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Abstract. We consider a tumor growth model involving a nonlinear system of partial differential
equations which describes the growth of two types of cell population densities with contact
inhibition. In one space dimension, it is known that global solutions exist and that they satisfy the
so-called segregation property: if the two populations are initially segregated - in mathematical
terms this translates into disjoint supports of their densities - this property remains true at all
later times. We apply recent results on transport equations and regular Lagrangian flows to
obtain similar results in the case of arbitrary space dimension.

1. Introduction

In the natural process of cell growth, one can observe cases where cells closely
approach and come into contact with each other. This phenomenon is referred to as
contact inhibition of growth between cells (cf. [1]). A number of mathematical mod-
els (see for instance [9]) have been proposed for the theoretical understanding of the
mechanism of contact inhibition. In [5], we have studied a simple partial differential
equation model, which describes contact inhibition between normal and abnormal cells
(for example cells which potentially become tumor cells at a later stage). It includes
the effect of pushing cells away from overcrowded regions so that each cell moves in
the direction of lower cell density. The resulting model is given by

(P)

⎧⎪⎨
⎪⎩

ut = div(u∇(u+ v))+u(1−u−αv) in R
N × (0,∞),

vt = div(v∇(u+ v))+ γv(1−βu− v/k) in R
N × (0,∞),

u(·,0) = u0 and v(·,0) = v0 in R
N .

In ecology, the growth terms are regarded as of Lotka-Volterra competition type. For
an introduction to the biological context we refer to [9] and the references therein (see
also [5] for a more detailed biological interpretation of Problem (P)).
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Throughout the paper we assume the following hypotheses on the data:

(H1 ) α , β , γ and k are positive constants;
(H2 ) the initial functions are bounded and nonnegative: u0,v0 ∈ L∞(RN) and u0,v0 � 0
a.e. in R

N ;
(H3 ) 0 < B0 � u0 + v0 � B0

−1 a.e. in R
N for some constant B0 , u0 + v0 ∈ C3

loc(R
N)

and u0 + v0 is uniformly Lipschitz continuous in R
N .

We shall refer collectively to these assumptions as hypothesis H .
In Section 3, we formulate the main results of this paper: if hypothesis H is sat-

isfied, problem (P) has a solution in the sense of distributions, and solutions which are
initially segregated, remain segregated:

u0v0 = 0 a.e. in R
N ⇒ u(·,t)v(·,t) = 0 a.e. in R

N for t > 0. (1)

This segregation property reflects the contact inhibition mechanism for the growth of
the cells.

In [5] similar results have been obtained in the one-dimensional case, N = 1 (for a
bounded interval with no-flux boundary conditions). The global existence result in [5]
is primarily based on BV -estimates, which seem to be difficult to obtain if N > 1. In
[5] the existence result of segregated solutions also covers the case that the divergence
term in the second equation is multiplied by a constant d �= 1, but we are not able to
generalize this to the case that N � 2. Another generalization in [5] concerns the gra-
dient ∇(u+ v) , which is replaced by ∇χ(u+ v) for a smooth function χ with positive
derivative. Our results can be easily extended to this case.

The system without reaction terms was considered in a series of papers in the
80’s (see [6, 7, 8]). The absence of reaction terms reduces the problem to a system of
conservation laws, which makes its analysis considerably simpler.

The approach in the present paper is based on recent results for transport equations.
Setting

w = u+ v, r = u/(u+ v) (and, similarly, w0 = u0 + v0, r0 = u0/(u0 + v0)),

the parabolic-hyperbolic nature of the system becomes clear: formally the system can
be rewritten as a parabolic equation for w coupled to a hyperbolic one for r :⎧⎪⎨

⎪⎩
wt = div(w∇w)+wF(r,w) in R

N × (0,∞),
rt = ∇w ·∇r+ r(1− r)G(r,w) in R

N × (0,∞),
w(·,0) = w0 and r(·,0) = r0 a.e. in R

N ,

where

F(r,w) := r(1− rw−α(1− r)w)+ γ(1− r)(1−β rw− (1− r)w/k),
G(r,w) := (1− rw−α(1− r)w)− γ(1−β rw− (1− r)w/k).

(2)

Initially, at t = 0, w = w0 is bounded away from zero (hypothesis H3 ), and we shall
see that this also holds for later times t > 0. Hence the equation for w is uniformly
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parabolic and its solution is rather smooth. This will imply that the velocity field −∇w
of the transport equation for r is Hölder continuous (but not Lipschitz continuous) and
has a certain Sobolev regularity which enables us to use the theory of renormalized
solutions of transport equations, originally developed by Di Perna and Lions ([11]).
More precisely, we shall use the version given by Ambrosio, Bouchut and De Lellis
([4], see also [10]), although these papers are primarily focussed on the more general
(and more difficult) case of velocity fields ”with BV regularity” (see [2]). One could
say that the renormalization theory compensates the lack of BV -estimates, the basic
ingredient of the existence theory if N = 1.

Observe that formally the segregation property follows from the equation for r : if
r0(x0)= 0, r = 0 along the characteristic starting at x0 (i.e. u = 0 along the characteris-
tic), and if r0(x0) = 1, r = 1 (v = 0) along the characteristic. Again the renormalization
theory will make this rigorous.

In Section 2 we prove a result of independent interest: in bounded domains the
system, with no-flux conditions at the boundary, has smooth solutions if the initial data
are smooth. They will be used to approximate solutions of problem (P). Observe that
we are particularly interested in the existence of discontinuous solutions: segregated
solutions will be discontinuous at the interfaces which separate the disjoint regions
where u > 0 and v > 0.

In Section 3 we state the main result and in Section 4 we give its proof.

