2u

(
m(x)−|u|q) in Ω× (0,∞),

∂νu = 0 on ∂Ω× (0,∞),
u(0) = α0 in Ω,

is nondecreasing in t . Moreover, from α(x,0) � u(x,0) a.e. in Ω , we deduce that
α(x,t) � u(x, t) for almost all (x,t) ∈ Ω× (0,∞) by the weak comparison principle
from Lemma 4.2. Hence, u(x,t) � α(x,t) � α(x,0) = α0 for almost all (x, t) ∈ Ω×
(0,∞) , and similar arguments as in the proof of Theorem 4.1 apply. �

Of course, in the linear case p = 2, the restriction u0 > δ on the initial condition is
not necessary either. This is a consequence of the parabolic strong maximum principle
from [20].

At last, we mention that the conditions μ1 < 0 and μ1 � 0 may be expressed in
terms of the parameter λ > 0 and the weight function m ∈ L∞(Ω) as in the corollary
below. In this result, the principal eigenvalues of the problem{

−Δpu = λm|u|p−2u in Ω,

∂νu = 0 on ∂Ω,
(23)

play an important role. Indeed, a sign-changing weight m causes that problem (23)
possesses two distinct principal eigenvalues, 0 and λ1(m) .

In the case when
∫
Ωmdx < 0 and m changes sign, λ1(m) is positive, and a nec-

essary and sufficient condition for μ1 = μ1(λ ,m) < 0 is that λ > λ1(m) . If, on the
contrary,

∫
Ωmdx > 0 and m changes sign, then λ1(m) is negative, and μ1(λ ,m) � 0

for all λ > 0. The reader is referred to [4] for more details on the shape of μ1 as a
function of λ and m . A thorough study of principal eigenvalues for problem (23) with
p = 2 has been carried out in [16, 17] for both, Dirichlet or Neumann boundary condi-
tions (homogeneous). In these works it was shown that a sign-changing (i.e., indefinite)
weight m may cause that problem (23) possesses two distinct principal eigenvalues, i.e.,
real eigenvalues with strictly positive eigenfunctions.

COROLLARY 4.4. Let u0 ∈ L∞(Ω) be given and let u be any bounded solution of
(Pu0) . In cases (i) and (iii) below, assume that u0,u � δ > 0 a.e. if 1 < p < 2 , and that
u0 � δ > 0 a.e. if p � 2 for some δ > 0 .

(i) If
∫
Ωmdx � 0 and m �≡ 0 then u(t) → u in Lr(Ω) , for all 1 � r < ∞ , as t → ∞ ,

where u is the unique positive solution of the stationary problem associated to (17).

(ii) If m � 0 a.e. in Ω then u(t) → 0 in Lr(Ω) , for all 1 � r < ∞ , as t → ∞ .

Assume that m is sign-changing and
∫
Ωmdx < 0 . Let λ1(m) be the unique

nonzero principal eigenvalue of (23).
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(iii) If λ > λ1(m) then u(t) → u in Lr(Ω) , for all 1 � r < ∞ , as t → ∞ , where u is
the unique positive solution of the stationary problem (P) associated to (17).

(iv) If λ � λ1(m) then u(t) → 0 in Lr(Ω) , for all 1 � r < ∞ , as t → ∞ .

In conclusion, we have proven that if
∫
Ωmdx � 0 and m �≡ 0 then the population

tends to survive, and if m is negative then it becomes extinct. If the weight m changes
sign and

∫
Ωmdx < 0 then λ > λ1(m) appears as a necessary and sufficient condition

for the survival of a species modeled by (17). As pointed out in [3, 7] in the case p = 2,
this is a rather elegant and simple criterion that can be verified numerically. In [10, 22],
the authors show that the principal eigenvalue λ1(m) contains in fact much information
on how to arrange the favorable region {x ∈ Ω : m(x) � 0} and unfavorable region
{x ∈Ω : m(x) > 0} in order to maximize the species survival.
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