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Abstract. In this paper two basic random fixed point theorems with PPF dependence are proved
for random operators in separable Banach spaces with different domain and range spaces. The
obtained abstract results are applied to certain nonlinear functional random differential equations
for proving the existence results for random solutions with PPF dependence.

1. Introduction

The study of the random fixed point theorems in abstract spaces is initiated by
Spacek [11] and Hans [7] and are the stochastic generalizations of the classical fixed
point theorems in separable Banach spaces. The research along this line gained mo-
mentum after the publication of the paper by Bharucha-Reid [2] and since then several
random fixed point theorems have been proved in the literature. It is worthwhile to
mention that these randoms fixed point theorems are useful for proving the existence
results for random solutions of nonlinear random equations in separable Banach spaces.
The details of this aspect along with some nice applications to random differential equa-
tions appear in an interesting paper of Itoh [9]. A common assumption among all these
random fixed point theorems is that the operators in question map an abstract space into
itself, i.e. the domain and the range of the operators are same. To the best of our knowl-
edge, there is no discussion so far concerning the random fixed point theorems for the
operators with different domains and the range spaces. The classical or deterministic
fixed point theorems for the operators with respect to domain and range spaces are not
same studied in Bernfield et al. [1], [3] and Drici et al. [5, 6] and Dhage [3] are called
fixed point theorems with PPF dependence, because they are useful for proving the
existence of solutions for certain functional differential equations which may depend
upon the past, present and future consideration.

In this paper we blend the above two approaches and prove two basic random fixed
point theorems for the operators in separable Banach spaces with PPF dependence and
apply them to some nonlinear random differential equations for proving the existence
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and uniqueness of PPF dependent random solutions. The rest of the paper is organized
as follows: In the following section we present some of the basic terminologies that will
be used in the subsequent development of this paper. In Section 3 we prove the basic
random fixed point theorems with PPF dependence and in Section 4 we apply them to
initial value problems of random functional differential equations.

2. Preliminaries

Let (Ω,A ) be a measurable space and let E be a separable Banach space with
norm ‖ · ‖E . We equip the Banach space E with a σ -algebra βE of Borel subsets
of E so that (E,βE) becomes a measurable space. A mapping x : Ω → E is called
measurable if

x−1(B) = {ω ∈ Ω | x(ω) ∈ B} ∈ A (2.1)

for all Borel sets B ∈ βE .

Given two Banach spaces E1 and E2 , a mapping Q : Ω×E1 → E2 is called a
random operator if Q(ω ,x) is measurable in ω for all x∈E1 . We also denote a random
operator Q on E1 by Q(ω)x = Q(ω ,x) . A random operator Q(ω) is called continuous
on E if Q(ω ,x) is continuous in x for each ω ∈ Ω . Similarly, Q is called compact
on Ω×E1 if Q(Ω×E1) is a relatively compact subset of E2 . Finally, Q(ω) is called
compact on E1 if Q(ω ,E1) is a relatively compact subset of E2 for each ω ∈ Ω .

Given a closed and bounded interval I = [a,b] in R , the set of real numbers, for
some a,b ∈ R , a < b , let E0 = C(I,E) denote the Banach space of continuous E -
valued functions defined on I equipped with the supremum norm ‖ · ‖E0 defined by

‖x‖E0 = sup
t∈I

‖x(t)‖E . (2.2)

For a fixed c ∈ I , a Razumkhin or Minimal class of functions in E0 is defined as

Rc =
{

φ ∈ E0 | ‖φ‖E0 = ‖φ(c)‖E
}
. (2.3)

The class Rc is algebraically closed with respect to difference if φ − ξ ∈ Rc

whenever φ ,ξ ∈ Rc Similarly, Rc is topologically closed if it is closed w.r.t. the
topology on E0 generated by the norm ‖ · ‖E0 .

Let Q : Ω×E0 → E be a random operator. A measurable function ξ ∗ : Ω → E0 is
called a PPF dependent random fixed point of the random operator Q(ω) if

Q(ω ,ξ ∗(ω)) = ξ ∗(c,ω)

for some c ∈ I . Any mathematical statement that guarantees the existence of PPF
dependent random fixed point of the random operator Q(ω) is a random fixed point
theorem with PPF dependence or a PPF dependent random fixed point theorem.

The following theorem is often times used in the study of nonlinear discontinuous
random differential equations. We also need this result in the subsequent part of this
paper.
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THEOREM 2.1. (Carathéodory) Let Q : Ω × E1 → E2 be a mapping such that
Q(ω ,x) is measurable in ω for each x ∈ E and Q(ω ,x) is continuous in x for each
ω ∈ Ω . Then the map (ω ,x) �→ Q(ω ,x) is jointly measurable.