2. Smooth solutions in bounded domains

In this section, we prove the existence of a global smooth solution in a bounded
domain. This result shows that if initial conditions u0 and v0 are smooth, then u and
v are smooth for all times. In other words, u and v do not become segregated in finite
time.

THEOREM 2.1. Let Ω ⊂ R
N a bounded domain with smooth boundary ∂Ω and

α , β , γ and k positive constants. Let u0,v0 ∈ C3(Ω) such that u0,v0 � 0 and 0 <
B0 � u0 + v0 � B−1

0 in Ω for some constant B0 and

∂ (u0 + v0)
∂ν

= 0 on ∂Ω ,

where ν(x) denotes the outward normal at x∈ ∂Ω . Then there exists a pair of nonnega-

tive solutions (u,v) , such that u, v∈C2,1(Ω× [0,∞)) and u+v∈C2+μ, 2+μ
2 (Ω× [0,∞))

with μ ∈ (0,1) , of the problem

(PΩ)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = div(u∇(u+ v))+u(1−u−αv) in Ω× (0,∞),
vt = div(v∇(u+ v))+ γv(1−βu− v/k) in Ω× (0,∞),

u
∂ (u+ v)
∂ν

= v
∂ (u+ v)
∂ν

= 0 on ∂Ω× (0,∞),

u(·,0) = u0, v(·,0) = v0 in Ω.
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Proof. The proof is based on Schauder’s fixed point theorem. It is sufficient to
prove existence of smooth solutions on a bounded time interval [0,T ] (T > 0 fixed
but arbitrary). Since we are interested in smooth solutions, it is equivalent to solve the
problem for w := u+ v and r := u/(u+ v) :

(P̃Ω)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wt = div(w∇w)+wF(r,w) in QT := Ω× (0,T ],
rt = ∇w ·∇r+ r(1− r)G(r,w) in QT ,

w
∂w
∂ν

= 0 on ∂Ω× (0,T ],

w(·,0) = w0 := u0 + v0, r(·,0) = r0 := u0/w0 in Ω,

where F and G are defined by (2).
Let M > 0 be a constant and let μ ∈ (0,1) . Below CM will denote a generic

constant which for fixed μ , w0 and r0 , depends only on M . Given

r ∈Cμ, μ2 (QT ), 0 � r � 1, ‖r‖
Cμ ,

μ
2 (QT )

� M,

there exists a unique solution w ∈C2+μ, 2+μ
2 (QT ) of the problem

(P̃r,Ω)

⎧⎪⎪⎨
⎪⎪⎩

wt = div(w∇w)+wF(r,w) in QT ,

w
∂w
∂ν

= 0 on ∂Ω× (0,T ],

w(·,0) = w0 in Ω.

Here we have used the a priori estimate 0 < B1 � w � B2 , which implies uniformly
parabolicity. Indeed, 0 � r � 1 gives us that

f (rw,(1− r)w) < 0 if w > 1/min{1,α},
f (rw,(1− r)w) > 0 if w < 1/max{1,α},

and
g(rw,(1− r)w) < 0 if w > 1/min{1/k,β},
g(rw,(1− r)w) > 0 if w < 1/max{1/k,β},

where f (u,v) = (1−u−αv)u and g(u,v) = γ(1−βu− v/k)v . Since B0 � w0 � B−1
0 ,

the maximum principle implies that 0 < B1 � w � B2 with

B1 = min

{
B0,

1
max{1,α} ,

1
max{1/k,β}

}
,

B2 = max

{
B−1

0 ,
1

min{1,α} ,
1

min{1/k,β}
}

.

By standard Schauder type estimates ([15], Chapter IV, Theorem 5.3), we have
‖w‖

C2+μ ,
2+μ

2 (QT )
� CM .
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Given the solution w , we consider for each y ∈ Ω the ODE for the characteristic
starting at y : {

Xt(y,t) = −∇w(X(y,t),t) for 0 < t � T,

X(y,0) = y for y ∈Ω.

Since the normal derivative of w at the lateral boundary ∂Ω vanishes, we have that
X(y,t) ∈ ∂Ω for 0 < t � T if y ∈ ∂Ω . In view of the regularity of w , there exists for
each y ∈Ω a unique solution t �→ X(y,t) and the map X : QT → QT is one-to-one and
onto. The smoothness of w implies that ([14], Theorem 3.3 p.21)

‖Xi‖C1,1(QT ) � CM for all i = 1, · · · ,N.

Next we focus on the equation for r . By a change of variables based on the
expression for the characteristics x = X(y,t) , the transport equation

(P̃w,Ω)

{
rt = ∇w ·∇r+ r(1− r)G(r,w) in QT ,

r(x,0) = r0(x) in Ω,

reduces to the smooth ODE{
Rt = R(1−R)G(R,w(X(y,t)) for 0 < t � T,

R(y,0) = r0(y) for y ∈Ω,
(3)

where R(y, t) := r(X(y,t),t) . So let R̃ ∈C1,1(QT ) be the solution of (3). The regularity
of w and X implies that ‖R̃‖C1,1(QT ) � CM ([14], Theorem 3.3). In addition, since

0 � r0 � 1 in Ω , 0 � R̃ � 1 in QT .
Before returning to the original (x,t)-variables, we analyze the regularity of the

inverse function X−1(x,t) . The map X is invertible in QT and the elements of the
Jacobian matrix J(y, t) of X , that is {(Xi)y j (y,t)} , are uniformly bounded in QT . We
claim that

the elements of the inverse matrix J−1(x,t) are uniformly bounded in QT . (4)

By Cramer’s Rule, it is sufficient to prove that |detJ| � aT in QT for some constant
aT > 0. Below we show that, for all fixed y ∈Ω ,

d
dt

(w(X(y, t), t)|detJ|) = w(X(y,t),t)F(r(X(y,t),t),w(X(y,t),t))|detJ|. (5)

We multiply the equation for w by a smooth test function ϕ ∈ C∞(Ω× [0,T ]) with
compact support, and integrate over Ω :

d
dt

∫
Ω

wϕdx =
∫
Ω
(wtϕ+wϕt)dx =

∫
Ω

w(ϕt −∇w∇ϕ +Fϕ)dx. (6)

Changing variables, x = X(y,t) , we have that∫
Ω

wϕdx =
∫
Ω

w|detJ|ϕdy
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and ∫
Ω

w(ϕt −∇w∇ϕ +Fϕ)dx =
∫
Ω

w|detJ|((ϕ(X(y,t),t))t +Fϕ)dy,

and (6) becomes

d
dt

∫
Ω

w|detJ|ϕdy =
∫
Ω

w|detJ|(ϕt +Fϕ)dy.

