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A NONLINEAR PARABOLIC–HYPERBOLIC SYSTEM

FOR CONTACT INHIBITION OF CELL–GROWTH

MICHIEL BERTSCH, DANIELLE HILHORST, HIROFUMI IZUHARA

AND MASAYASU MIMURA

Abstract. We consider a tumor growth model involving a nonlinear system of partial differential
equations which describes the growth of two types of cell population densities with contact
inhibition. In one space dimension, it is known that global solutions exist and that they satisfy the
so-called segregation property: if the two populations are initially segregated - in mathematical
terms this translates into disjoint supports of their densities - this property remains true at all
later times. We apply recent results on transport equations and regular Lagrangian flows to
obtain similar results in the case of arbitrary space dimension.
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