In the following section we prove two basic random fixed point theorems with
PPF dependence for random operators in a separable Banach space satisfying certain
contraction and compactness type conditions.

3. PPF Dependent Random Fixed Point Theory

We need the following definitions in what follows.

DEFINITION 3.1. A random operator Q : Ω×E0 →E is called a random contrac-
tion if for each ω ∈ Ω ,

‖Q(ω ,ξ )−Q(ω ,η)‖E � λ (ω)‖ξ −η‖E0 (3.1)

for all ξ ,η ∈ E0, where λ : Ω →R+ is a measurable function satisfying 0 � λ (ω) < 1
for all ω ∈ Ω .

DEFINITION 3.2. A random operator Q : Ω×E0 → E is called a strong random
contraction if for a given c ∈ I and for each ω ∈ Ω ,

‖Q(ω ,ξ )−Q(ω ,η)‖E � λ (ω)‖ξ (c,ω)−η(c,ω)‖E (3.2)

for all ξ ,η ∈ E0, where λ : Ω →R+ is a measurable function satisfying 0 � λ (ω) < 1
for all ω ∈ Ω .

REMARK 3.1. Notice that every strong random contraction is random contrac-
tion, but the converse may not be true.

Our first random fixed point theorem with PPF dependence is the following result.

THEOREM 3.1. Let (Ω,A ) be a measurable space and let E be a separable
Banach space. If the random operator Q : Ω×E0 → E is a random contraction, then
the following statements hold in E .

(a) If Rc is algebraically closed with respect to difference, then for a given ξ0 ∈ E0

and for a given c ∈ I , every sequence {ξn(ω)} of measurable functions satisfying

Q(ω ,ξn(ω)) = ξn+1(c,ω) (3.3)

and
‖ξn(ω)− ξn+1(ω)‖E0 = ‖ξn(c,ω)− ξn+1(c,ω)‖E (3.4)

converges to a PPF dependent random fixed point of the random operator Q(ω) , i.e.
there is a measurable function ξ ∗ : Ω → E0 such that for each ω ∈ Ω ,

Q(ω ,ξ ∗(ω)) = Q(ω)ξ ∗(ω) = ξ ∗(c,ω).
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(b) Given ξ0,η0 ∈ E0 , let {ξn(ω)} and {ηn(ω)} be the sequences of iterates of mea-
surable functions corresponding to ξ0 and η0 constructed as in (a). Then,

‖ξn(ω)−ηn(ω)‖E0 � 1
1−λ (ω)

[‖ξ0− ξ1(ω)‖E0 +‖ξ0− ξ1(ω)‖E0

]
+‖ξ0−η0‖E0 .

If, in particular, ξ0 = η0 , and {ξn(ω)} �= {ηn(ω)} , then

‖ξn(ω)−ηn(ω)‖E0 � 2
1−λ (ω)

‖ξ0− ξ1(ω)‖E0 .

(c) Finally, if Rc is topologically closed, then for a given ξ0 ∈ E0 , every sequence
{ξn(ω)} of iterates of Q(ω) constructed as in (a), converges to a unique PPF depen-
dent random fixed point ξ ∗(ω) of Q(ω) , i.e. there is a unique measurable function
ξ ∗ : Ω → E0 such that Q(ω ,ξ ∗(ω)) = ξ ∗(c,ω) for all ω ∈ Ω .

Proof. Let ξ0 ∈ E0 be arbitrary. By hypothesis, Q(ω ,ξ0) ∈ E . Suppose that
Q(ω ,ξ0) = x1(ω) , where the function x1 : Ω → E is measurable. Choose a measurable
function ξ1 : Ω → E0 such that x1(ω) = ξ1(c,ω) and that

‖ξ1(c,ω)− ξ0(c)‖E = ‖ξ1(ω)− ξ0‖E0 .

Define a sequence {ξn(ω)} of measurable functions from Ω into E0 inductively
so that

Q(ω ,ξn(ω)) = ξn+1(c,ω)

and
‖ξn+1(c,ω)− ξn(c,ω)‖E = ‖ξn+1(ω)− ξn(ω)‖E0

for all ω ∈ Ω .
We claim that the sequence {ξn(ω)} of measurable functions is Cauchy in E0 .