Hence ∫
Ω
(w|detJ|)tϕdy =

∫
Ω

w|detJ|Fϕdy

for all test function ϕ ∈C∞(Ω× [0,T ]) with compact support, and we have found (5).
Now (4) follows easily. Since

−(1+α+(β +1/k)γ)B2 � F(r,w) � 1+ γ,

we deduce from (5) that

d
dt

(w(X(y, t), t)|detJ|)
{

� −(1+α+(β +1/k)γ)B2w(X(y,t),t)|detJ|,
� (1+ γ)w(X(y,t),t)|detJ|.

The initial condition X(y,0) = y implies that detJ(y,0) = 1 for y ∈Ω , which, together
with Gronwall’s inequality and the uniform bounds on w , implies that there exists a
positive constant aT > 0 such that

0 < aT � |detJ| � aT
−1 in QT . (7)

Thus we have proved (4). Hence X−1(x,t)∈C1,1(QT ) , and the Jacobian matrix of
X−1(x, t) is uniformly bounded in QT . Differentiating X−1(X(y,t),t) = y with respect
to time yields

(X−1)t = −∇X−1 ·Xt = ∇X−1 ·∇w for each i = 1, · · · ,N.

In particular (X−1)t is uniformly bounded in QT , and

‖X−1
i ‖C1,1(QT ) � CM for i = 1, · · · ,N .

Next we transform R̃(y,t) back to the original variables:

r̃(x,t) := R̃(X−1(x,t),t) for (x,t) ∈ QT .

We deduce from the regularity of X−1 and R̃ that ‖r̃‖C1,1(QT ) � CM ; since 0 � R̃ � 1

in QT , also 0 � r̃ � 1 in QT .
This leads us to define the map r �→ w �→ r̃ =: T (r) from the convex set

U := {r ∈Cμ, μ2 (QT );0 � r � 1 in QT}

into itself. T is compact since C1,1(QT ) is compactly imbedded in Cμ, μ2 (QT ) .
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We check that T is continuous. Let {rm}m∈N ⊂ U converge to r ∈ U in
Cμ, μ2 (QT ) as m → ∞ . Since {rm}m∈N is bounded in Cμ, μ2 (QT ) , it follows that the se-

quence {wm}m∈N is bounded in C2+μ,
2+μ

2 (QT ) , and that it converges to the correspond-
ing solution w of problem (P̃r,Ω) as m → ∞ . The sequence {r̃m}m∈N = {T (rm)}m∈N

is bounded in C1,1(QT ) . Thus it converges to the solution r̃ = T (r) of problem (P̃w,Ω)
in Cμ, μ2 (QT ) for each μ ∈ (0,1) .

Since T is continuous and compact, by Schauder’s fixed point theorem ([12],
Theorem 3.2 p.57) it has a fixed point which is a solution of problem (P̃Ω) . Therefore,
the function pair (u,v) = (wr,w(1− r)) is a solution of problem (PΩ) in [0,T ] . This
completes the proof of Theorem 2.1. �

3. Main result

Before stating the main result we specify what we mean by a solution of prob-
lem (P) . We assume that all data satisfy hypothesis H .

DEFINITION 3.1. A function pair (u,v) is called a solution of problem (P) if it
satisfies the following properties:

(i) u,v ∈ L∞loc([0,∞);L∞(RN)) and u,v � 0 a.e. in R
N × (0,∞) ;

(ii) ∇(u+ v) ∈ L2
loc(R

N × (0,∞)) ;
(iii) for any test function ϕ ∈C∞(RN × [0,∞)) with bounded support∫ ∞

0

∫
RN

(uϕt−u∇(u+v)·∇ϕ+u(1−u−αv)ϕ) = −
∫

RN
u0ϕ(·,0), (8)

∫ ∞

0

∫
RN

(vϕt−v∇(u+v)·∇ϕ + v(1−βu−v/k)ϕ) = −
∫

RN
v0ϕ(·,0). (9)

In the rest of the paper we shall prove that problem (P) has a solution (u,v) and that
the segregation property holds.

THEOREM 3.2. Let hypotheses H be satisfied. Then problem (P) has a solution
(u,v) which satisfies the segregation property (1).

REMARK 3.3. Initial segregation (u0v0 = 0 a.e. in R
N ) and the hypothesis 0 <

B0 � u0 +v0 mean that the initial population densities u0 and v0 have disjoint supports
and that the populations u and v already are in contact at time t = 0.