Since Q(ω) is a random contraction, we have for each ω ∈ Ω ,

‖ξn(ω)− ξn+1(ω)‖E0 = ‖ξn(c,ω)− ξn+1(c,ω)‖E

= ‖Q(ω ,ξn−1(ω))−Q(ω ,ξn(ω))‖E

� λ (ω)‖ξn−1(c,ω)− ξn(c,ω)‖E

� λ (ω)‖ξn−1(ω)− ξn(ω)‖E0

for all n = 1,2, .... By induction,

‖ξn(ω)− ξn+1(ω)‖E0 � λ n(ω)‖ξ0− ξ1(ω)‖E0 (3.5)

for all n ∈ N . If m > n , then by triangle inequality,

‖ξn(ω)− ξm(ω)‖E0 � ‖ξn(ω)− ξn+1(ω)‖E0 +‖ξn+1(ω)− ξn+2(ω)‖E0

+ · · ·‖ξm−1(ω)− ξm(ω)‖E0

�
[
λ n(ω)+ λ n+1(ω)+ · · ·+ λ m−1(ω)

]‖ξ0− ξ1(ω)‖E0
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� λ n(ω)
1−λ (ω)

‖ξ0− ξ1(ω)‖E0

→ 0 as n → ∞.

Hence, lim
m,n→0

‖ξn(ω)− ξm(ω)‖E0 → 0. This shows that {ξn(ω)} is a Cauchy

sequence of measurable functions on Ω into E0 . Since E0 is complete and separable
Banach space, there is a measurable function ξ ∗ : Ω → E0 such that lim

n→∞
ξn(ω) =

ξ ∗(ω) for all ω ∈ Ω . Now, from (2.2) it follows that {ξn(c,ω)} is Cauchy and hence
convergent in view of completeness of E . From continuity of the random operator
Q(ω) it follows that

Q(ω ,ξ ∗(ω)) = Q
(
ω , lim

n→∞
ξn(ω)

)
= lim

n→∞
Q(ω ,ξn(ω))

= lim
n→∞

ξn+1(c,ω)

= ξ ∗(c,ω)

for all ω ∈ Ω . Hence ξ ∗ is a random fixed point with PPF dependence of the random
operator Q(ω) on E0 .

(b) Now, if {ξn(ω)} and {ηn(ω)} are any two sequences of measurable functions
as constructed in (a). Then for each ω ∈ Ω ,

‖ξn(ω)−ηn(ω)‖E0 � ‖ξn(ω)− ξn−1(ω)‖E0 +‖ξn−1(ω)−ηn−1(ω)‖E0

+‖ηn−1(ω)−ηn(ω)‖E0

� λ n−1(ω)
[‖ξ0− ξ1(ω)‖E0 +‖η0−η1(ω)‖E0

]
+‖ξn−1(ω)−ηn−1(ω)‖E0 .

for each n , n = 1,2, . . . . Therefore, by induction,

‖ξn(ω)−ηn(ω)‖E0 � λ n−1(ω)
[‖ξ0− ξ1(ω)‖E0 +‖η0−η1(ω)‖E0

]
(3.6)

+‖ξn−1(ω)−ηn−1(ω)‖E0

�
[
λ n−1(ω)+ λ n−2(ω)

][‖ξ0− ξ1(ω)‖E0

+‖η0−η1(ω)‖E0

]
(3.7)

+‖ξn−1(ω)−ηn−1(ω)‖E0 +‖ξn−2(ω)−ηn−2(ω)‖E0

�
[
λ n−1(ω)+ λ n−1(ω)+ · · ·+1

][‖ξ0− ξ1(ω)‖E0

+‖η0−η1(ω)‖E0

]
+‖ξ0−η0‖E0

� 1
1−λ (ω)

[‖ξ0− ξ1(ω)‖E0 +‖η0−η1(ω)‖E0

]
+‖ξ0−η0‖E0 . (3.8)
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In particular if, ξ0 = η0 , then Q(ω ,ξ0) = Q(ω ,η0) which implies that ξ1(c,ω) =
η1(c,ω) . Hence, from (3.6)

‖ξn(ω)−ηn(ω)‖E0 � 2
1−λ (ω)

‖ξ0− ξ1(ω)‖E0 .

(c) By part (a) above, the sequence {ξn(ω)} of measurable functions as con-
structed in (a) converges to a random fixed point ξ ∗(ω) with PPF dependence. As
Rc is topologically closed, ξ ∗(ω) ∈ Rc. Suppose that η∗(ω) �= ξ ∗(ω) , ω ∈ Ω , be
another random fixed point of Q(ω) in Rc with PPF dependence. Then,

‖ξ ∗(ω)−η∗(ω)‖E0 = ‖ξ ∗(c,ω)−η∗(c,ω)‖E

= ‖Q(ω ,ξ ∗(ω))−Q(ω ,η∗(ω))‖E

� λ (ω)‖ξ ∗(ω)−η∗(ω)‖E0

which is a contradiction since 0 � λ (ω) < 1 for all ω ∈ Ω . This completes the proof.