We shall prove Theorem 3.2 in the next section. The proof is constructive: let
Bn ⊂ R

N be the the ball of radius n ∈ N centered at the origin; we use Theorem 2.1,
with Ω= Bn and smooth initial functions (u0n,v0n) which approximate (u0,v0) locally
in R

N , to define approximating solutions (un,vn) ; finally we pass to the limit n → ∞ .
More precisely, let u0,v0 ∈ C3(RN) with 0 < B0 � u0 + v0 � B0

−1 be such that
the Lipschitz constant of u0 + v0 is uniformly bounded with respect to x ∈ R

N . Then
there exist functions u0n,v0n ∈C3(Bn) such that



144 MICHIEL BERTSCH, DANIELLE HILHORST, HIROFUMI IZUHARA, MASAYASU MIMURA

( i) u0n,v0n � 0 and 0 < B0 � u0n + v0n � B0
−1 in Bn ;

( ii) u0n → u0 and v0n → v0 in L1
loc(R

N) as n → ∞ ;

( iii) u0n + v0n → u0 + v0 in C3
loc(R

N) and the Lipschitz constant of u0n + v0n is uni-
formly bounded with respect to x ∈ R

N and n ∈ N ;

( iv)
∂ (u0n + v0n)

∂ν
= 0 on ∂Bn .

4. Proof of Theorem 3.2

By Theorem 2.1 problem (PBn) , with initial functions u0n and v0n (defined in the
previous section), has a solution (un,vn) . Setting

wn := un + vn and rn :=
un

un + vn
,

and ⎧⎪⎪⎨
⎪⎪⎩

wnt = div(wn∇wn)+wnF(rn,wn) in Bn × (0,∞),

wn
∂wn

∂ν
= 0 on ∂Bn× (0,∞),

wn(·,0) = w0n := u0n + v0n in Bn.

Let T,R > 0 and n > R +1.
Then wn is a smooth solution of the equation for w in BR+1× (0,T ) and satisfies

the gradient estimate ([15], Theorem 3.1, p. 417)

max
Bn×[0,T ]

|∇wn| � C (10)

for some constant C which does not depend on n . Let p � 2. By Agmon-Douglis-
Nirenberg type interior Lp estimates ([16], p. 175)

‖D2wn‖Lp(BR×(0,T )) +‖wnt‖Lp(BR×(0,T)) � C (11)

for some constant C = C(R,T, p) which does not depend on n . By (10), (11) and the
uniform bound on wn in QT ,

‖wn‖W2,1
p (BR×(0,T)) � C if n > R +1 (12)

for some constant C = C(R,T, p) which does not depend on n . If p > N +2, then

W 2,1
p (BR × (0,T)) is compactly imbedded into C1+μ, 1+μ

2 (BR × [0,T ])

with μ ∈ (0,1− (N +2)/p) ([15], Chapter II, Lemma 3.3). Hence

‖wn‖
C1+μ ,

1+μ
2 (BR×[0,T ])

� C. (13)
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By a standard diagonal procedure, there exist a subsequence {wnk} and a function

w ∈W 2,1
p,loc(R

N × [0,∞))∩L∞loc([0,∞);W 1,∞(RN)) such that

wnk → w in C1+μ,(1+μ)/2
loc (RN × [0,∞)) as k → ∞ (14)

(we have used (10) to conclude that w ∈ L∞loc([0,∞);W 1,∞(RN))).
The next step is the construction of r(x,t) . We shall use the characteristics induced

by the velocity fields bn and b defined by

bn(x,t) := −∇wn(x,t) in Bn× [0,∞),

b(x,t) := −∇w(x,t) a.e. in R
N × [0,∞),

respectively. Since b = −∇w(x,t) is not Lipschitz continuous with respect to x , the
ODE’s for its characteristics{

Xt(y,t) = −∇w(X(y,t),t) for t > 0,

X(y,0) = y for y ∈ R
N ,

(15)

are not well defined in the classical sense. Di Perna and Lions ([11]) have generalized
the concept of characteristics if the velocity field possesses only Sobolev regularity:

b ∈ L∞(RN × [0,∞))∩L1
loc([0,∞);W 1,1

loc (RN)).

Below we construct r(x,t) according to their theory.

4.1. Regular Lagrangian flow

Regular Lagrangian flows generalize the concept of characteristics.

DEFINITION 4.1. (Definition 3.1 in [10]) Let b ∈ L∞(RN × [0,∞);RN) . A map
Φ : R

N × [0,∞) → R
N is a regular Lagrangian flow induced by b if

(i) for a.e. t > 0 we have that |{y ∈ R
N ;Φ(y,t) ∈ A}| = 0 for any Borel set A ⊂ R

N

with |A| = 0;

(ii) the ODE’s for the characteristics,{
Φt(y,t) = b(Φ(y,t),t) for t > 0,

Φ(y,0) = y for y ∈ R
N ,

hold in the sense of distributions: for any ϕ ∈C∞(RN × [0,∞);RN) with bounded sup-
port,

∫∫
RN×R+

(Φ(y, t) ·ϕt(y,t)+b(Φ(y,t),t) ·ϕ(y,t))dydt = −
∫

RN
y ·ϕ(y,0)dy.
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REMARK 4.2. Condition (i) implies that, given f ∈ L∞loc(R
N × [0,∞)) , the func-

tion f (Φ(y, t), t) is well-defined for a.e. (y,t) ∈ R
N × [0,∞) . By time invertibility of

the flow (replace b by −b ), the inverse map Ψ(x,t) =Φ−1(x,t) and f (Ψ(x, t),t) (with
f ∈ L∞loc(R

N × [0,∞))) are also defined for a.e. (x,t) .

The organization of the proof is as follows: let x = Xn(y,t) denote the smooth
characteristics induced by bn(x,t) = −∇wn(x,t) . After introducing some more basic
concepts of transport equations, in section 4.4 we show the convergence of {Xn} , up to
subsequences, to a regular Lagrangian flow X induced by b = −∇w :

Xnk → X in L1
loc(R

N × [0,∞);RN) as k → ∞. (16)

We set Rn(y, t) := rn(Xn(y,t),t) for y ∈ R
N and t � 0. In section 4.5 we use the ODE

for Rn(y, ·) for each y ∈ R
N to construct a limiting function R ∈ L1

loc(R
N × [0,∞)) :

Rnk → R in L1
loc(R

N × [0,∞)) as k → ∞. (17)

Hence we can use the inverse maps Yn = Xn
−1 and Y = X−1 (see Remark 4.2) to define

the corresponding function in the original variables:

rn(x,t) := Rn(Yn(x,t),t) for (x,t) ∈ Bn × [0,∞),

r(x,t) := R(Y (x,t),t) for a.e. (x,t) ∈ R
N × [0,∞).

In section 4.6 we prove our key result, the strong convergence of rnk :

rnk → r in L2
loc(R

N × [0,∞)) as k → ∞. (18)

This implies the strong convergence of the sequences

unk = rnkwnk and vnk = (1− rnk)wnk

to their limits and allows us to pass to the limit in the equations for un and vn . Hence
the limit function (u,v) is a solution of problem (P) and in section 4.7 we show that it
satisfies the segregation property (1).

4.2. Nearly incompressible velocity field

We need some more concepts from the theory of transport equations. Details can
be found in the review paper [10] by De Lellis.

DEFINITION 4.3. (Definition 3.6 in [10]) We say that a bounded velocity field b
is nearly incompressible if there exists a function η ∈ L∞(RN × [0,∞)) and a positive
constant C such that C � η � C−1 and

ηt +div(ηb) = 0

in the sense of distributions.
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Let wn be defined as above, let Xn(y,t) be the smooth characteristics induced by
the velocity field bn = −∇wn , and let Jn(y,t) be the Jacobian matrix {(Xni)y j} . Let
T > 0 be arbitrary. We set

ρn(x,t) = |det(J−1
n (x,t))| for (x,t) ∈ Bn × [0,T ].

Arguing as in (7),

0 < aT � |detJn(y,t)| � aT
−1 in Bn× (0,T )

for some constant aT which does not depend on n . Since

J−1
n (x, t) = (Jn(y,t))−1 and detJn(y,t) ·det((Jn(y,t))−1) = 1,

it follows that for all n ∈ N

0 < aT � ρn � aT
−1 in Bn× (0,T). (19)

It is well-known that ρn(x,t) satisfies the continuity equation:{
(ρn)t = div(ρn∇wn) in Bn× [0,∞),
ρn(x,0) = 1 in Bn,

(20)

(see for example [3], Proposition 2.1; it is enough to use the weak formulation of the
continuity equation and to change variables, y = X−1

n , in the integrals).
Let w be the limit of wnk defined by (14). Along a subsequence ρnk converges

weakly∗ to some ρ ∈ L∞(RN × (0,T )) , and, by (14),{
ρt = div(ρ∇w) in R

N × (0,∞),
ρ(x,0) = 1 in x ∈ R

N

in the sense of distributions. We will see below that ρ is uniquely defined so that the
whole sequence ρnk converges. Since also

aT � ρ � aT
−1 a.e. in R

N × [0,T ], (21)

ρ satisfies Definition 4.3 with b =−∇w , whence b is a nearly incompressible velocity
field. The function ρ is called the density induced by b .

4.3. Renormalization property

The rn is a smooth solution of the transport equation{
rnt = ∇rn ·∇wn + rn(1− rn)G(rn,wn) in Bn× (0,T ),
rn(x,0) = r0n in Bn,
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or, equivalently (by (20)),{
(rnρn)t = div(rnρn∇wn)+ρnrn(1− rn)G(rn,wn) in Bn× (0,T ),
[rnρn](x,0) = r0n in Bn.

By the chain rule, the solution rn also satisfies{
β (rn)t = ∇β (rn) ·∇wn +β ′(rn)rn(1− rn)G(rn,wn) in Bn× (0,T),
rn(x,0) = r0n in Bn,

or, equivalently,{
(β (rn)ρn)t = div(β (rn)ρn∇wn)+β ′(rn)ρnrn(1− rn)G(rn,wn) in Bn× (0,T ),
[rnρn](x,0) = r0n in Bn.

If the transport equation is satisfied in the sense of distributions, we cannot use the chain
rule and we need the concept of renormalization property.

DEFINITION 4.4. (Extended version of Definition 3.9 in [10]) We say that the
bounded nearly incompressible velocity field b with density η has the renormalization
property if for all c ∈ L1

loc(R
N × [0,∞)) and q ∈ L∞loc(R

N × [0,∞)) such that

(qη)t +div(bηq) = cη

in the sense of distributions, β (q) satisfies

(β (q)η)t +div(bηβ (q)) = cηβ ′(q)

in the sense of distributions for all β ∈C1(R) .

It follows essentially from the results by Di Perna and Lions ([11]) that ”the
Sobolev regularity” of b , implies that b has the renormalization property. A more
precise reference can be found in [4]: Remark 4.5 on page 1646 explains how to use
the absolute continuity of divb with respect to the Lebesgue measure to obtain the ver-
sion of the renormalization property which we use in this paper (Remark 4.5 treats the
case c = 0, but it can be easily extended to the case c �= 0).

4.4. Strong convergence of regular Lagrangian flows

The fact that b(x,t) = −∇w(x,t) is a nearly imcompressible velocity field with
the renormalization property makes it possible to apply several results proved in [10].

PROPOSITION 4.5. (Theorem 3.22 in [10]) Let b a bounded nearly incompress-
ible velocity field with the renormalization property. Then there exists a unique regular
Lagrangian flow Φ for b. Moreover, let bn be a sequence of bounded nearly incom-
pressible velocity fields with renormalization property such that
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(i) {bn} is uniformly bounded in L∞(RN×(0,∞);RN) and bn → b strongly in L1
loc(R

N×
(0,∞);RN);
(ii) the densities ηn generated by bn satisfy limsupn(‖ηn‖∞+‖η−1

n ‖∞) < ∞ .