REMARK 3.2. If the Razumikhin class Rc of functions in E0 is not topologically
closed, then the sequence {ξn(ω)} of measurable functions as constructed in hypothe-
sis (a) of Theorem 3.1 may converge to a random fixed point with PPF dependence of
the random operator Q(ω) outside the set Rc which may not be unique.

Next, we prove a hybrid fixed point theorem with PPF dependence for the random
operators satisfying mixed Lipschitz and compactness conditions in separable Banach
spaces.

THEOREM 3.2. Let (Ω,A ) be a measurable space and let E be a separable
Banach space. Suppose that A : Ω×E0 → E and B : Ω×E → E are two continuous
random operators satisfying for each ω ∈ Ω,

(a) A(ω) is strong random contraction, and

(b) B is compact is compact on Ω×E .

If Rc is a topologically and algebraically closed with respect to difference, then
for a given c ∈ I , the random operator equation

A(ω ,ξ (ω))+B(ω ,ξ (ω ,c)) = ξ (ω ,c) (3.9)

has a random solution with PPF dependence, i.e. for a given c ∈ I , there is a measur-
able function ξ ∗ : Ω → E0 such that

A(ω ,ξ ∗(ω))+B(ω ,ξ ∗(c,ω)) = ξ ∗(c,ω).

for all ω ∈ Ω .

Proof. Let η : Ω→ E be a fixed measurable function and define a mapping Tη(ω) :
Ω×E0 → E by

Tη(ω)(ω ,ξ (ω)) = A(ω ,ξ (ω))+B(ω ,ξ (ω ,c)). (3.10)
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If ξ1,ξ2 : Ω → E0 are measurable, then

‖Tη(ω)(ω ,ξ1(ω))−Tη(ω)(ω ,ξ2(ω))‖E = ‖A(ω ,ξ1(ω))−A(ω ,ξ2(ω))‖E

� λ (ω)‖ξ1(c,ω)− ξ2(c,ω)‖E0

� λ (ω)‖ξ1(ω)− ξ2(ω)‖E0

for all ω ∈ Ω , where λ : Ω → R+ be a measurable function such that 0 � λ (ω) <
1. This shows that Q(ω) is a random contraction on E0 . Hence, by Theorem 3.1,
Tη(ω)(ω) has a unique PPF dependent random fixed point, that is, there is a unique
measurable function ξ ∗ : Ω → E0 such that

Tη(ω)(ω ,ξ ∗(ω)) = ξ ∗(c,ω)

for all ω ∈ Ω . As a result,

A(ω ,ξ ∗(ω))+B(ω ,η(ω)) = ξ ∗(c,ω). (3.11)

Define a random mapping Q : Ω×E → E by

Q(ω ,η(ω)) = ξ ∗(c,ω) (3.12)

for all ω ∈ Ω . If η1,η2 : Ω → E be two measurable functions, then there are measur-
able functions ξ ∗

1 ,ξ ∗
2 : Ω → E0 such that

Q(ω ,η1(ω)) = ξ ∗
1 (c,ω) and Q(ω ,η2(ω)) = ξ ∗

2 (c,ω)

for all ω ∈ Ω . Therefore, for each ω ∈ Ω ,

‖Q(ω ,η1(ω))−Q(ω ,η2(ω))‖E

� ‖A(ω ,ξ ∗
1 (ω))−A(ω ,ξ ∗

2 (ω))‖E

+‖B(ω ,η1(ω))−B(ω ,η2(ω))‖E

� λ (ω)‖ξ ∗
1 (ω)− ξ ∗

1 (ω)‖E0 +‖B(ω ,η1(ω))−B(ω ,η2(ω))‖E

� λ (ω)‖Q(ω ,η1(ω))−Q(ω ,η2(ω))‖E

+‖B(ω ,η1(ω))−B(ω ,η2(ω))‖E .

Hence,

‖Q(ω ,η1(ω))−Q(ω ,η2(ω))‖E

�
[
1−λ (ω)

]−1‖B(ω ,η1(ω))−B(ω ,η2(ω))‖E . (3.13)

Since B is compact on Ω×E , for each ω ∈ Ω , the sequence {B(ω ,ηn(ω))} has
a convergent subsequence for any sequence {ηn(ω)} in E . Without loss of generality,
we call the subsequence to be same sequence. As a result, {B(ω ,ηn(ω))} is Cauchy
sequence. Hence from (3.13) it follows that {Q(ω ,ηn(ω))} is also a Cauchy sequence
in E . Since E is complete, {Q(ω ,ηn(ω))} and consequently, every subsequence of it
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is convergent. Therefore, it follows that Q : Ω×E → E is a compact and continuous
random operator. Set S = conv(Q(Ω×E)) . Now we apply random version of Schauder
fixed point principle (see Himmelberg [8] and Itoh [9]) to the operator Q : Ω× S → S
to yield that Q(ω) has a random fixed point, that is, there is a measurable mapping
ξ ∗ : Ω → E0 such that

Q(ω ,ξ ∗(c,ω)) = ξ ∗(c,ω)

or, equivalently,
A(ω ,ξ ∗(ω))+B(ω ,ξ ∗(c,ω)) = ξ ∗(c,ω).