Then the regular Lagrangian flows Φn generated by bn converge to Φ in L1
loc(R

N×
(0,∞);RN) .

COROLLARY 4.6. (Corollary 3.15 in [10]) Let ζ ∈ L∞(RN) . If b is a bounded
nearly incompressible velocity field with the renormalization property, then there exists
a unique bounded distributional solution ζ of{

ζt +div(ζb) = 0,

ζ (·,0) = ζ .

Moreover, if ζ is bounded away from zero, so is ζ .

By Proposition 4.5 b = −∇w induces a unique regular Lagrangian flow X(y, t)
and

Xnk → X in L1
loc(R

N × [0,∞)) as k → ∞ (22)

(due to the local character of the convergence it is not a problem that bn is not defined
in all of R

N ).
By Corollary 4.6 the density ρ induced by b is uniquely determined. Therefore,

the convergence of ρnk does not depend on subsequences, as was announced before.

4.5. Strong convergence in (y,t)-variables: proof of (17)

In this subsection, we prove (17), that is,

Rnk → R in L1
loc(R

N × [0,∞)) as k → ∞ .

The key ingredient is (22), the convergence of the regular Lagrangian flow.
We set

Wnk(y,t) := wnk(Xnk(y,t),t) for (y,t) ∈ Bnk ×R
+,

W (y,t) := w(X(y,t),t) for a.e (y,t) ∈ R
N ×R

+.

First we prove that

Wnk →W in L1
loc(R

N × [0,∞)) as nk → ∞. (23)

Let T,R > 0 and let k be so large that nk > R > 0. Then∫∫
BR×(0,T )

|Wnk(y,t)−W(y,t)|dydt � I1k + I2k,

where
I1k :=

∫∫
BR×(0,T)

|wnk(Xnk(y,t),t)−w(Xnk(y,t),t)|dydt

I2k :=
∫∫

BR×(0,T)
|w(Xnk(y,t),t)−w(X(y, t),t)|dydt.
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Since, by (19), the densities ρnk are uniformly bounded in Bnk × (0,T ) and wnk and w
are uniformly bounded in QT , we have that

I1k �
∫∫

BR+TCT
×(0,T)

|wnk (x,t)−w(x, t)|ρnk(x, t)dxdt

� aT
−1

∫∫
BR+TCT

×(0,T)
|wnk(x,t)−w(x,t)|dxdt.

Hence, by (14), I1k → 0 as k → ∞ . Since w is Lipschitz continuous in x on BR , it
follows from (22) that I2k → 0 as k → ∞ . So we have proved (23).

We recall (see (3)) that Rn(y,t) := rn(Xn(y,t),t) satisfies{
Rnt = Rn(1−Rn)G(Rn,Wn) in Bn×R

+,

Rn(y,0) = r0n(y) for y ∈ Bn.

We must prove that Rnk converges in L1
loc(R

N × [0,∞)) to the solution R of{
Rt = R(1−R)G(R,W) in R

N ×R
+,

R(y,0) = r0(y) for y ∈ R
N .

Setting

h(s,y, t) = s(1− s)G(s,W (y,t)), hk(s,y,t) = s(1− s)G(s,Wnk(y, t)),

we have that

(Rnk −R)t = hk(Rnk ,y,t)−h(Rnk ,y,t)+h(Rnk,y,t)−h(R,y,t).

Observe that

|hnk(Rnk ,y,t)−h(Rnk,y,t)| = h̃(Rnk)|Wnk(y, t)−W(y,t)|
� C1|Wnk(y,t)−W (y,t)|,

where h̃(R) = |(γβ −1)R+(γ/k−α)(1−R)| , and

|h(Rnk ,y,t)−h(R,y,t)|� C2|Rnk −R|.

Therefore
(e−C2t |Rnk −R|)t � C1e

−C2t |Wnk −W | � C1|Wnk −W |
and

|Rnk(y, t)−R(y, t)| � eC2t |r0nk(y)− r0(y)|+C1e
C2t

∫ t

0
|Wnk(y,τ)−W (y,τ)|dτ.

Since r0n → r0 in L1
loc(R

N) , (23) implies the convergence of Rnk to R in L1
loc(R

N ×
[0,∞)) and we have proved (17).
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4.6. Strong convergence in (x,t)-variables: proof of (18)

In this subsection we use the strong convergence of Rnk(y,t) to prove the strong
convergence of rnk(x,t) .

Let Yn(x, t) be the inverse of Xn(y,t) , that is Yn(Xn(y,t),t) = y in Bn × [0,T ] .
Since Yn is constant along the characteristics Xn , each of its components satisfies the
transport equation {

((Yn)i)t = ∇(Yn)i ·∇wn in Bn× (0,T),
(Yn)i(x,0) = xi in x ∈ Bn,

or, equivalently, {
(ρn(Yn)i)t = div((Yn)iρn∇wn) in Bn× (0,T ),
[(Yn)iρn](x,0) = xi in x ∈ Bn,

where ρn are the densities induced by bn .
Similarly, we define Y (x,t) as the inverse of X(y,t) in R

N × (0,T ) . We will show
that it satisfies the problem{

(ρYi)t = div(Yiρ∇w) in R
N × (0,T ),

[Yiρ ](x,0) = xi in x ∈ R
N ,

(24)

where ρ is the density of the regular Lagrangian flow X(y,t) induced by −∇w . The
existence of a solution of (24) follows from the following result.

PROPOSITION 4.7. (Proposition 3.13 in [10]) Assume that b is a bounded nearly
incompressible velocity field and η � 0 be the density induced by b. Then for every
bounded u and η there exists a unique solution of{

(ηu)t +div(uηb) = 0,

[uη ](0, ·) = uη .