This completes the proof.

4. Functional Random Differential Equations

In this section, we apply the abstract results of the previous section to initial value
problems (IVP) of the functional random differential equations for proving the exis-
tence of PPF dependent random solutions under some Lipschitz and compactness type
conditions.

Given the closed and bounded intervals I0 = [−r,0] and I = [0,T ] in R , the
set of real numbers, for some real numbers r > 0, T > 0, let C denote the space
of continuous real-valued functions defined on I0 . We equip the space C with the
supremum norm ‖ · ‖C defined by

‖ξ‖C = sup
θ∈I0

|ξ (θ )|. (4.1)

It is clear that C is a Banach space with this norm called the history space of the
problem under consideration.

For each t ∈ I = [0,T ] , define a function t → xt ∈ C by

xt(θ ) = x(t + θ ), θ ∈ I0, (4.2)

where the argument θ represents the delay in the argument of solutions.
Now we are equipped with the necessary details to study the nonlinear problems

of functional random differential equations for existence and uniqueness results.

4.1. IVP of functional random differential equations

Let (Ω,A ) be a measurable space. By a mapping x : Ω → C(J,R) we denote a
function x(t,ω) which is continuous in the variable t for each ω ∈ Ω . In this case, we
also write x(t,ω) = x(ω)(t).

Given the measurable functions φ : Ω → C and x : Ω → C(I,R) , consider an
initial value problem of functional random differential equations of delay type (in short
FRDE),

x′(t,ω) = f (t,xt (ω),ω)
x0(ω) = φ(ω)

}
(4.3)
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for all t ∈ I and ω ∈ Ω , where f : I×C ×Ω → R .
By a random solution x of the FRDE (4.3) we mean a measurable function x :

Ω → C(J,R) that satisfies the equations in (4.3) on J , where C(J,R) is the space of
continuous real-valued functions defined on J = I0∪ I .

The functional random differential equation (4.3) is not new to the theory of non-
linear functional random differential equations and the existence and uniqueness theo-
rems for FRDE (4.3) are obtained by using the random version of classical fixed point
theorems of Schauder and Banach respectively. However, the novelty of the present pa-
per lies in the nice applicability of our Theorem 2.1 for proving the existence of random
solutions with PPF dependence for the FRDE (4.3) defined on J .

We consider the following hypotheses in what follows.

(H1 ) The function ω �→ f (t,x,ω) is measurable for each t ∈ I and x ∈ C and the
function (t,x) �→ f (t,x,ω) is jointly continuous for each ω ∈ Ω .

(H2 ) There exists a real number Mf > 0 such that for each ω ∈ Ω ,

| f (t,x,ω)| � Mf

for all t ∈ I and x ∈ C .

(H3 ) There exists real number L > 0 such that for each ω ∈ Ω ,

| f (t,x,ω)− f (t,y,ω)| � L‖x− y‖C

for all t ∈ I and x,y ∈ C .

THEOREM 4.1. Assume that the hypotheses (H1 ) through (H3 ) hold. Further-
more, if LT < 1 , then the FRDE (4.3) has a unique PPF dependent random solution
defined on J .

Proof. Set E = C(J,R) . Then E is a Banach space with respect to the usual
supremum norm ‖ · ‖E defined by

‖x‖E = sup
t∈J

|x(t)|. (4.4)

Clearly, E is a separable Banach space. Given a function x∈C(J,R) , define a mapping
x̂ : I → C by x̂(t) = xt ∈ C so that x̂(t)(0) = xt(0) = x(t) , t ∈ I and x̂(0) = x0.

Define a set Ê of functions by

Ê =
{
x̂ = (xt)t∈I : xt ∈ C ,x ∈C(I,R) and x0 = φ

}
. (4.5)

Define a norm ‖x̂‖Ê in Ê by
‖x̂‖Ê = sup

t∈I
‖xt‖C . (4.6)

Clearly, x̂∈C(I0,R) = C . Next we show that Ê is a Banach space. Consider a Cauchy
sequence {x̂n} in Ê . For simplicity of notations, we denote x̂n(t) = xn

t . Then, {(xn
t )t∈I}
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is a Cauchy sequence in C for each t ∈ I . This further implies that {xm
t (s)} is a Cauchy

sequence in R for each s ∈ [−r,0] . Then {xm
t (s)} converges to xt(s) for each t ∈ I0 .

Since {xn
t } is a sequence of uniformly continuous functions for a fixed t ∈ I , xt(s) is

also continuous in s ∈ [−r,0] . Hence the sequence {x̂n} converges to x̂ ∈ Ê . As a
result, Ê is complete. Moreover, Ê is a separable Banach space.

Now the FRDE (4.3) is equivalent to the nonlinear functional random integral
equation (in short FRIE)

x(t,ω) =

⎧⎨⎩φ(0,ω)+
∫ t

0
f (s,xs(ω),ω)ds, if t ∈ I,

φ(t,ω), if t ∈ I0.
(4.7)

Given a measurable function x̂ : Ω → Ê , consider the operator Q : Ω× Ê → R

defined by

Q(ω , x̂(ω)) = Q(ω ,xt(ω))

=

⎧⎨⎩φ(0,ω)+
∫ t

0
f (s,xs(ω),ω)ds, if t ∈ I,

φ(t,ω), if t ∈ I0.

(4.8)

Then the FRIE (4.5) is equivalent to the random operator equation

Q(ω , x̂(ω)) = x̂(0,ω) = x̂(ω)(0). (4.9)

Define a sequence {x̂n(ω)} of measurable functions by

(i) Q(ω , x̂n(ω)) = x̂n+1(ω)(0),

(ii) ‖x̂n(ω)− x̂n+1(ω)‖E0 = ‖x̂n(ω)(0)− x̂n+1(ω)(0)‖E

}
(4.10)

for n = 1,2, . . . .
We shall show that the operator Q satisfies condition (a) of Theorem 3.1 on Ω× Ê .

Firstly, we show that Q is a random operator on Ω× Ê . Since hypothesis (H1 ) holds,
by Carathéodory theorem, the function ω → f (t,x,ω) is measurable for all t ∈ I and
x ∈ C . As integral is the limit of the finite sum of measurable functions, the map

ω �→
∫ t

0
f (s,xs(ω),ω)ds

is measurable. Again, sum of two measurable functions is measurable, so the map

ω �→ φ(0,ω)+
∫ t

0
f (s,xs(ω),ω)ds

is measurable. Hence, the operator Q(ω , x̂) is measurable in ω for each x̂ ∈ Ê. As a
result, Q(ω) is a random operator on Ê into E .

Secondly, we show that random operator Q(ω) is continuous on Ê . Let ω ∈ Ω
be fixed. We show that the continuity of the random operator Q(ω) in the following
two cases:
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Case I: Let t ∈ [0,T ] and let {x̂n(ω)} be a sequence of points in Ê such that
x̂n(ω) → x̂(ω) as n → ∞ . Then, by dominated convergence theorem,

lim
n→∞

Q(ω , x̂n(t,ω)) = lim
n→∞

(
φ(0,ω)+

∫ t

0
f (s,xn

s (ω),ω)ds

)
= φ(0,ω)+ lim

n→∞

(∫ t

0
f (s,xn

s (ω),ω)ds

)
= φ(0,ω)+

(∫ t

0
lim
n→∞

f (s,xn
s (ω),ω)ds

)
= φ(0,ω)+

∫ t

0
f (s,xs(ω),ω)ds

= Q(ω , x̂(t,ω))

for all t ∈ [0,T ] and for each fixed ω ∈ Ω .
Case II: Suppose that t ∈ [−r,0] . Then we have:

|Q(ω , x̂n(ω))−Q(ω , x̂(ω))| = |φ(t,ω)−φ(t,ω)| = 0

for each fixed ω ∈ Ω . Hence,

lim
n→∞

Q(ω)x̂n(t,ω) = Q(ω)x̂(t,ω)

for all t ∈ [−r,0] and ω ∈ Ω . Now combining the Case I with Case II, we conclude
that Q(ω) is a pointwise continuous random operator on Ê into itself.

Now we show that the family of functions {Q(ω , x̂n(ω)} is a uniformly continu-
ous set in E for a fixed ω ∈ Ω . We consider the following three cases:

Case I: Let ε > 0 and let t1,t2 ∈ [0,T ] be arbitrary. Then, we have

|Q(ω ,xn
t1(ω))−Q(ω ,xn

t2(ω))| �
∣∣∣∣∫ t1

0
f (s,xn

s (ω),ω)ds−
∫ t2

0
f (s,xn

s (ω),ω)ds

∣∣∣∣
�

∣∣∣∣∫ t1

t2
| f (s,xn

s (ω),ω)|ds

∣∣∣∣
� Mf |t1 − t2|.