It follows from Proposition 4.7 that the limit equation has a solution Y , i.e. for
all i = 1, . . . ,N there exists a solution Yi satisfying the transport equation (24). The
following result gives us the convergence of Yn to Y .

PROPOSITION 4.8. (Corollary 3.20 in [10]) Let {bn} , b ⊂ L∞(RN × [0,∞);RN) ,
{ζn} , ζ , {un} , u ⊂ L∞(RN × [0,∞)) and {un} , u ⊂ L∞(RN) be such that

(i) ζ ,ζn > 0 , ζ−1,ζn
−1 ∈ L∞ and ‖ζn‖∞+‖ζn

−1‖∞+‖un‖∞ is uniformly bounded;

(ii) {bn} and b have the renormalization property and bn → b in L1
loc ;

(iii) ζt +div(ζb) = ζnt +div(ζnbn) = 0 ;

(iv) un and u are the unique solutions of{
(ζnun)t +div(ζnunbn) = 0,

[ζnun](·,0) = ζn(·,0)un,

{
(ζu)t +div(ζub) = 0,

[ζu](·,0) = ζ (·,0)u.
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If ζn(·,0) ⇀∗ ζ (·,0) in L∞ and un → u in L1
loc , then un → u in L1

loc .

By this stability result for transport equations, Yn converges strongly to Y in
L1

loc(R
N × [0,∞)) as n → ∞ .

As we observed in Remark 4.2, Y can be regarded as a backward Lagrangian
flow: starting from (x,t) we follow the flow back to arrive at y at time t = 0. Also
the backward Lagrangian flow is regular, in particular the function (x,t) �→ f (Y (x, t),t)
belongs to L∞loc(R

N × [0,∞)) for all f ∈ L∞loc(R
N × [0,∞)) .

We set
r(x,t) := R(Y (x,t),t) for a.e. (x,t) ∈ R

N × [0,T),
rn(x,t) := Rn(Yn(x,t),t) for (x,t) ∈ Bn× [0,T).

PROPOSITION 4.9. (Extended version of Proposition 3.5 in [10]) Let Φ be a reg-
ular Lagrangian flow for the velocity field b with density η ∈ L1

loc(R
N × [0,∞)): for all

ψ ∈ L∞(RN ×R
+) with bounded support∫∫
RN×R+

ψ(Φ(y,t),t)dydt =
∫∫

RN×R+
ψ(x,t)η(x,t)dxdt.

(i) Let ζ ∈ L∞(RN) and c ∈ L∞(RN × [0,∞)) , and let the measure μ on R
N ×R

+ be
such that for all ϕ ∈ L∞(RN ×R

+) with bounded support

∫∫
ϕ(x, t)dμ(x,t) =

∫∫
RN×R+

ϕ(Φ(y,t),t)
(
ζ (y)+

∫ t

0
c(Φ(y,τ),τ)dτ

)
dydt.

Then there exists ζ ∈ L1
loc(R

N × [0,∞)) such that μ = ζL n+1 and ζ satisfies the
following equation in the sense of distributions:{

ζt +div(ζb) = ηc in R
N ×R

+,

ζ (·,0) = ζ in R
N .

(ii) If u ∈ L∞(RN ×R
+) , u ∈ L∞(RN) and c ∈ L∞(RN × [0,∞)) satisfy

u(Φ(y,t),t) = u(y)+
∫ t

0
c(Φ(y,t),τ)dτ for a.e. (y,t),

then the following equation holds in the sense of distributions:{
(ηu)t +div(uηb) = ηc in R

N ×R
+,

[uη ](·,0) = u in R
N .

This result generalizes Proposition 3.5 in [10] to the case c �= 0. For the sake of
completeness we give the proof in the appendix.

Applying Proposition 4.9 to

u(x,t) := r(x,t), b := −∇w, η := ρ and

c(x,t) := r(x,t)(1− r(x,t))G(r(x, t),w(x,t)),
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we deduce that r is a distributional solution of the transport equation{
(ρr)t = div(rρ∇w)+ρr(1− r)G(r,w) in R

N × (0,∞),
[rρ ](·,0) = r0 in R

N .
(25)

Finally, we prove the strong convergence (18) of rnk to r . Recalling that

{
(ρnrn)t = div(rnρn∇wn)+ρnrn(1− rn)G(rn,wn) in Bn× (0,∞),
[rnρn](·,0) = r0n in Bn,

we first prove that
rnkρnk converges weakly to rρ as k → ∞

and
ρnkcnk converges weakly to ρc as k → ∞,

where cn := rn(1− rn)G(rn,wn) and c := r(1− r)G(r,w) .
Let ϕ(x, t) be a smooth test function with bounded support. Then, by the strong

convergence of Rnk and Xnk as k → ∞ ,

∫∫
RN×R+

Rnk(y,t)ϕ(Xnk (y,t),t)dydt →
∫∫

RN×R+
R(y,t)ϕ(X(y,t), t)dydt

=
∫∫

RN×R+
r(x, t)ϕ(x,t)ρ(x,t)dxdt.

On the other hand, let ξ be the weak limit of rnkρnk (up to subsequences). Then

∫∫
RN×R+

Rnk(y,t)ϕ(Xnk (y,t),t)dydt =
∫∫

RN×R+
rnk(x,t)ϕ(x,t)ρnk(x,t)dxdt

→
∫∫

RN×R+
ξ (x, t)ϕ(x,t)dxdt

and hence ξ = rρ .
Next, let χ be the weak limit of ρnkcnk . Taking the limit in

(ρnkrnk )t = div(rnkρnk∇wnk )+ρnkcnk (in the sense of distributions),

we find that

(ρr)t = div(rρ∇w)+ χ (in the sense of distributions).