Choose δ1 =
ε

2(Mf +1)
> 0. Then, if |t1 − t2| < δ1 implies

|Q(ω ,xn
t1(ω))−Q(ω ,xn

t2(ω))| < Mf ε
2(Mf +1)

uniformly for xn
t = x̂n ∈ E0 .

Case II: Let t1,t2 ∈ [−r,0] be arbitrary. Since t �→ φ(ω ,t), is continuous on a
compact [−r,0] , it is uniformly continuous there. Hence, for above ε > 0 there exists
a δ2 > 0 such that |t1− t2| < δ1 implies

|Q(ω ,xn
t1(ω))−Q(ω ,xn

t2(ω))| = |φ(t1,ω)−φ(t2,ω)| � ε
2(Mf +1)
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uniformly for x̂n ∈ E0 .

Case III: Let t1 ∈ [−r,0] and t2 ∈ [0,T ] be arbitrary. Choose δ = min{δ1,δ2} .
Then, |t1 − t2| < δ implies

|Q(ω ,xn
t1(ω))−Q(ω ,xn

t2(ω))| � |Q(ω ,xn
t1(ω))−Q(ω ,xn

0(ω))|
+ |Q(ω ,xn

0(ω))−Q(ω ,xn
t2(ω))|

<
Mf ε

2(Mf +1)
+

ε
2(Mf +1)

= ε

uniformly for x̂n ∈ E0 .

Thus, in all three cases, |t1 − t2| < δ implies

|Q(ω ,xn
t1(ω))−Q(ω ,xn

t2(ω))| < ε

uniformly for all t1, t2 ∈ J and x̂n ∈ E0 . This shows that {Q(ω , x̂n)} is a sequence
of uniformly continuous functions on J . Hence, it converges uniformly on J . Hence,
Q(ω , x̂) is a continuous random operator on Ê for a fixed ω ∈ Ω .

Finally, we show that Q is random contraction on Ê . Let ω ∈ Ω be fixed. Then,

‖Q(ω , x̂(ω))−Q(ω , ŷ(ω))‖E = ‖Q(
ω ,xt(ω)

)−Q
(
ω ,yt(ω)

)‖E

= sup
t∈I

∣∣∣∣∫ t

0
f (s,xs(ω),ω)ds−

∫ t

0
f (s,ys(ω),ω)ds

∣∣∣∣
�

∫ T

0
L‖xs(ω)− ys(ω)‖C ds

�
∫ T

0
L‖x̂(ω)− ŷ(ω)‖Ê ds

� LT‖x̂(ω)− ŷ(ω)‖Ê (4.11)

for all x̂(ω), ŷ(ω) ∈ Ê . Hence, Q is a random contraction on Ê with contraction
constant α = LT < 1.

Thus, the condition (a) of Theorem 3.1 is satisfied. Hence, an application of Theo-
rem 3.1(a) yields that the functional random integral equation (4.9) has a random solu-
tion with PPF dependence defined on J . This further implies that the FRDE (4.3) has a
PPF dependent random solution ξ ∗ defined on J and the sequence {ξn(ω)} of measur-
able functions constructed as in (4.10) converges to ξ ∗ . Moreover, here the Razumikhin
class R0 , 0 ∈ [−r,T ] is C([0,T ],R) which is topologically and algebraically closed
with respect to difference, then by Theorem 3.1(c), ξ ∗ is a unique random solution with
PPF dependence for the the FRDE (4.3) defined on J . This completes the proof.

4.2. IVP of hybrid random differential equations

Given the functions φ : Ω → C and x : Ω → C(I,R) , consider an initial value
problem of functional random differential equations of delay type (in short FRDE),

x′(t,ω) = f (t,xt (ω),ω)+g(t,x(t,ω),ω)
x0(ω) = φ(ω)

}
(4.12)
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for all t ∈ I and ω ∈ Ω , where f : I×C ×Ω → R and g : I×R×Ω → R .
By a random solution x of the FRDE (4.12) we mean a measurable function x :

Ω →C(J,R) that satisfies the equations in (4.12) on J , where C(J,R) is the space of
continuous real-valued functions defined on J = I0∪ I .

The functional random differential equation (4.12) is not new to the theory of non-
linear functional differential equations and the details of the classifications of different
types of nonlinear differential equations appear in Dhage [4]. The existence theorems
for the FRDE (4.12) are generally proved by using the hybrid fixed point theorems of
Krasnoselskii and Dhage type. See for example, Krasnoselskii [10], Dhage [4] and
the references given therein. In the following we prove an existence of PPF dependent
random solutions for the FRDE (4.12) defined on J .

We consider the following hypothesis in what follows.