But we already know that

(ρr)t = div(rρ∇w)+ρc (in the sense of distributions),

so that χ = ρc .
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We repeat this procedure, replacing rnk by r2
nk

. Since the strong convergence of
Rnk implies the strong convergence of R2

nk
,

∫∫
RN×R+

R2
nk

(y,t)ϕ(Xnk(y,t),t)dydt →
∫∫

RN×R+
R2(y,t)ϕ(X(y,t),t)dydt

=
∫∫

RN×R+
r2(x,t)ϕ(x,t)ρ(x, t)dxdt.

On the other hand, let ξ̃ be the weak limit of r2
nk
ρnk . Then,

∫∫
RN×R+

R2
nk

(y,t)ϕ(Xnk (y,t),t)dydt =
∫∫

RN×R+
r2
nk

(x,t)ϕ(x,t)ρnk(x,t)dxdt

→
∫∫

RN×R+
ξ̃ (x, t)ϕ(x,t)dxdt.

Therefore, ξ̃ = r2ρ and

r2
nk
ρnk converges weakly to r2ρ as nk → ∞.

Finally we consider

ρnk(rnk − r)2 = ρnkr
2
nk

+ρnkr
2−2ρnkrnk r.

We deduce from the weak convergences above that, for any test function ϕ ∈C∞(RN ×
R

+) with bounded support,∫∫
RN×R+

ρnk(rnk − r)2ϕ =
∫∫

RN×R+
(ρnk r

2
nk

+ρnkr
2−2ρnkrnk r)ϕ

→
∫∫

RN×R+
(ρr2 +ρr2−2ρr2)ϕ = 0

as k → ∞ . Since ρnk � aT > 0, this implies that rnk strongly converges to r in
L2

loc(R
N × (0,∞)) .

4.7. Solution of problem (P); segregation property

In the previous subsection we have proved that rnk → r in L2
loc(R

N×(0,∞)) . Since
also wnk → w in L2

loc(R
N × (0,∞)) , we have that

unk := rnkwnk → u := rw in L1
loc(R

N × (0,∞)) as k → ∞

and

vnk := (1− rnk)wnk → u := (1− r)w in L1
loc(R

N × (0,∞)) as k → ∞.

Since (unk ,vnk) is a solution of problem (PBnk
), we may pass to the limit in the equa-

tions for unk and vnk to conclude that (u,v) is a solution of problem (P) in the sense
of Definition 3.1.
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The proof of the segregation property (1) follows at once for the ODE for R(y,t) .
Initial segregation, u0v0 = 0 a.e. in R

N is equivalent to r0(1− r0) = 0 a.e. in R
N . By

the equation for R (see (3)), R(1−R) satisfies{
(R(1−R))t = R(1−R)(1−2R)G(R,W) in R

N × (0,∞),
(R(1−R))(y,0) = 0 in R

N .

Since R and W are uniformly bounded, it follows from Gronwall’s inequality that
R(y,t)(1−R(y, t)) = 0 for all t > 0 and a.e. y ∈ R

N , whence u(x,t)v(x,t) = 0 for all
t > 0 and a.e. x ∈ R

N .

5. Appendix: Proof of Proposition 4.9

We proceed as in [10]. For any Borel set A ⊂ Ω× (0,T ) , with characteristic
function χA ,

|μ(A)| =
∣∣∣∣
∫∫

RN×R+

(
ζ (y)+

∫ t

0
c(Φ(y,τ),τ)dτ

)
χA(Φ(y,t),t)dydt

∣∣∣∣
� (‖ζ‖∞+‖c‖∞T )

∫∫
A
η(x,t)dxdt,

and, since η ∈ L1 , μ is absolutely continuous with respect to the Lebesgue measure
and there exists ζ such that μ = ζLn+1 .

Let ψ ∈C∞(RN × [0,∞)) be a test function with bounded support. We must show
that ∫∫

RN×R+
(ψt(x,t)+b(x,t) ·∇ψ(x,t))ζ (x,t)dxdt

= −
∫∫

RN×R+
cηψdxdt−

∫
RN

ζ (x)ψ(x,0)dx.

By hypothesis, the left hand side is equal to∫∫
RN×R+

(
ζ (y)+

∫ t

0
c(Φ(y,τ),τ)dτ

)[
ψt +b ·∇ψ]

(Φ(y,t),t)dydt.

For any y for which Lemma 3.2 in [10] holds

ψt(Φ(y, t),t)+b(Φ(y,t),t) ·∇ψ(Φ(y,t),t) =
d
dt

(ψ(Φ(y,t), t))

and integrating by parts we obtain that∫∫
RN×R+

(
ζ (y)+

∫ t

0
c(Φ(y,τ),τ)dτ

)[
ψt +b ·∇ψ]

(Φ(y,t),t)dydt

=
∫∫

RN×R+

(
ζ (y)+

∫ t

0
c(Φ(y,τ),τ)dτ

)
d
dt

(ψ(Φ(y,t),t))dydt

= −
∫

RN
ζ (y)ψ(Φ(y,0),0)dy−

∫∫
RN×R+

c(Φ(y,t),t)ψ(Φ(y,t),t)dydt

= −
∫

RN
ζ (x)ψ(x,0)dx−

∫∫
RN×R+

c(x, t)ψ(x,t)η(x,t)dxdt.
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This completes the proof ( i).
Let u and u be as in ( ii). Set ζ := u and ζ := uη . For every L∞ function ϕ with

bounded support we have that∫∫
RN×R+

u(x,t)η(x,t)ϕ(x,t)dxdt

=
∫∫

RN×R+
u(Φ(y,t),t)ϕ(Φ(y,t),t)dydt

=
∫∫

RN×R+

(
u(y)+

∫ t

0
c(Φ(y,t),τ)dτ

)
ϕ(Φ(y,t), t)dydt,

and the proof follows immediately from (i) .
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