(H4 ) There exists real number L > 0 such that

| f (t,x,ω)− f (t,y,ω)| � L‖x(0)− y(0)‖C

for all t ∈ I and x,y ∈ C .

(H5 ) The function ω �→ g(t,x,ω) is measurable for each t ∈ I and x ∈ R and the
function (t,x) �→ g(t,x,ω) is jointly continuous for each ω ∈ Ω .

(H6 ) There exists a real number Mg > 0 such that for each ω ∈ Ω ,

|g(t,x,ω)| � Mg

for all t ∈ I and x ∈ R .

THEOREM 4.2. Assume that the hypotheses (H1 )-(H2 ) and (H4 ) through (H6 )
hold. Furthermore, if LT < 1 , then the FRDE (4.12) has a PPF dependent random
solution defined on J .

Proof. Now the FRDE (4.12) is equivalent to the nonlinear functional random
integral equation (in short FRIE)

x(t,ω) =

⎧⎨⎩φ(0,ω)+
∫ t

0
f (s,xs(ω),ω)ds+

∫ t

0
g(s,x(s,ω),ω)ds, if t ∈ I,

φ(t,ω), if t ∈ I0.
(4.13)

Define two separable Banach spaces E and E0 = Ê as in the proof of Theorem
4.1. Given a measurable function x̂ : Ω → Ê , consider the operators A : Ω× Ê → R

and B : Ω×R → R defined by

A(ω , x̂(t,ω)) = A(ω ,xt(ω))

=

⎧⎨⎩φ(0,ω)+
∫ t

0
f (s,xs(ω),ω)ds, if t ∈ I,

φ(t,ω), if t ∈ I0.

(4.14)
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and

B(ω ,x(t,ω)) =

⎧⎨⎩
∫ t

0
g(s,x(s,ω),ω)ds, if t ∈ I,

0, if t ∈ I0.
(4.15)

Then the FRIE (4.13) is equivalent to the operator equation

A(ω , x̂(ω))+B(ω , x̂(0,ω)) = x̂(0,ω) = x̂(ω)(0). (4.16)

We shall show that the operators A and B satisfy all the conditions of Theorem
3.2. It can be shown on the similar lines as in the proof of Theorem 4.1 that A(ω) and
B(ω) are continuous random operators on Ê and E respectively. Next, we prove that
A(ω) is a strong contraction random operator on E0 . Let ω ∈ Ω be fixed. Then,

‖A(ω , x̂(ω))−A(ω , ŷ(ω))‖E = ‖A(
ω ,xt(ω)

)−A
(
ω ,yt(ω)

)‖E

� sup
t∈I

∣∣∣∣∫ t

0
f (s,xs(ω),ω)ds−

∫ t

0
f (s,ys(ω),ω)ds

∣∣∣∣
�

∫ T

0
L‖xs(ω)(0)− ys(ω)(0)‖C ds

�
∫ T

0
L‖x̂(ω)(0)− ŷ(ω)(0)‖E ds

� LT ‖x̂(ω)(0)− ŷ(ω)(0)‖E (4.17)

for all x̂(ω), ŷ(ω)∈ Ê . Hence, A is a strong random contraction on Ê with contraction
constant α = LT < 1. Next, we show that B(ω) is a compact random operator on E.
Let {xn(ω)} be a sequence of measurable functions on Ω into E . To finish, it is enough
to show that {B(ω ,xn(ω))} has a convergent subsequence. Now, using the standard
arguments, it is shown that {B(ω ,xn(ω))} is a uniformly bounded and equicntinuous
set in E . Therefore, we apply Arzelá-Ascoli theorem and conclude that B is a compact
random operator on Ω×E into E . Again, the Razumikhin class R0 , 0 ∈ [−r,T ] is
C([0,T ],R) which is topologically and algebraically closed with respect to difference.
Thus, A(ω) and B(ω) satisfy all the conditions of Theorem 3.2. Hence, the FRIE (4.5)
and consequently FRDE (4.3) has a random solution with PPF dependence defined on
J . This completes the proof.

5. Conclusion

Finally, we conclude this paper with the remark that the random fixed point theo-
rems with PPF dependence proved here are very fundamental in the random fixed point
theory involving geometric hypothesis of distance between the images and objects in
question. However, using the principle that has been formulated in Theorems 3.1 and
3.2 several random fixed point theorems with PPF dependence can be proved in a sep-
arable Banach space which would be useful to study different types of the functional
randomdifferential equations those mentioned in Dhage [4]. In a forthcoming paper, we
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plan to prove some PPF dependent random fixed point theorems for the random opera-
tors satisfying certain generalized contraction conditions in separable Banach algebras
and apply them to some random differential equations different from those considered
in this paper.
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